ANGLE OF CONTACT OF LENS AND LUNAR MAPS
AND PRODUCTS OF COMPOSITION AND ITERATED
DIFFERENTIATION
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ABSTRACT. In this paper, we characterize boundedness and com-
pactness of products of composition operators induced by the lens
and the lunar maps and iterated differentiation acting between Hardy
and weighted Bergman spaces of the unit disk in terms of angle of
contact of these maps with the unit circle.

1. INTRODUCTION

Let I be the open unit disk in the complex plane C, D its boundary,
dA(z) the normalized area measureon D (i.e. A(D) = 1) and H(D) the class
of all holomorphic functionson . Recall that the Hardy space H2 is the
space of holomorphic functions f(z) = Y p-,ax2* with the norm defined
as

11 = sup o= [ 17Ce a0 = 3 o < oo
0<r<1 27 Jo paard
For each a € (—1,00), let
dAo(z) = (a+1)(1 - [22)*dA(2).

Then dA, is a probability measure on D. Let A2 be the weighted Bergman
space of holomorphic functions f(z) = Y 7o, arz* with the norm defined
as

o kIT(2+
i = [ @Paa) = 3 s it < 3 o <o

where by e < b, we mean that there is a positive constant C such that
a/C £ b < aC. The limiting case, as @ — —1, of these spaces is the Hardy
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space H2. As in [8), it is natural to denote A2, to be the Hardy space H>.
Thus by considering

f 1%z =< 1F(O)1? + /D IF' (@)1 - |2?)*+?dA(2), a>-1, (1)

we can give a unified treatment of Hardy and weighted Bergman spaces.
The Hardy and Bergman spaces are Hilbert spaces of holomorphic functions
- on D with the reproducing kernel K&, namely, for every a € I:

f(a) = (f,K%) for all f € A2 (a>-1).
The Bergman kernel and its norm are explicitly given by

1 a2 . 1 a+2

@, — a = K% ) = _
k0= (25) 1K =K@ = (=pp) (@2 -D),
respectively. It is well known that f € A2 if and only if f™ (2)(1-]2*)" €
,Cz(dA.,) for all n € N and

n—1 /2
I7llaz = 15O+ ([ 1rOPQ - *eaam) . @

k=0

That is, if £ € A2, then ) € A3, and ||f®|l4,, . < Clifllag-
For 0 < 7 < 1, we consider two self-maps ¢, and ¥, of D defined

respectively, as
(Az)7 -1
GEy+1’

where A(z) = (1 + z)/(1 — 2). The maps ., has an angle of contact of yr
at 1 on D and is known as the lunar map, whereas the map 1. has an
angle of contact of y7 at 1 and —1 on 9D and is known as the lens map.

Let ¢ be a holomorphic self-map of D. For a non-negative integer n, we
define a linear operator D as follows:

Dif=f™ogp, feHD).

If n = 0, then we have D} = C,,, the composition operator induced by ¢,
defined as C,f = foyp, f € H (D). By a consequence of Littlewood’s sub-
ordination principle, we see that every holomorphic self-map ¢ of D induces
a bounded composition operator on Hardy spaces as well as on weighted
Bergman spaces. For more about composition operators on Hardy and
weighted Bergman spaces, see [1]. MacCluer and Shapiro [4] showed that
C, is compact on weighted Bergman spaces if and only if ¢ does not have
angular derivative at any point of the unit circle. However, non-existence
of the angular derivative is a necessary but not a sufficient condition for
compactness of C, on Hardy spaces in general. Thus for an arbitrary ¢ the

py(2)=1=(1=2)7 and 9P,(2)=
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compactness of C, on Hardy spaces is quite different from the compact-
ness of C,, on weighted Bergman spaces. MacCluer and Shapiro [4] gave
a nice example of a holomorphic self-map of D which induces a compact
composition operator on weighted Bergman spaces but does not induce a
compact composition operator on Hardy spaces. The non-existence of an-
gular derivative characterizes the compactness of C, on H? if the inducing
map ¢ is univalent. Thus for univalent holomorphic self-maps ¢, C, is
compact on HP? if and only if it is compact on A% (a > —1). Since the lens
and the lunar maps are univalent and have no angular derivative, so these
maps simultaneously induces compact composition operators on the Hardy
spaces as well as on the Bergman spaces whatever the angle of contact.

On the other hand, if ¢(z) = z, then we have that D7 = D™. Since
f e Af ., for each f € AR, we see that D"(AZ) ¢ AZ. This means
that the differentiation operator D" is unbounded on A%. In general, the
differentiation operator is not bounded on the space of analytic functions
on . Thus the product-type operators of composition and differentiation
operators acting on analytic function spaces have been studied by some
authors. One of the interesting problem on this product-type operators
is to investigate the relation between the operator theoretic properties of
these operators and the function theoretic properties of the symbol map ¢.

For these studies, we can refer to papers [2,3,5-7,9-12]. Hibschweiler
and Portnoy [2] characterized the boundedness and compactness of D],
between weighted Bergman spaces in terms of the Carleson-type measures.
Recently, S. Stevié¢ [9] proved that the boundedness and compactness of
the operator D7 on A2 are characterized by the behavior of the generalized
Nevanlinna counting function associated with the self-map  and the orders
n of differentiation.

In this paper, we show that the boundedness and compactness of D"
induced by a univalent self-map ¢ are characterized in terms of the behavior
of

(1 [z])?*e
(1 = Jp(2)[)2+o+2n’
and notice that the angle of contact of the lens and the lunar maps plays
a significant role in the compactness of products of composition operators
induced by these maps and iterated differentiation acting on Hardy and
weighted Bergman spaces.

2. BOUNDEDNESS AND COMPACTNESS OF Dg

In this section, we characterize boundedness and compactness of Dy
acting on Hardy and weighted Bergman spaces.

Lemma 2.1. Let —1 < a < 00, n be a non-negative integer and ¢ be a
holomorphic self-map of D such that D} : A2 — A2 is bounded. Then
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D : A2 — A2 is compact if and only if for any sequence {fn} in A2
with sup,en [| fmllaz = M < co and which converges to zero uniformly on
compact subsets of D, we have limpm o0 | D} finll.az = 0.

The proof follows from standard arguments, for example, to those out-
lined in Proposition 3.11 of [1]. We omit the details.

Theorem 2.1. Let a > —1, n be a non-negative integer and ¢ be a uni-
valent self-map of D. Then

(i) D3 : A2 — A2 is bounded if and only if
up (L= )
zeb (1 — |p(2)])2+e+2n

(ii) D3 : A2 — A% is compact if and only if

, (= Jo)**e
2 T TP
Proof. We will prove (ii) only. Let us assume that ¢ be a univalent self-
map of ID and satisfies condition in (4). Let {fn} be a bounded sequence
in A2 that converge to zero uniformly on compact subsets of D. In view
of Lemma 2.1, our goal is to show that || D3 fm|laz — 0. Without loss of

generality we may assume that || fm]laz <1 for all m. Let € > 0 be given.
Then by condition (4), there exists an o in (0,1) such that

(A= <l - @D o<l <l ()
By (1), we have
103 Al < O + [ 1 (oDl () PdAnsa(e)
= 1O
([ o+ [ PP () dAerate), ©

< 00; 3)

—0. )

where 7D = {w € D : |z| < 7o}. Since f,(,? Vo ¢ — 0 uniformly on compact
subsets of D for all n € NU {0}. Therefore, the first and the second term
of (6) converges to zero, so in what follows we simply denote them by o(1).
We can estimate the second integral in (6), by successively using inequality
(5), replacing the annulus D\ oD by D and changing the variable w = p(z).
Using these steps || D7 fm”ig can be estimated as

1Dl <o)+ [ 1SS ()Pl ()P dAnrae)

D\ro

So(l)+e /D S (@) = le(2))* 42 (2) PdA(2)
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<o(l)+e /D 5D (2)2(L - |2))2+e+ A )

<o(1) +ellfml%a < o1) +e

Since € > 0 was arbitrary, we have ||D} fm|l4z — 0, as desired. Conversely,
suppose that D} : A2 — A2 is compact. For A € D, we consider the

function
(1 _ I)\Iz)(a+2)/2

fa(z) = (1 Xz)“'*‘z : (7)
Then f € A2 and ||fi]| a2z = 1. Moreover, f) converges to 0 uniformly on
compact subsets of I. Then I(D2)* fallaz — 0 as JA| — 1. Now
(£,(Dp)KS) = (D3f,KS) = (£™ 0 p, KS) = F™(p(N).

Also recall (see, Theorem 2.16 in [1]) that for each A € ID and non-negative
integer n, the evaluation of the nth derivative of functions in A2 at A is a
bounded linear functional and

1RO = (£, (K™Y,

Thus we have
(D) K5 = (Kgxy)™.

One can easily check that

I(DRY ial%z = (1 = M2 (K Gy M2z - (®)
Again

K g0 ™M, = (K™, (Koo ™)
A 2n
o] o)

= «p()\))(zn)(‘f’()\)) Ca, n)(l o ()\)|2)a+2+2n'

Combining (8) and (9), we get
e

D=1 (1 = fp(A)[)2He+2n

It is clear that (4) implies (10). To complete the proof, we claim that (10)

implies (4). We distinguish two cases:

Case (a) [p(A)| =1 as |A\|— 1.

Case (b) [@p(A)] = 1o <1 as |\ — 1.

Now if, Case (a) holds, then we have

im, leW))** = 1. (11)

Thus from (10) and (11), we have
PR ¢ o 1) YR ¢ Sl 1) i
A1 T = eI = 3% T = ) i

le(W)|** = 0. (10)

m_|p(A)]*"
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-1 (1= D>t
= A% T e
On the other hand, if as |A| — 1, we have |[p(A)| — o < 1, then

le(M)|** = 0.

N S P T ¢ B ) ol
|,\|I_I.11 (1 = Jp(A)])2tot2n - |>l‘1|I_T,'1 (1 = ro)2He+2n =0.
Combining above inequalities, we get the desired result. ]

Note that using the test function in (7) and proceeding as in proof of
Theorem 2.1 (ii), we can prove that D} : A% — A2 is bounded if and only

if
sup (1 - |z|2)2+a
zeb (1 — |p(2)[?)2Hat2n
Since (3) = (12) is trivial, so to complete the proof, we need to prove that
(12) = (3). By (12), we have

lo(2)*" < oo. (12)

I () "
1/2<le(z)l<1 (1 — lp(2)[2)2ta+2n .
Moreover,
—_ 2\2+«o
sup (1 —1=%) < grHetIn(] _ 24 < oo, (14)

o<le(m)i<1/z (1= lp(2)|2)2Fatin =
Combining (13) and (14), we get (3).
3. Dg INDUCED BY LENS OR LUNAR MAPS
Lemma 3.1. Let ¢, be the lunar map. Then
A=]2])" S 1-lps(2) < 11— 2]
Proof. Using the elementary inequality |a|] — |b] < |a — b|, we have
1=los(2) <1 =(1—-(1-2)")=1-2".

Again
1-(1-2)" =~z — 7(’72"'1)224_’7(’)’—13)'(’7—2)23___.
Therefore, . .
L= @2 < e+ L Do D@Dy
Thus . .
1—[1=(1=2)| 21—l + '7(7—1)|z|2_ 7(7—1)(7—2)|z|3+_,,

2! 3!

= (1~ 2y
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Since the angle of contact of the lens map ¥, at 1 is equal to the angle
of contact of the lunar map ¢, at 1 (geometrical shape near 1 is same). So
we conclude that if |z| is near to 1, then we also have

(11" S 1= oy <127,
Thus we conclude that if ¢ = ¢, or 9, and |z| — 1, then
(=) S 1= fe(@)| S 1 -2, (15)
Corollary 3.1. Let o > ~1, 0 < v < 1, n be a non-negative integer and
@ =y orp,. Then
(i) D3 : A% — A2 is bounded if and only if
a+2
“a+2+2n
(ii) D3 : A2 — A2 is compact if and only if
a+?2
- - 17
r< a+2+2n (17)

Proof. (i) Assume that ¢ = ¢, or ¥,, 0 < 7y < 1, and (16) holds. Then
there exists some g, 0 < 79 < 1 such that

(16)

Q-1 S1-lp@)fP <1 -2 (18)
for z € D\ roD. First suppose that (16) holds. Then by (18), we have
(1 - |z])>*+e (1= |z])>*e

< 09,

su su
D T = Jp(z)|) FFatom ~ Sab (1 - [z])v@Fa+2m)

and so by Theorem 2.1, D7 : A2 — A2 is bounded. Conversely, suppose
that D} : A2 — A2 is bounded. Then
I ) R ¢ o1 ) e
lzi>ro (1 = [@(2)])3+at2n = ep (1 — |p(2)[)2+o+2n
Using second inequality in (18) and taking z = = € (ro,1), (19) implies
that

< 00. (19)

x€(ro,1)
which is possible only if (16) holds.
(ii) Suppose that (17) holds. Then by (18), we have
— 24« _ 24
) < i (=D
l2lo1 (1 = |p(2)])¥Hat2n) ~ 2151 (1 — |z])y(2+a+2n)
and so by Theorem 2.1 (ii), Dg : A2 — A2 is compact. Conversely, suppose
that D} : A2 — A2 is compact. Then for every sequence {zn} in D, we

have
(1= [zmh®*™ (1= |zm])?*®
(1 = |zm|)7@+at2n) & (1 — [p(zp)[)2+e+2n

=0,

-0 (20)
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as |zm| — 1. In particular, if we consider the sequence zm = ;537. Then
{2m} € D and |2m| — 1 as m — oo. Thus by (20), we have

(2+a)=v(2+a+2n)
lim (1 - _ﬂ_) =0,
m

which is possible only if (17) holds. O

As an application of Corollary 3.1, we see that angle of contact of lens
and lunar maps plays a significant role in bouundedness and compactness
of D} between Hardy and Bergman spaces. For 0 <y <1, let ¢ = ¢, or
¥y and n 2> 1. Let 8 be the angle of contact. Then 6 =y, and so

2

n . A2 2 ; <_—a+

Dg : AL — A7 is bounded & 0 < aroron™
n. A2 2 a+2

Dy : A; — A is compact 0<a+2+2n1r'

Taking n = 1,2,3,4, o = —1 and & = 0, respectively, we get the following
tables.

n | D% :H?* — H? is bounded | D7 :H*— H* is compact |
1 0 < 60° 0 < 60°

2 0 < 36° 0 < 36°

3 g < (180/7)° g < (180/7)°

4 6 < 20° 8 < 20°

[ n] D}:A*— A% is bounded | D7 : A* — A* is compact

1 8 <90° 0 < 90°

2 6 < 60° 8 < 60°

3 0 < 45° 0 < 45°

4 f < 36° 0 < 36°
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