# *n*-Colour Even Compositions

Yu-hong Guo\*

Department of Mathematics, Hexi University,

Gansu, Zhangye, 734000, P.R. China

E-mail: gyh7001@163.com

#### Abstract

An n-colour even composition is defined as an n-colour composition with even parts. In this paper we get generating functions, explicit formulas and a recurrence formula for n-colour even compositions.

Key words: n-colour even compositions; generating functions; explicit formulas; recurrence formula.

MR(2010)Subject Classification: 05A17

### 1 Introduction

In the classical theory of partitions, compositions were first defined by MacMahon[1] as ordered partitions. For example, there are 5 partitions and 8 compositions of 4. The partitions are 4, 31, 22, 21<sup>2</sup>, 1<sup>4</sup> and the compositions are 4, 31, 13, 22, 21<sup>2</sup>, 121, 1<sup>2</sup>2, 1<sup>4</sup>.

Agarwal and Andrews[2] defined an n-colour partition as a partition in which a part of size n can come in n different colours. They denoted different colours by subscripts:  $n_1, n_2, \dots, n_n$ . Analogous to MacMahon's ordinary compositions Agarwal[3] defined an n-colour composition as an n-colour ordered partition. Thus, for example, there are 21 n-colour compositions of n-colour co

More properties of n-colour compositions were found in [4, 5]. And Narang and Agarwal [6] also defined an n-colour self-inverse composition and gave more properties. In 2010, Guo [7] studied n-colour even self-inverse compositions.

In this paper, we shall study n-colour even compositions.

<sup>\*</sup>Supported by the Foundation of the Education Department of Gansu province(No. 200809-04) and the fund of Hexi University(No. ZX2011-01).

**Definition 1.1** An n-colour even composition whose parts are even.

Thus, for example, there are 2n-colour even compositions of 2, viz.,  $2_1$ ,  $2_2$ . And there are 8n-colour even compositions of 4, viz.,  $4_1$ ,  $4_2$ ,  $4_3$ ,  $4_4$ ,  $2_12_1$ ,  $2_12_2$ ,  $2_22_2$ ,  $2_22_1$ .

In section 2 we shall give generating functions, explicit formulas and a recurrence formula for n-colour even compositions. In addition, we also get the relation between the number of n-colour even compositions of  $2\nu$  and the number of n-colour even self-inverse compositions of  $4\nu + 2$ .

Agarwal[3] proved the following theorem.

**Theorem 1.1** ([3]) Let C(m,q) and C(q) denote the enumerative generating functions for  $C(m,\nu)$  and  $C(\nu)$ , respectively, where  $C(m,\nu)$  is the number of n-colour compositions of  $\nu$  into m parts and  $C(\nu)$  is the number of n-colour compositions of  $\nu$ . Then

$$C(m,q) = \frac{q^m}{(1-q)^{2m}},\tag{1}$$

$$C(q) = \frac{q}{1 - 3q + q^2},\tag{2}$$

$$C(m,\nu) = \binom{\nu+m-1}{2m-1},\tag{3}$$

$$C(\nu) = F_{2\nu}. (4)$$

## 2 Main results

We denote the number of n-colour even compositions of  $\nu$  by  $C_e(\nu)$  and the number of n-colour even compositions of  $\nu$  into m parts by  $C_e(m,\nu)$ , respectively. In this section, we first prove the following theorem.

**Theorem 2.1** Let  $C_e(m,q)$  and  $C_e(q)$  denote the enumerative generating functions for  $C_e(m,\nu)$  and  $C_e(\nu)$ , respectively. Then

$$C_e(m,q) = \sum_{\nu=0}^{\infty} C_e(m,\nu) q^{\nu} = \frac{2^m q^{2m}}{(1-q^2)^{2m}},$$
 (5)

$$C_e(q) = \sum_{\nu=0}^{\infty} C_e(\nu) q^{\nu} = \frac{2q^2}{1 - 4q^2 + q^4},$$
 (6)

$$C_e(m,\nu) = 2^m \binom{\frac{\nu}{2} + m - 1}{2m - 1}.$$
 (7)

where  $\nu$  is even.

Proof. Be similar to Agarwal's proof in paper [3], we have

$$C_e(m,q) = \sum_{m=1}^{\infty} C_e(m,\nu) q^{\nu}$$

$$= (2q^2 + 4q^4 + \dots +)^m$$

$$= \frac{2^m q^{2m}}{(1-q^2)^{2m}}.$$

This proves (5). And

$$C_e(q) = \sum_{m=1}^{\infty} C_e(m, q)$$

$$= \sum_{m=1}^{\infty} \frac{2^m q^{2m}}{(1 - q^2)^{2m}}$$

$$= \frac{2q^2}{1 - 4q^2 + q^4}.$$

Which proves (6).

On equating the coefficients of  $q^{\nu}$  in (6), we have

$$C_e(m,\nu) = 2^m \binom{\frac{\nu}{2}+m-1}{2m-1}.$$

This proves (7).

We complete the proof of this theorem.

Using (3) and (7) we have the following corollary easily.

#### Corollary 2.1

$$C_e(m, 2\nu) = 2^m C(m, \nu),$$
 (8)

$$C_e(2\nu) = \sum_{m=1}^{\nu} 2^m C(m, \nu).$$
 (9)

This corollary has an easy combinatorial proof. Now we give the proof. Proof. For every n-colour even composition of  $2\nu$  with m parts, we replace each  $(2t)_{2j-1}$  and  $(2t)_{2j}$  by  $t_j$  to get an n-colour composition of  $\nu$  with m parts, and each such composition arises  $2^m$  times. Thus we see (8) is true. So (9) is correct.

We complete the proof.

From the generating function of the number of n-colour even compositions  $C_e(q)$ , we have the following recurrence formula.

**Theorem 2.2** Let  $C_e(2\nu)$  denote the number of n-colour even compositions of  $2\nu$ . Then

$$C_e(2) = 2$$
,  $C_e(4) = 8$  and  $C_e(2\nu) = 4C_e(2\nu - 2) - C_e(2\nu - 4)$  for  $\nu > 2$ .

Although this result is a corollary of the formula (6), we still present two proofs. The following proofs are similar to Narang and Agarwal's proof of Theorem 3.1 in paper [6].

First proof. We have

$$C_{e}(2\nu) = \sum_{m=1}^{\nu} 2^{m} {\nu + m - 1 \choose 2m - 1}$$

$$= \sum_{m=1}^{\nu} 2^{m} {\nu + m - 2 \choose 2m - 1} + \sum_{m=1}^{\nu} 2^{m} {\nu + m - 2 \choose 2m - 2}$$

$$(by \ the \ binomial \ identity {n \choose m} = {n - 1 \choose m - 1} + {n - 1 \choose m})$$

$$= \sum_{m=1}^{\nu-1} 2^{m} {\nu + m - 2 \choose 2m - 1} + 2^{\nu} {\nu + \nu - 2 \choose 2\nu - 1} + \sum_{m=1}^{\nu} 2^{m} {\nu + m - 2 \choose 2m - 2}$$

$$= C_{e}(2\nu - 2) + \sum_{m=1}^{\nu} 2^{m} {\nu + m - 2 \choose 2m - 2}.$$

Now we define

$$f_{\nu} = \sum_{m=1}^{\nu} 2^m \binom{\nu + m - 2}{2m - 2}.$$

and

$$f_{\nu} = \sum_{m=1}^{\nu} 2^{m} {\nu + m - 2 \choose 2m - 2}$$

$$= \sum_{m=1}^{\nu} 2^{m} {\nu + m - 2 - 1 \choose 2m - 2} + \sum_{m=1}^{\nu} 2^{m} {\nu + m - 2 - 1 \choose 2m - 3}$$

$$= f_{\nu-1} + \sum_{m=1}^{\nu} 2^{m} {(\nu - 1) + (m - 1) - 1 \choose 2(m - 1) - 1}$$

$$= f_{\nu-1} + 2C_{e}(2\nu - 2).$$

So we get  $C_e(2\nu) = C_e(2\nu - 2) + f_{\nu}$  and  $f_{\nu} = f_{\nu-1} + 2C_e(2\nu - 2)$ . Then  $C_e(2\nu - 2) = C_e(2\nu - 4) + f_{\nu-1}$  and so  $C_e(2\nu) - C_e(2\nu - 2) = C_e(2\nu - 2) - C_e(2\nu - 4) + f_{\nu} - f_{\nu-1} = 3C_e(2\nu - 2) - C_e(2\nu - 4)$ . Thus,  $C_e(2\nu) = 4C_e(2\nu - 2) - C_e(2\nu - 4)$ .

We also give another proof of Theorem 2.2

Second proof.(Combinatorial) To prove that  $C_e(2\nu) = 4C_e(2\nu - 2) - C_e(2\nu - 4)$ , we split the *n*-colour compositions enumerated by  $C_e(2\nu) + C_e(2\nu - 4)$  into three classes:

- (A) enumerated by  $C_e(2\nu)$  and having  $2_1$  or  $2_2$  on the right.
- (B) enumerated by  $C_e(2\nu)$  and having  $h_t$  on the right, h > 2,  $1 \le t \le h-2$  (where, h is even) and n-colour even compositions of  $2\nu$  of form  $(2\nu)_t$ ,  $1 \le t \le 2\nu 2$ .
- (C) enumerated by  $C_e(2\nu)$  and having  $h_t$  on the right,  $h > 2, h-1 \le t \le h$ ,  $(2\nu)_{2\nu-1}$ ,  $(2\nu)_{2\nu}$  and those enumerated by  $C_e(2\nu-4)$ .

We transform the *n*-colour even compositions in class (A) by deleting  $2_1$  or  $2_2$  on the right. This produces *n*-colour compositions enumerated by  $C_e(2\nu-2)$ . Conversely, given any *n*-colour composition enumerated by  $C_e(2\nu-2)$  we add  $2_1$  or  $2_2$  on the right to produce the elements of the class (A). In this way we establish that there are exactly  $2C_e(2\nu-2)$  elements in the class (A).

Next, we transform the *n*-colour even compositions in class (B) by subtracting 2 from h, that is, replacing  $h_t$  by  $(h-2)_t$  and subtracting 2 from  $2\nu$  of  $(2\nu)_t$ ,  $1 \le t \le 2\nu - 2$ . This transformation also establishes the fact that there are exactly  $C_e(2\nu - 2)$  elements in class (B).

Finally, we transform the elements in class (C) as follows: Subtract  $2_2$  from  $h_t$  on the right, h>2,  $h-1\leq t\leq h$ , that is, replace  $h_t$  by  $(h-2)_{(t-2)}$ . In this way we will get n-colour even compositions of  $2\nu-2$  whose parts are  $2_1,2_2$  or  $h_t,h-1\leq t\leq h$  on the right, except n-colour even compositions in one part only. We also replace  $(2\nu)_{(2\nu-1)}$  by  $(2\nu-2)_{(2\nu-3)}$  and  $(2\nu)_{(2\nu)}$  by  $(2\nu-2)_{(2\nu-2)}$ , and to get the n-colour even compositions into one part  $(2\nu-2)_{(2\nu-3)}$ ,  $(2\nu-2)_{(2\nu-2)}$ . To get the remaining n-colour even compositions from  $C_e(2\nu-4)$  we add 2 to the right parts, that is, replace  $h_t$  by  $(h+2)_t$  to get the n-colour even compositions into one part:  $(2\nu-2)_t$ ,  $1\leq t\leq (2\nu-4)$ , and n-colour even compositions of  $2\nu-2$  having  $h_t$  on the right, h>2,  $1\leq t\leq h-2$ . We see that the number of n-colour even compositions in class (C) is also equal to  $C_e(2\nu-2)$ . Hence,  $C_e(2\nu)+C_e(2\nu-4)=4C_e(2\nu-2)$ . viz.,  $C_e(2\nu)=4C_e(2\nu-2)-C_e(2\nu-4)$ .

Thus, we complete the proof.

And Guo also defined n-colour even self-inverse compositions in [7].

Definition 2.1 ([7]) An n-colour even composition whose parts read from left to right are identical with when read from right to left is called an n-colour even self-inverse composition.

Thus, for example, there are 6 n-colour even self-inverse compositions of 4. viz.,  $4_1$ ,  $4_2$ ,  $4_3$ ,  $4_4$ ,  $2_12_1$ ,  $2_22_2$ .

Guo gave the following theorem.

**Theorem 2.3** ([7]) Let  $B(e,\nu)$  denote the number of n-colour even self-inverse compositions of  $\nu$ , let B(e,q) denote the generating function for  $B(e,4\nu+2)$ . Then

$$B(e, 4\nu + 2) = (4\nu + 2) + \sum_{t=2}^{4\nu - 2} \sum_{m=1}^{\frac{4\nu + 2 - t}{4}} t2^m {\frac{4\nu + 2 - t}{4} + m - 1 \choose 2m - 1}, (10)$$

$$B(e,q) = \sum_{\nu=0}^{\infty} B(e,4\nu+2)q^{\nu} = \frac{2+2q}{1-4q+q^2}.$$
 (11)

where 
$$\nu = 0, 1, 2, \dots$$
;  $t = 4k + 2, k = 0, 1, 2, \dots, \nu - 1$ .

We shall prove a relation between  $B(e, 4\nu + 2)$  and  $C_e(\nu)$ .

**Theorem 2.4** Let  $B(e, \nu)$  denote the number of n-colour even self-inverse compositions of  $\nu$ , let  $C_e(\nu)$  denote the number of n-colour even compositions of  $\nu$ . Then

$$B(e, 4\nu + 2) = C_e(2\nu) + C_e(2\nu + 2).$$

Where,  $\nu \geq 1$ .

From the generating function of  $B(e, 4\nu + 2)$  and  $C_e(\nu)$  we can get the relation easily. Now we give the combinatorial proof. The following proof is also similar to Narang and Agarwal's proof of Theorem3.1 in paper[6].

**Proof.** Obviously, an even number which is  $4\nu + 2$  ( $\nu = 1, 2, \cdots$ ) can have even self-inverse *n*-colour compositions only when the number of parts is odd. The central part is even say h and it also satisfies  $h \equiv 2 \pmod{4}$ . So we split the self-inverse even *n*-colour compositions of  $4\nu + 2$  into four classes.

- (A) h=2, i.e. the central part is  $2_t, t=1$ .
- (B) h = 2, i.e. the central part is  $2_t, t = 2$ .
- (C) h > 2, i.e. the central part is  $h_t$ .
- (D) the self-inverse *n*-colour even compositions in one part only. i.e.  $(4\nu + 2)_t, 1 \le t \le 4\nu + 2$ .

In class(A), For every self-inverse even n-colour composition of  $4\nu + 2$  has the central part  $2_1$  and two identical even n-colour compositions of  $2\nu$  on each side of the central part  $2_1$ . Then we get an n-colour composition of  $2\nu$  by deleting  $2_1$  and all parts on the right side. This process is one to one. Thus there are  $C_e(2\nu)$  n-colour even compositions.

In class(B), an even self-inverse n-colour composition of  $4\nu + 2$  has the central part  $2_2$  and two identical even n-colour compositions of  $2\nu$  on each side of the central part  $2_2$ . We get an n-colour even composition of  $2\nu + 2$  by

deleting all parts in the right side of the central part  $2_2$ . So we get *n*-colour even compositions of  $2\nu + 2$  with right extreme is  $2_2$ .

In class (C), we also split the self-inverse even n-colour compositions into two classes:

- (a) the central part is  $h_t, h > 2, 1 \le t \le \frac{h+2}{2}$ ;
- (b) the central part is  $h_t, h > 2, \frac{h+2}{2} < t \le h$ .

Given any self-inverse n-colour even composition in class (a) we replace  $h_t$  by  $(\frac{h+2}{2})_t$ , then we get an even n-colour composition of  $2\nu+2$  by deleting all parts on the right of the central part  $(\frac{h+2}{2})_t$ . Thus we get n-colour even compositions of  $2\nu+2$  which have not part  $2_1$  or  $2_2$  on the right extreme. This process is one to one.

Next we transform any self-inverse even composition in class (b) as follows: First, we replace  $h_t$  by  $(\frac{h+2}{2})_{h-t+1}$ , then we obtain an n-colour even composition of  $2\nu+2$  by deleting all parts on the left of the central part  $(\frac{h+2}{2})_{h-t+1}$ . Second, we split part  $(\frac{h+2}{2})_{h-t+1}$  into two parts:  $(\frac{h+2}{2}-2)_{h-t+1}$ ,  $2_1$ , then we rest  $(\frac{h+2}{2}-2)_{h-t+1}$  and  $2_1$  to make them on each side of the composition which have not part  $(\frac{h+2}{2}-2)_{h-t+1}$ , and lay  $2_1$  on the right. Hence, we get an n-colour even composition of  $2\nu+2$  with the number of parts is more than 2 and  $2_1$  on the right. This process is one to one. For example,  $2_16_52_1 \longrightarrow 2_14_22_1 \longrightarrow 4_22_1 \longrightarrow 2_22_12_1$ .

Finally, we transform the even compositions in class(D) as follows: Replace  $(4\nu+2)_t$  by  $(2\nu+2)_t$  when  $1 \le t \le 2\nu+2$ . This produces  $2\nu+2$  n-colour even compositions of  $2\nu+2$  in one part only. Then we replace  $(4\nu+2)_t$  by  $(2\nu+2)_{4\nu+3-t}$  when  $2\nu+2 < t \le 4\nu+2$ . After that, we split  $(2\nu+2)_{4\nu+3-t}$  into two ordered parts  $:(2\nu)_{4\nu+3-t}, 2_1$ . In this way we have n-colour even compositions of  $2\nu+2$  which have two parts and with part  $2_1$  on the right. This process is one to one.

Therefore we have all *n*-colour even compositions of  $2\nu + 2$  from class (B),(C)and (D).

Hence, we have

$$B(e, 4\nu + 2) = C_e(2\nu) + C_e(2\nu + 2).$$

We complete the proof.

Acknowledgement The author would like to thank the referee for his valuable suggestions and comments which have improved the quality of this paper.

### References

 P.A.MacMahon, Combinatory analysis (2001) (New York: AMS Chelsea Publishing)vol. I, II.

- [2] A.K.Agarwal and G.E.Andrews, Rogers-Ramanujan identities for partition with'N copies of N', J. Combin. Theory. A45(1)(1987) 40-49.
- [3] A.K.Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31(11)(2000) 1421-1427.
- [4] A.K.Agarwal, An analogue of Euler's identity and new Combinatorial properties of n-colour compositions, J. Computational and Applied Mathematics. 160(2003) 9-15.
- [5] Yu-Hong GUO, Some Identities Between Partitions and Compositions, Acta Mathematica Sinica, Chinese Series. 50(3)(2007) 707-710.
- [6] G.Narang and A.K.Agarwal, N-colour self-inverse compositions, Proc. Indian Acad.Sci(Math.Sci.). 116(3)(2006) 257-266.
- [7] Yu-Hong Guo, n-colour even Self-inverse Compositions, Proc. Indian Acad. Sci (Math. Sci.). 120(1)(2010) 27-33.
- [8] G. E.Andrews, The Theory of Partitions, Encyclopedia of Mathematics and Its Applications. Vol.2. Reading, 1976.