Notes on Hamiltonian Graphs and Hamiltonian-Connected Graphs*

Yunshu Gao[†]
School of Mathematics, Ningxia University
Yinchuan, 750021, P. R. China
Guojun Li Jin Yan
School of Mathematics, Shandong University
Jinan, 250100, P. R. China

Abstract

Let G=(V(G),E(G)) be a graph and $\alpha(G)$ be the independence number of G. For a vertex $v\in V(G)$, d(v) and N(v) represent the degree and the neighborhood of v in G, respectively. In this paper, we prove that if G is a k-connected $(k\geqslant 2)$ graph of order n, and if $\max\{d(v):v\in S\}\geqslant n/2$ for every independent set S of G with |S|=k which has two distinct vertices $x,y\in S$ satisfying $1\leqslant |N(x)\cap N(y)|\leqslant \alpha(G)-2$, then either G is hamiltonian or else G belongs to one of a family of exceptional graphs. We also give a similar sufficient condition for Hamiltonian-connected graphs.

Key words: Hamiltonian graphs, Hamiltonian-connected graphs, Degree condition.

MSC: 05C38; 05C45.

1 Introduction and Results

Graphs considered here are simple and connected. For notation and terminology not defined here we refer to [2].

^{*}Supported by Natural Science Foundation of Ningxia under grant number: NZ1153 †Corresponding author: E-mail: gysh2004@mail.sdu.edu.cn

Let G = (V, E) be a simple graph. We use V(G), E(G), $\delta(G)$ and $\alpha(G)$ to denote its vertex set, edge set, minimal degree and independence number, respectively. The order of G is |G| = |V| and its size is e(G) = |E|. We denote by d(u, v) the distance between two vertices u and v, i.e., the length of the shortest path between u and v. If $u \in V(G)$ and H be a subgraph of G, then $N_H(v)$ denotes the set of vertices in H that are adjacent to v in G. Thus, $d_H(v)$, the degree of v relative to H, is $|N_H(v)|$. We also write d(v)for $d_G(v)$ and N(v) for $N_G(v)$. Suppose that C and H are subgraphs of G, then $N_C(H) = \bigcup_{u \in V(H)} N_C(u)$, and we use G - C to denote the subgraph of G induced by V(G) - V(C). Let H be a subgraph or vertex subset of G. We use G[H] to denote the subgraph of G induced by H. Let X be a path or a cycle of G, and \overrightarrow{X} denote the set X with a given orientation. If $u, v \in V(X)$, then the subpath on \overrightarrow{X} from u to v is denoted by $u\overrightarrow{X}v$. The same vertices, in reverse order, are given by $v\overrightarrow{X}u$. For $S\subseteq V(X)$, we use S^+ (resp. S^-) to denote the successors (resp. predecessors) of vertices of S on \overline{X} . Let uHv denote a u-v path in which all internal vertices belong to H. If G contains $k(k \geq 2)$ vertex disjoint subgraphs C_1, \ldots, C_k , we use $\bigcup_{i=1}^k C_i$ to denote these k subgraphs. Let k_t denote a complete subgraph of order t in G. For two subgraphs G_1 and G_2 in G, we use $G_1 \vee G_2$ to denote the join of G_1 and G_2 .

A graph G is Hamiltonian if it has a spanning cycle, and Hamiltonian-connected if for every pair of vertices $u, v \in V(G)$, G has a spanning (u, v)-path. The following sufficient conditions to ensure the existence of a Hamiltonian cycle in a simple graph G of order $n \ge 3$ are well known.

Theorem 1.1(Dirac, [4]). If $\delta(G) \ge n/2$, then G is Hamiltonian.

Theorem 1.2(Ore, [7]). If $d(u) + d(v) \ge n$ for each pair of nonadjacent vertices $u, v \in V(G)$, then G is Hamiltonian.

Define the k-closure of G to be the graph obtained by recursively joining pairs of nonadjacent vertices whose degree sum is at least k, until no such pair remains. Using this definition, Bondy and Chavatal(see [1]) obtained Theorem 1.3.

Theorem 1.3(Bondy and Chavatal, [1]). A graph G of order n is Hamiltonian if and only if its n-closure is Hamiltonian. A graph G of order n is Hamiltonian-connected if and only if its (n+1)-closure is Hamiltonian-connected.

Fan [5] and Chen et al [3] obtained the following two results, respectively.

Theorem 1.4(Fan, [5]). If G is a 2-connected graph and if $\max\{d(u), d(v)\} \ge n/2$ for each pair vertices $u, v \in V(G)$ with d(u, v) = 2, then G is Hamiltonian.

Theorem 1.5(Chen et al, [3]). If G is a k-connected($k \ge 2$) graph of order n and if $\max\{d(v), v \in I\} \ge n/2$ for every independent set I of order k, such that I has two distinct vertices x, y with d(x, y) = 2, then G is Hamiltonian.

Since d(u,v)=2 if and only if $|N(u)\cap N(v)|\geqslant 1$ for a pair of nonadjacent vertices u,v of G, Zhao et al unified and extended the above theorems and obtained the following result.

Theorem 1.6(Zhao et al, [9]). If G is a k-connected $(k \ge 2)$ graph of order n and if $\max\{d(v), v \in I\} \ge n/2$ for every independent set I of order k, such that I has two distinct vertices x, y with $1 \le |N(x) \cap N(y)| \le \alpha(G) - 1$, then G is Hamiltonian.

Recently, Yan et al also considered the Hamiltonian-connected case and got the following result.

Theorem 1.7(Yan et al, [10]). If G is a k-connected($k \ge 3$) graph of order n and if $\max\{d(v), v \in I\} \ge (n+1)/2$ for every independent set I of order k-1 such that I has two distinct vertices x, y with $1 \le |N(x) \cap N(y)| \le \alpha(G)$, then G is Hamiltonian-connected.

In this paper, we obtain the following two results which characterize the extreme case and extend Theorems 1.6 and 1.7. Our proof is standard and likewise the method in [9].

Theorem 1.8. If G is a k-connected($k \ge 2$) graph of order n and if $\max\{d(v), v \in I\} \ge n/2$ for every independent set I of order k, such that I has two distinct vertices x, y with $1 \le |N(x) \cap N(y)| \le \alpha(G) - 2$, then either G is Hamiltonian or G is a spanning subgraph of the nonhamiltonian graph $(\bigcup_{i=1}^{\alpha(G)} K_{n_i}) \vee K_{\alpha(G)-1}$, where $\sum_{i=1}^{\alpha(G)} n_i + \alpha(G) = n+1$.

Theorem 1.9. If G is a k-connected($k \ge 3$) graph of order n and if $\max\{d(v), v \in I\} \ge (n+1)/2$ for every independent set I of order k-1, such that I has two distinct vertices x, y with $1 \le |N(x) \cap N(y)| \le \alpha(G)-1$, then

:

either G is Hamiltonian-connected graph or G is a spanning subgraph of the nonhamiltonian-connected graph $(\bigcup_{i=1}^{\alpha(G)} K_{n_i}) \vee K_{\alpha(G)}$, where $\sum_{i=1}^{\alpha(G)} n_i + \alpha(G) = n$.

2 Two basic lemmas

In order to prove Theorems 1.8 and 1.9, we will use the following two lemmas:

Lemma 2.1(Shi et al, [8]). Let G be a 2-connected graph of order n. Then G contains a cycle passing through all vertices of degree of at least n/2.

Lemma 2.2(Menger, [6]). A graph G has vertex connectivity c if and only if there exist there exist c internally vertex disjoint paths between any two vertices x, y of G.

3 Proof of Theorem 1.8

Suppose that G is a nonhamiltonian graph which satisfies the hypotheses of Theorem 1.8. Let $B=\{v\in V(G)|d(v)\geqslant n/2\}$. We consider the graph G'=(V(G),E(G')) with $E(G')=E(G)\cup\{uv\notin E(G)|u,v\in V(B)\}$. By Theorem 1.3, G' is also not a hamiltonian graph. For simplicity, throughout the rest of this section, G always denotes the graph G'.

Note that G is k-connected and $k \geq 2$, by Lemma 2.1, we may assume C to be a maximal cycle of G which contains all vertices of B and let H be a component of G - V(C) with $N(H) \cap V(C)$ as large as possible. Let $v_1, v_2 \cdots v_l$ be the elements of $N_C(H)$ occurring on \overrightarrow{C} in consecutive order and let $x_i \in N(v_i) \cap V(H)$ for $i = 1, 2, \cdots, l$. Since G is k-connected and $k \geq 2$, for any $i, j \in \{1, 2, \cdots, l\}$ with $i \neq j$, the path $v_i^+ \overrightarrow{C} v_j H v_i \overleftarrow{C} v_j^+$ contains at least one vertex of H and contains all vertices of C, thus by the maximality of C, $v_i^+ v_j^+ \notin E(G)$. It follows from the definition of $N_C^+(H)$ that

For any
$$i$$
 with $1 \le i \le l$, $\{x_i\} \cup N_C^+(H)$ is an independent set. (1)

Also, since G[B] is a clique, $|N_C^+(H) \cap B| \leq 1$. Without loss of generality, we may assume that $d(v_i^+) < n/2$ for $i = 1, 2 \cdots, l-1$, that is $d(x_i, v_i^+) = 2$ for every $i \neq l$. On the other hand, by the choice of H and

Lemma 2.2, $l \ge k$. This implies that for $i \in \{1, 2, \dots, l-1\}$, there exists $V^* \subseteq N_C^+(H)$ with $v_i^+ \in V^*$ and with $|V^*| = k-1$, by (1), $\{x_i\} \cup V^*$ is an independent set of G with $|\{x_i\} \cup V^*| = k$ and $d(x_i, v_i^+) = 2$. Since $\max\{d(v), v \in \{x_i\} \cup V^*\} < n/2$, by the hypothesis of Theorem 1.8, we know that

$$|N(x_i) \cap N(v_i^+)| \ge \alpha(G) - 1, \quad i = 1, 2 \cdots, l - 1.$$
 (2)

Note that $N(x_i) \cap N(v_i^+) \subseteq \{v_1, v_2, \dots, v_l\}$, combine with (2), the following two statements hold.

$$\alpha(G) = l+1$$
, and $N(x_i) \cap N(v_i^+) = \{v_1, v_2, \dots, v_l\}, \quad i = 1, 2 \dots, l-1.$
(3)

If
$$d(v_l^+) < n/2$$
, then $N(x_l) \cap N(v_l^+) = \{v_1, v_2, \dots, v_l\}$, (4)

For $i \neq j$, let $R = v_i^+ \overrightarrow{C} v_j^+$ and T = V(C) - R. We conclude that

$$N_R^-(v_i^+) \cap N_R(v_i^+) = \emptyset. \tag{5}$$

Proof of (5). By contradiction. Suppose that there exists $v \in (N_R^-(v_i^+) \cap N_R(v_j^+))$. By (1), $v \neq v_i^+$ and $v \neq v_j$, then we see that $v_i H v_j \overleftarrow{C} v^+ v_i^+ \overrightarrow{C} v v_j^+ \overrightarrow{C} v_i$ is a cycle which contains all vertices of B and longer than C, and this contradiction proves (5).

A similar argument proves that the following statement also holds.

$$N_T^+(v_i^+) \cap N_T(v_i^+) = \emptyset. \tag{6}$$

Next we shall give a characterization of G by showing a series of claims. Set $V_0 = V(H)$ and $V_i = v_i^+ \overrightarrow{C} v_{i+1}^-$ for $i = 1, 2 \cdots, l$, (indices taken modulo l).

For each
$$i = 0, 1, \dots, l, G[V_i]$$
 is complete. (7)

Proof of (7). Suppose that $G[V_0]$ is not complete, then $G[V_0]$ has a pair of vertices a and b with d(a,b)=2, let $S_{ab}=\{a,b\}\cup N_C^+(H)$, then S_{ab} is an independent set of cardinality l+1, contradicting (3). If $|V_i|=2$ for some $i\neq 0$, then we have nothing to prove. So assume for all $i\neq 0$, $|V_i|\geqslant 3$. We first consider the case when $i\neq l$. According to (3), we

see that $v_i^+v_{i+1}\in E(G)$ for $i\neq l$, applying (5), $v_{i+1}^-\notin N(v_j^+)$ for every $j\neq i$ with $1\leqslant j\leqslant l$. Thus, by (1) and (3), $v_i^+v_{i+1}^-\in E(G)$, otherwise $\{x_i,v_{i+1}^-\}\cup N_C^+(H)$ would be an independent set of cardinality l+2 since $|V_i|\geqslant 3$, contradicting (3). Continuing the process if $|V_i-\{v_{i+1}^-\}|\geqslant 3$ for $i\in\{1,2,\cdots,l-1\}$, we shall eventually obtain that

$$V_i - \{v_i^+\} \subset N(v_i^+) \quad \text{for} \quad i = 1, 2, \dots, l - 1.$$
 (8)

If $G[V_i]$ is not complete for some $i \in \{1, 2, \dots, l-1\}$, then by (8), there exist two vertices $u, v \in V_i - \{v_i^+\}$ such that $uv \notin E(G)$. It is easy to see that $u^+, v^+ \notin \{u, v\}$. From (8) again, we see that $u^+, v^+ \in N(v_i^+)$, combining with (5), we have

$$(N(u) \cup N(v)) \cap (N_C^+(H) - \{v_i^+\}) = \emptyset.$$
(9)

Consequently, by (1) again, $\{u,v,x_1\} \cup (N_C^+(H)-\{v_i^+\})$ is an independent set of cardinality l+2, and this contradiction shows that $G[V_i]$ is complete for all $i \neq l$. It remains to prove that $G[V_l]$ is complete. We conclude $v_1^-v_l^+ \in E(G)$. If $d(v_l^+) < n/2$, then as above, $G[V_l]$ is complete, we have completed the proof of (7), and so assume that $d(v_l^+) \ge n/2$. If $d(v_1^-) < n/2$, by an symmetry of C, $\{x_1\} \cup N_C^-(H)$ is also a maximum independent set of C, therefore, $V_l - \{v_1^-\} \subset N(v_1^-)$. We just need to consider the case when $d(v_1^-) \ge n/2$. By the assumption of C, $\{v_l^+, v_1^-\} \in B$, so $v_1^-v_l^+ \in E(C)$. According to (5), we obtain that $N(v_1^-) \cap \{x_i, v_1^+, \cdots, v_{l-1}^+\} = \emptyset$, this implies that $v_l^+v_1^- \in E(C)$ if $|V_l| \ge 4$, otherwise by (1), $\{x_i, v_1^-\} \cup N_C^+(H)$ would be an independent set of cardinality of l+2, which contradicts (3). Continuing the same process, we finally obtain that $V_l - \{v_l^+\} \subset N(v_l^+)$. Use a similar argument as the case $i \ne l$, we see that $C[V_l]$ is complete. Therefore, (7) is verified.

For any
$$i, j \in \{0, 1, \dots, l\}$$
 with $i \neq j$, $N(V_i) \cap V_j = \emptyset$. (10)

Proof of (10). Otherwise, assume that there exist two vertices $u \in V_i$ and $u \in V_j$ with $i \neq j$ such that $uv \in E(G)$. By the choice of H and C, $i, j \neq 0$. Without loss of generality, suppose that $i \neq l$. However, we observe that

$$C' = \left\{ \begin{array}{ll} uv \overleftarrow{C} v_j^+ v^+ \overrightarrow{C} v_i H v_j \overrightarrow{C} u^- v_i^+ \overrightarrow{C} u & \text{if } v \neq v_{j+1}^- \\ uv \overleftarrow{C} v_{i+1} H v_{j+1} \overrightarrow{C} u^- v_{i+1}^- \overleftarrow{C} u & \text{if } v = v_{j+1}^- \end{array} \right.$$

is a cycle longer than C, a contradiction.

We prove the following statement to complete the proof of Theorem 1.8.

There is only one component H of G - V(C), i.e. $V(G) = V(C) \cup V(H)$. (11)

Proof of (11). Suppose for a contradiction, let H' be another component of G-V(C) and $y\in V(H')$. Note that $N(y)\cap N_C^+(H)\neq\emptyset$ and $N(y)\cap N_C^-(H)\neq\emptyset$, otherwise, $\{x_1,y\}\cup N_C^+(H)$ or $\{x_1,y\}\cup N_C^-(H)$ would be an independent set of cardinality of l+2, which contradicts (3). Furthermore, if there exist two vertices $\{v_i^+,v_j^+\}\subseteq N_C^+(H)\cap N(y)$ with $i\neq j$, then $v_i^+yv_j^+\overrightarrow{C}v_iHv_j^+\overrightarrow{C}v_i^+$ is a cycle which contains all vertices of C and longer than C, a contradiction, thus $|N_C^+(H)\cap N(y)|=1$. Similarly, $|N_C^-(H)\cap N(y)|=1$. Without loss of generality, assume that $yv_1^+\in E(G)$ and $yv_i^-\in E(G)$ for some $i\in\{1,2,\cdots,l\}$. If either $|V_1|\geqslant 2$ or $|V_{i-1}|\geqslant 2$, then by (1) and (10), $\{v_1^{++},x_1,y\}\cup (N_C^+(H)-\{v_1^{+}\})$ or $\{v_i^{--},x_1,y\}\cup (N_C^-(H)-\{v_i^{-}\})$ would be an independent set of cardinality of l+2, again a contradiction, thus we must have $|V_1|=|V_{i-1}|=1$. Since G is k-connected graph and $k\geqslant 2$, we may assume that $i\neq 2$. By (3), $v_1^+yv_i^-\overrightarrow{C}v_2Hv_1^+\overrightarrow{C}v_iv_1^+$ is a longer cycle than C, a contradiction, thus (11) is proved.

Set $|V_i| = n_i$ for $i = 0, 1, \dots, l$, by combining the statements (7), (10) and (11), it is easy to see that G is a spanning subgraph of the nonhamiltonian graph $(\bigcup_{i=0}^{l} K_{n_i}) \vee K_l = (\bigcup_{i=1}^{\alpha(G)} K_{n_i}) \vee K_{\alpha(G)-1}$, the proof of Theorem 1.8 is completed.

4 Proof of Theorem 1.9

Suppose that G is a nonhamiltonian-connected graph which satisfies the hypothesis of Theorem 1.9. Set $B=\{v\in V(G)|d(v)\geqslant (n+1)/2\}$. We consider the graph G'=(V(G),E(G')) with $E(G')=E(G)\cup\{uv\notin E(G)|u,v\in V(B)\}$. For simplicity, throughout the rest of this section, G always denotes the graph G'.

According to Theorem 1.3, G is also not Hamiltonian-connected. Thus, there exists a pair of vertices u, v of G such that no hamiltonian u-v path in G exists. We claim that G contains a u-v path through all vertices of B. Otherwise, let us suppose, for the moment, the above statement is false. By Theorems 1.6 and 1.3, G is Hamiltonian. Let G' be a hamiltonian cycle in G. If $G \subseteq V(u\overrightarrow{C'}v)$ or $G \subseteq V(v\overrightarrow{C'}u)$, then it is easy to see that G contains a G' path through all vertices of G, a contradiction. Hence, we may assume

that B can be partitioned into B_1 and B_2 , such that $B_1 \subseteq V(u\overrightarrow{C'}v)$ and $B_2 \subseteq V(v\overrightarrow{C'}u)$. By our construction of G, each vertex in B_1 is adjacent to every vertex in B_2 , and vice versa. Choose $v_1' \in B_1$ with $v_1' \neq v$ such that $|V(u\overrightarrow{C'}v_1')|$ is as large as possible. Subject to this requirement, we further choose $v_2' \in B_2$ with $v_2' \neq u$ such that $|V(v_2'\overrightarrow{C'}u)|$ is as small as possible. Then $u\overrightarrow{C'}v_1'v_2'\overrightarrow{C'}v$ is a u-v path through all vertices of B, a contradiction.

From the claim above, let P be a maximal u-v path containing B and let H be a component of G-V(P) with $N(H)\cap V(P)$ as large as possible. Let $v_1,v_2\cdots v_l$ be the elements of $N_P(H)$ occurring on \overrightarrow{P} in consecutive order and let $x_i\in N(v_i)\cap V(H)$ for $i=1,2,\cdots,l$. Since G is k-connected and $k\geqslant 3$, we have

for any $x \in V(H)$, $\{x\} \cup N_P^+(H)$ and $\{x\} \cup N_P^-(H)$ are independent sets.

Proof of (12). Since P be a maximal u-v path, for any $x \in V(H)$, $N(x) \cap N_P^+(H) = \emptyset$. If there exists $v_i^+, v_j^+ \in N_P^+(H)$ such that $v_i^+ v_j^+ \in E(G)$, we assume that i < j, then we see that $u\overrightarrow{P}v_iHv_j\overleftarrow{P}v_i^+v_j^+\overrightarrow{P}v$ is a u-v path contains all vertices of B and longer than P, a contradiction. Thus $\{x\} \cup N_P^+(H)$ is an independent set and $\{x\} \cup N_P^-(H)$ is also one by symmetry.

Also, since G[B] is a clique, $|N_P^+(H) \cap B| \leq 1$. Without loss of generality, we may assume that $d(v_i^+) < (n+1)/2$ for $i=1,2\cdots,l-1$, that is $d(x_i,v_i^+)=2$ for every $i\neq l$. On the other hand, by the choice of H and Lemma 2.2, $l\geqslant k$. This implies that for $i\in\{1,2,\cdots,l-1\}$, there exists $V^*\subseteq N_P^+(H)$ with $v_i^+\in V^*$ and with $|V^*|=k-2$, by (12), $\{x_i\}\cup V^*$ is an independent set of G with $|\{x_i\}\cup V^*|=k-1$ and $d(x_i,v_i^+)=2$. Note that $\max\{d(v),v\in\{x_i\}\cup V^*\}<(n+1)/2$, by the hypotheses of Theorem 1.9, we know that

$$|N(x_i) \cap N(v_i^+)| \ge \alpha(G), \quad i = 1, 2 \cdots, l - 1.$$
 (13)

Since $N(x_i) \cap N(v_i^+) \subseteq \{v_1, v_2, \dots, v_l\}$, in view of (13), we see that the following three statements must hold.

$$\alpha(G) = l$$
, and $v_1 = u$ and $v_l = v$. (14)

$$N(x_i) \cap N(v_i^+) = \{v_1, v_2, \dots, v_l\}, \quad i = 1, 2 \dots, l-1.$$
 (15)

If
$$d(v_l^+) < (n+1)/2$$
, then $N(x_l) \cap N(v_l^+) = \{v_1, v_2, \dots, v_l\}$, (16)

For $i \neq j$, let $R = v_i^+ \overrightarrow{P} v_j^+$ and T = V(P) - R. By using an similar arguments as the proof of Theorem 1.8, we can show the following statements (17) through (20) as given below hold.

$$N_R^-(v_i^+) \cap N_R(v_i^+) = \emptyset \text{ and } N_T^+(v_i^+) \cap N_T(v_i^+) = \emptyset.$$
 (17)

Put $V_0 = V(H)$ and $V_i = v_i^+ \overrightarrow{P} v_{i+1}^-$ for $i = 1, 2 \cdots, l-1$, we have

For each
$$i = 0, 1, \dots, l - 1$$
, $G[V_i]$ is complete. (18)

For
$$i, j = 0, 1, \dots, l-1$$
 with $i \neq j$, $N(V_i) \cap V_i = \emptyset$. (19)

$$V(G) = V(P) \cup V(H). \tag{20}$$

Set $|V_i| = n_i$ for $i = 0, 1, \dots, l-1$, combining with (18), (19) and (20), it is easy to see that G is a spanning subgraph of the graph $(\bigcup_{i=0}^{l-1} K_{n_i}) \vee K_l = (\bigcup_{i=1}^{\alpha(G)} K_{n_i}) \vee K_{\alpha(G)}$. Obviously, the graph $(\bigcup_{i=1}^{\alpha(G)} K_{n_i}) \vee K_{\alpha(G)}$ is not hamiltonian-connected, thus we have completed the proof of Theorem 1.9.

Acknowledgments

We sincerely thank the anonymous reviewer whose useful and critical comments have significantly enhanced the content, organization and presentation of this paper.

References

- [1] J.A. Bondy and V. Chvtal, A method in graph theory, Disc. Math. 15 (1976) 111-135.
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York 1976.
- [3] G. Chen, Y. Egawa, X. Liu and A. Saito, Essential independent set and Hamiltonian cycles, J. Graph Theory 21 (1996) 243-250.
- [4] G.A. Dirc, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
- [5] G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory Ser. B 37 (1984) 221-227.

- [6] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 96-115.
- [7] O. Ore, Note on Hamiltonian circuits, Amer. Math. Monthly 67 (1960)55.
- [8] R. Shi, 2-Neighborhoods and Hamiltonian conditions, J. Graph Theory 16 (1992) 267-271.
- [9] J. Wang, A Generalization of Fan- Type Conditions for Hamiltonian and Hamiltonian-Connected Graphs, Australasian J. of Combinatorics 8 (1993) 267-276.
- [10] J. Yan, H.-J Lai and J. Zhou, New sufficient conditions for s-Hamiltonian graphs and s-Hamiltonian connected graphs, Ars Combin. 88 (2008) 217-227.
- [11] K. Zhao, H.-J Lai and Y. Shao, New sufficient condition for hamiltonian graphs, Applied Math. Letters 20 (2007) 116-122.