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Abstract

Let G = (V(G), E(G)) be a graph and a(G) be the independence
number of G. For a vertex v € V(G), d(v) and N(v) represent
the degree and the neighborhood of v in G, respectively. In this
paper, we prove that if G is a k-connected(k > 2) graph of order
n, and if max{d(v) : v € S} > n/2 for every independent set S of
G with |S| = k which has two distinct vertices z,y € S satisfying
1 < [N(z) N N(y)| € aG) — 2, then either G is hamiltonian or else
G belongs to one of a family of exceptional graphs. We also give a
similar sufficient condition for Hamiltonian-connected graphs.
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1 Introduction and Results

Graphs considered here are simple and connected. For notation and
terminology not defined here we refer to [2].

*Supported by Natural Science Foundation of Ningxia under grant number: NZ1153
tCorresponding author: E-mail: gysh2004@mail.sdu.edu.cn

ARS COMBINATORIA 109(2013), pp. 405-414



Let G = (V, E) be a simple graph. We use V(G), E(G), §(G) and a(G)
to denote its vertex set, edge set, minimal degree and independence number,
respectively. The order of G is [G| = |V| and its size is e(G) = |E|. We
denote by d(u,v) the distance between two vertices u and v, i.e., the length
of the shortest path between v and v. If u € V(G) and H be a subgraph of
G, then Ny (v) denotes the set of vertices in H that are adjacent to v in G.
Thus, dg(v), the degree of v relative to H, is | Ny (v)|. We also write d(v)
for dg(v) and N(v) for Ng(v). Suppose that C and H are subgraphs of G,
then N¢(H) = Uyev(ayNec(v), and we use G — C to denote the subgraph
of G induced by V(G) — V(C). Let H be a subgraph or vertex subset of
G. We use G[H] to denote the subgraph of G induced by H. Let X be a
path or a cycle of G, and X denote the set X with a given orientation. If
u,v € V(X), then the subpath on X from u to v is denoted by uXv. The
same vertices, in reverse order, are given by vXu. For S C V(X), we use
St (resp. S~) to.denote the successors (resp. predecessors) of vertices of
S on X. Let uHv denote a u — v path in which all internal vertices belong
to H. If G contains k(k > 2) vertex disjoint subgraphs Cj,...,C, we use
U%_C; to denote these k subgraphs. Let k; denote a complete subgraph of
order t in G. For two subgraphs G; and G; in G, we use G; V G to denote
the join of Gy and Ga.

A graph G is Hamiltonian if it has a spanning cycle, and Hamiltonian-
connected if for every pair of vertices u,v € V(G), G has a spanning (u,v)-
path. The following sufficient conditions to ensure the existence of a Hamil-
tonian cycle in a simple graph G of order n > 3 are well known.

Theorem 1.1(Dirac, [4]). If 6(G) > n/2, then G is Hamiltonian.

Theorem 1.2(Ore, [7]). If d(u) + d(v) > n for each pair of nonadjacent
vertices u,v € V(G), then G is Hamiltonian.

Define the k-closure of G to be the graph obtained by recursively joining
pairs of nonadjacent vertices whose degree sum is at least k, until no such
pair remains. Using this definition, Bondy and Chavatal(see [1]) obtained
Theorem 1.3.

Theorem 1.3(Bondy and Chavatal, [1]). A graph G of order n is
Hamiltonian if and only if its n-closure is Hamiltonian. A graph G of order
n is Hamiltonian-connected if and only if its (n+1)-closure is Hamiltonian-
connected.



Fan [5] and Chen et al [3] obtained the following two results, respec-
tively.

Theorem 1.4(Fan, [5]). IfG is a 2-connected graph and if max{d(v),d(v)} >
n/2 for each pair vertices u,v € V(G) with d(u,v) = 2, then G is Hamil-
tonian.

Theorem 1.5(Chen et al, [3]). If G is a k-connected(k > 2) graph of
order n and if max{d(v),v € I} > n/2 for every independent set I of order
k, such that I has two distinct vertices z,y with d(z,y) = 2, then G is
Hamiltonian.

Since d(u,v) = 2 if and only if |[V(x) N N(v)] > 1 for a pair of nonadja-
cent vertices u, v of G, Zhao et al unified and extended the above theorems
and obtained the following result.

Theorem 1.6(Zhao et al, [9]). If G is a k-connected(k > 2) graph of
order n and if max{d(v),v € I} > n/2 for every independent set I of order
k, such that I has two distinct vertices z,y with 1 < |N(z) N N(y)| €
a(G) — 1, then G is Hamiltonian.

Recently, Yan et al also considered the Hamiltonian-connected case and
got the following result.

Theorem 1.7(Yan et al, [10]). If G is a k-connected(k > 3) graph
of order n and if max{d(v),v € I} 2 (n +1)/2 for every independent
set I of order k — 1 such that I has two distinct vertices x,y with 1 <
[N(z) N N(y)| € oG), then G is Hamiltonian-connected.

In this paper, we obtain the following two results which characterize
the extreme case and extend Theorems 1.6 and 1.7. Our proof is standard
and likewise the method in [9].

Theorem 1.8. If G is a k-connected(k = 2) graph of order n and if
max{d(v),v € I} 2 n/2 for every independent set I of order k, such that
I' has two distinct vertices z,y with 1 < |[N(z) " N(y)| < a(G) — 2, then
either G is Hamiltonian or G is a spanning subgraph of the nonhamiltonian
graph (U?__E?)K,,,.) V Ko(gy-1, where Zf’:(?)n.- +a(G)=n+1.

Theorem 1.9. If G is a k-connected(k > 3) graph of order n and if
max{d(v),v € I} > (n+1)/2 for every independent set I of order k—1, such
that I has two distinct vertices x,y with 1 < |[N(z) N N(y)| < a(G)—1, then



either G is Hamiltonian-connected graph or G is a spanning subgraph of
the nonhamiltonian-connected graph (U°(G)K )V Koq), where E“(f)n,
o(G) = n.

1=

2 Two basic lemmas

In order to prove Theorems 1.8 and 1.9, we will use the following two
lemmas:

Lemma 2.1(Shi et al, [8]). Let G be a 2-connected graph of order n.
Then G contains a cycle passing through all vertices of degree of at least
n/2.

Lemma 2.2(Menger, [6]). A graph G has vertex connectivity c if and
only if there exist there exist ¢ internally vertez disjoint paths between any
two vertices z, y of G.

3 Proof of Theorem 1.8

Suppose that G is a nonhamiltonian graph which satisfies the hypotheses
of Theorem 1.8. Let B={v € V(G)|d(v) > n/2}. We consider the graph

= (V(G), E(G')) with E(G') = E(G) U {wv ¢ E(G)|u,v € V(B)}. By
Theorem 1.3, G is also not a hamiltonian graph. For simplicity, throughout
the rest of this section, G always denotes the graph G'.

Note that G is k-connected and k > 2, by Lemma 2.1, we may assume
C to be a maximal cycle of G which contains all vertices of B and let H
be a component of G — V(C) with N(H) N V(C) as large as possible. Let
v1,¥2 - - - v be the elements of N¢(H) occuring on C in consecutive order
and let z; € N(v;) N V(H) for ¢ = 1,2,---,l. Since G is k-connected and
k > 2, for any i,j € {1,2,---,0} with i # j, the path v} Cv;Hv;Cv}
contains at least one vertex of H and contains all vertices of C, thus by the
maximality of C, v} v}' ¢ E(G). It follows from the definition of N (H)
that

For any i with1 < i < [, {z;} U NZ(H)is an independent set. 1

Also, since G[B] is a clique, INC (Hyn BI 1. Without loss of gen-
erality, we may assume that d(v}) < n/2 for i = 1,2.--,1 — 1, that is
d(:z:,-,vf’ } = 2 for every 7 # l. On the other hand, by the choice of H and



Lemma 2.2, | > k. This implies that for i € {1,2,---,! — 1}, there exists
V* C N{(H) with v} € V* and with [V*| = k-1, by (1), {z:}UV* is
an independent set of G with |{z;}UV*| = k and d(z;,v}) = 2. Since
max{d(v),v € {z;} UV*} < n/2, by the hypothesis of Theorem 1.8, we
know that

[Nz:)NN@f)| > (@) -1, i=1,2--,1-1 (2)

Note that N(z;)NN(v}) C {v1,v2,---,u}, combine with (2), the following
two statements hold.

o(G)=1+1, and N(zi)nN(v?’)={'Ul,'uz,---,v¢}, i=1,2--.,1—1.
(3)

If d(vf) <n/2, then N(z)NN(v})={v1,v2,-,u}, (4)
For i # j, let R = v Cv} and T = V(C) — R. We conclude that
Nz (vf) N Ne(v]) =0. (5)

Proof of (5). By contradiction. Suppose that there exists v € (N5 (v])n
Np(v])). By (1), v # v} and v # v;, then we see that v,-ij‘(Tv"'v;"avv;"C'vi
is a cycle which contains all vertices of B and longer than C, and this con-
tradiction proves (5). O

A similar argument proves that the following statement also holds.
Ni(@h)n NT(v;) =0. (6)
Next we shall give a characterization of G by showing a series of claims.

Set Vo = V(H) and V; = v} Cvj, fori =1,2---,1, (indices taken modulo
1).

For each i =0,1,---,I, G[V;] is complete. (7)

Proof of (7). Suppose that G[Vp] is not complete, then G[Vp] has a pair
of vertices a and b with d(a,b) = 2, let Su = {a,b} U N (H), then S,
is an independent set of cardinality I + 1, contradicting (3). If |V;| = 2
for some i # 0, then we have nothing to prove. So assume for all i # 0,
[Vil] > 3. We first consider the case when 7 # l. According to (3), we



see that v}v;y € E(G) for i # I, applying (5), v &N (v"') for every
j # i with 1 € j < I. Thus, by (1) and (3), v} v € E(G), otherwise
{z:,v53,} U NE(H) would be an independent set of cardinality ! + 2 since
|V;| > 3, contradicting (3). Continuing the process if |V; — {v;},}| > 3 for
i € {1,2,---,l — 1}, we shall eventually obtain that

Vi—{v}}c N@f) for i=1,2,---,1-1. (8)

If G|V;] is not complete for some ¢ € {1,2,---, —1}, then by (8), there
exist two vertices u,v € V; — {v}} such that uv ¢ E(G). It is easy to
see that ut, v+t ¢ {u,v}. From (8) again, we see that ut,v* € N(v}),
combining with (5), we have

(N(u) UN()) N(NE(H) - {vf}) = 0. ()

Consequently, by (1) again, {u,v,z;}U (N (H)— {v}}) is an independent
set of cardinality { + 2, and this contradiction shows that G[V] is complete
for all i # [. It remains to prove that G[V}] is complete. We conclude vy v;" €
E(G). If d(v]") < n/2, then as above, G[V]] is complete, we have completed
the proof of (7), and so assume that d(v;") > n/2. If d(v;') < n/2, by an
symmetry of C, {21} U Nz (H) is also a maximum independent set of G,
therefore, Vi — {v7'} C N(vy). We just need to consider the case when
d(v) > n/2. By the assumption of G, {v;",v7'} € B, so vj v € E(G).
According to (5), we obtain that N(v; ™) N {xi,vi",---,v,'"_ 1} = 0, this
implies that v}tv] =~ € E(G) if |Vi| 2 4, otherwise by (1), {z:,v] "JUNZ (H)
would be an mdependent set of cardinality of ! + 2, which contradicts (3).
Continuing the same process, we finally obtain that V; — {v}'} c N(v}).
Use a similar argument as the case 7 # I, we see that G[V|] is complete.
Therefore, (7) is verified. O

For anyi,j € {0,1,---,{} withi # 4, N(V;))nV; = . (10)

Proof of (10). Otherwise, assume that there exist two vertices u € V; and
u € V; with 1 # j such that uv € E(G). By the choice of H and C, 1,5 # 0.
Without loss of generality, suppose that i # [. However, we observe that

c = qu’v v 6v,Hv,_(_3'u’v+Z“u if v # v,
- quv,_‘.leJHau v+lCu ifv=v5,

is a cycle longer than C, a contradiction. O
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We prove the following statement to complete the proof of Theorem 1.8.

There is only one component H of G — V(C), i.e. V(G) = V(C) U V(H).

(11)
Proof of (11). Suppose for a contradiction, let H’ be another compo-
nent of G — V(C) and y € V(H'). Note that N(y) N NZ(H) # @ and
N(y) N Ng(H) # 0, otherwise, {z1,y} U NE(H) or {z1,y} U N5(H)
would be an independent set of cardinality of ! + 2, which contradicts
(3). Furthermore, if there exist two vertices {v},v]} C NZ(H) n N(y)
with i # j, then v} yv_,;-" 6v¢ij(5v;" is a cycle which contains all ver-
tices of C' and longer than C, a contradiction, thus lNg.' (H)nN (y)l =1
Similarly, INC‘ (H)NnN (y)' = 1. Without loss of generality, assume that
yvi € E(G) and yv; € E(G) for some i € {1,2,---,1}. If either [V;| > 2
or |V;1| 2 2, then by (1) and (10), {v{*, 21,9} U (NE(H) — {v}}) or
{v;y ™, z1,y} U(Ng (H) — {v; }) would be an independent set of cardinality
of | + 2, again a contradiction, thus we must have |V;| = |V;_;| = 1. Since
G is k-connected graph and k > 2, we may assume that i # 2. By (3),
viyv; CuyHu, ('C_v,-'u;" is a longer cycle than C, a contradiction, thus (11)
is proved. O

Set |V;] = n; for ¢ = 0,1,---,l, by combining the statements (7), (10)
and (11), it is easy to see that G is a spanning subgraph of the nonhamilto-
nian graph (Ui_oKn,) VK, = (U9 K,,) V K 4(c)-1, the proof of Theorem
1.8 is completed. O

4 Proof of Theorem 1.9

Suppose that G is a nonhamiltonian-connected graph which satisfies
the hypothesis of Theorem 1.9. Set B={v € V(G)|d(v) > (n + 1)/2}.
We consider the graph G’ = (V(G), E(G")) with E(G') = E(G) U {wv ¢
E(G)|u,v € V(B)}. For simplicity, throughout the rest of this section, G
always denotes the graph G’.

According to Theorem 1.3, G is also not Hamiltonian-connected. Thus,
there exists a pair of vertices u, v of G such that no hamiltonian « — v path
in G exists. We claim that G contains a u—wv path through all vertices of B.
Otherwise, let us suppose, for the moment, the above statement is false. By
Theorems 1.6 and 1.3, G is Hamiltonian. Let C’ be a hamiltonian cycle in
G. IfBC V(ua v)or BC V(vC—)" u), then it is easy to see that G contains a
u—v path through all vertices of B, a contradiction. Hence, we may assume
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that B can be partitioned into B; and Bs, such that B, C V(uC v) and
B, C V(vC u). By our construction of G, each vertex in B, is adjacent to
every vertex in By, and vice versa. Choose v} € By with v] # v such that
|V(uC’ )| is as large as possible. Subject to thls requirement, we further
choose v. _% € B, with vj # u such that |V(v§C u)| is as small as possible.
Then uC'v{v5C"v is a u — v path through all vertices of B, a contradiction.

From the claim above, let P be a maximal © —v path containing B and
let H be a component of G — V(P) with N(H)NV(P) as large as possible.
Let vy,v2---v; be the elements of Np(H) occuring on in consecutive
order and let z; € N(v;)NV(H) for i =1,2,---,l. Since G is k-connected
and k > 3, we have

for any z € V(H), {z} UN#(H)and {z} U Np (H) are independent sets.

(12)
Proof of (12). Since P be a maximal u — v path, for any z € V(H),
N(z) n NE(H) = 0. If there exists v},v] € Ni(H) such that v}v} €
E(G), we assume that ¢ < j, then we see that uﬁngv_, P}y "'ﬁ'v is a
u — v path contains all vertices of B and longer than P, a contradlctlon
Thus {z} U NE(H) is an independent set and {z} U N5 (H) is also one by
symmetry. O

Also, since G[B] is a clique, |N 2 (H) nB| £ 1. Without loss of gener-
ality, we may assume that d(v}') < (n+1)/2 for i =1,2..-,1—1, that is
d(z;,v}) = 2 for every i # l. On the other hand, by the choice of H and
Lemma 2.2, ! > k. This implies that for ¢ € {1,2,-.-,1 — 1}, there exists
V* C N}(H) with v} € V* and with [V*| =k -2, by (12), {z:}UV* is
an independent set of G with |{z;} UV*| = k — 1 and d(z;,v}) = 2. Note
that max{d(v),v € {z;} UV*} < (n+1)/2, by the hypotheses of Theorem
1.9, we know that

|N(z:) "\ N(})| > G), i=1,2---,1-1. (13)

Since N(z;) N N(v}) C {v1, vz, -+, u}, in view of (13), we see that the
following three statements must hold.

a(G)=1!, and v;=u and vy =v. (14)

N(z:) " N(v}) = {v1,v2,---,u}, i=1,2---,1-1. (15)

If dvf)<(n+1)/2, then N(z;))NN(v)={v1,ve,---,u}, (16)
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For i # j, let R = v} Pv} and T = V(P)— R. By using an similar argu-
ments as the proof of Theorem 1.8, we can show the following statements
(17) through (20) as given below hold.

Ng (v}) 0 Np(v]) =0 and Nf(vf) N Np(v}) =90. aamn

Put Vo = V(H) and V; = v} P, fori=1,2...,1 — 1, we have
For each i =0,1,---,l - 1, G[Vj] is complete. (18)
Fori,7=0,1,---,l—1withi# 4, NV;)nV; =0. (19)
V(G) =V(P)UV(H). (20)

Set |Vi| = n; for i =0,1,---,1 — 1, combining with (18), (19) and (20),
it is easy to see that G is a spanning subgraph of the graph (Uz;(l)Kn‘.) \
Ki = (U Kn,) V Kog). Obviously, the graph (U K,.,) V K, is

not hamiltonian-connected, thus we have completed the proof of Theorem

1.9. O
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