n-Colour Even Compositions

Yu-hong Guo*
Department of Mathematics, Hexi University,
Gansu,Zhangye, 734000, P.R.China
E-mail: gyh7001@163.com

Abstract

An n-colour even composition is defined as an n-colour compo-
sition with even parts. In this paper we get generating functions,
explicit formulas and a recurrence formula for n-colour even compo-
sitions.
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1 Introduction

In the classical theory of partitions, compositions were first defined by
MacMahon(1] as ordered partitions. For example, there are 5 partitions
and 8 compositions of 4. The partitions are 4, 31, 22, 212, 14 and the
compositions are 4, 31, 13, 22, 212, 121, 122, 14,

Agarwal and Andrews|2] defined an n-colour partition as a partition in
which a part of size n can come in n different colours. They denoted different
colours by subscripts: n;, ng, - -, n,. Analogous to MacMahon's ordinary
compositions Agarwal(3] defined an n-colour composition as an n-colour
ordered partition. Thus, for example, there are 21 n-colour compositions of
4,viz., 41,42,43, 44, 3111, 3211, 3311, 1131, 1139, 1133, 212y,2125,2529, 2024,
211114,251114, 11214, 151425, 152214, 111422, 111314 15,

More properties of n-colour compositions were found in[4, 5]. And Narang
and Agarwal[6] also defined an n-colour self-inverse composition and gave
more properties. In 2010, Guo([7] studied n-colour even self-inverse compo-
sitions.

In this paper, we shall study n-colour even compositions.
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Definition 1.1 An n-colour even composition whose parts are even.

Thus, for example, there are 2 n-colour even compositions of 2, viz.,2;, 2;.
And there are 8 n-colour even compositions of 4, viz., 4;, 4, 43, 44, 2121, 2,2,
2029, 222;.

In section 2 we shall give generating functions, explicit formulas and a
recurrence formula for n-colour even compositions. In addition, we also get
the relation between the number of n-colour even compositions of 2v and
the number of n-colour even self-inverse compositions of 4v + 2.

Agarwal([3] proved the following theorem.

Theorem 1.1 ([3]) Let C(m,q) and C(q) denote the enumerative gener-
ating functions for C(m,v) and C(v), respectively, where C(m,v) is the
number of n-colour compositions of v into m parts and C(v) is the number
of n-colour compositions of v. Then

C(m.q) = (—1—_"—';‘)2—,,; 1)
CW)= 5,77 (2)
C(m,v) = (V 2+mm—_1 1) (3)
C(v) = Fa. (4)

2 Main results

We denote the number of n-colour even compositions of v by C.(v) and
the number of n-colour even compositions of v into m parts by C.(m, v),
respectively. In this section, we first prove the following theorem.

Theorem 2.1 Let Cc(m,q) and C.(q) denote the enumerative generating
functions for C.(m,v) and C.(v), respectively. Then

Culrmq) = 3 Celmy)e* = e ®)
e ’ pard e ’ (1 _q2)2m:
2
Ce(q) = VZ_OC (V)" = 1— 4q2+q41 (6)
Cutm,) =2 (E 1), )

where v is even.

426



Proof. Be similar to Agarwal’s proof in paper (3], we have

o0
Ce(m,q) = ZC’e(m,V)q”
m=1

(2¢° +4¢% +--- )™
2mq2m

This proves (5).
And

Cla) = Y Celm,q)

m=1
i 2mq2m
= —a2)2
m=1 (1 7 ) "
2¢°
1-4q2 + 4%
Which proves (6).
On equating the coefficients of ¢* in (6), we have

s+m-—1
—om| 2
Ce(m,v) =2 ( om — 1 )

This proves (7).
We complete the proof of this theorem.
Using (3) and (7) we have the following corollary easily.

Corollary 2.1

Ce(m, 2v) = 2™C(m, v),

v

Ce(2v) = ) _ 2™C(m,v).

m=1

(8)
(9)

This corollary has an easy combinatorial proof. Now we give the proof.
Proof. For every n-colour even composition of 2v with m parts, we

We complete the proof.

replace each (2t)25_; and (2t)2; by t; to get an n-colour composition of v
with m parts, and each such composition arises 2™ times. Thus we see (8)
is true. So (9) is correct.

From the generating function of the number of n-colour even composi-

tions C.(q), we have the following recurrence formula.
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Theorem 2.2 Let C.(2v) denote the number of n-colour even composi-
tions of 2v. Then

C.(2) =2,C.(4) =8 and C.(2v) =4C.(2v—-2)-C.(2v—4) for v >2.

Although this result is a corollary of the formula (6), we still present
two proofs. The following proofs are similar to Narang and Agarwal’s proof
of Theorem3.1 in paper|6].

First proof. We have

= v+m-—1
_ m
Ce(2v) = m§=12 ( 9m — 1 )
v 14
_ mfV+m—2 mfvtm—2

. . . . ny n-—1 n—1
(by the binomial zdentzty(m) = (m— 1) +( m ))
v—1 v
mfV+m=—2 Jf(v+v—2 mfv+m—2
- mzzlz ( 2m —1 )” ( w—1 )+nf22 ( 2m — 2 )

d v+m-—2
= C,(2u—2)+22m( )
= 2m —2

Now we define Y
mfv+m—2
f,,—mglz ( 2m —2 )
and
;= z":2m v+m-—2
v = 2m —2
N omfv+m-2-1 onfv+m—-2-1
- 22 ( 2m —2 )+22 ( 2m —3 )
m=1 ms=1
_ N omf(v=1)+(m-1)—-1
= f"“+m2212 ( 2(m—1)— 1
= fu_1+2C.(2v—2).
So we get Ce(2v) = C.(2v — 2) + f, and f, = fu_1 + 2C.(2v — 2).
Then C.(2v — 2) = C.(2v — 4) + f,—1 and so C.(2v) — C.(2v — 2) =

Ce(2v—2)—Ce(2v—4) + fu — fu-1 =3Ce(2v - 2) — Cc(2v — 4).
Thus, C(2v) = 4C.(2v — 2) — C.(2v — 4).
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We also give another proof of Theorem2.2

Second proof.(Combinatorial) To prove that C.(2v) = 4C.(2v—2) -
Ce(2v — 4), we split the n-colour compositions enumerated by C.(2v) +
C.(2v — 4) into three classes:

(A) enumerated by C.(2v) and having 2; or 2; on the right.

(B) enumerated by C.(2v) and having h; on the right, h > 2,1 <t <h—2
(where, h is even) and n-colour even compositions of 2v of form (2v),,
1<t<2v—2.

(C) enumerated by C.(2v) and having h; on the right, h > 2,h—1 <t < h,
(2v)2v-1, (2v)2, and those enumerated by C.(2v — 4).

We transform the n-colour even compositions in class (A) by deleting
2; or 2 on the right. This produces n-colour compositions enumerated
by C.(2v — 2). Conversely, given any n-colour composition enumerated by
C.(2v—2) we add 2; or 25 on the right to produce the elements of the class
(A). In this way we establish that there are exactly 2C.(2v — 2) elements
in the class (A).

Next, we transform the n-colour even compositions in class (B) by sub-
tracting 2 from h, that is, replacing h; by (h — 2), and subtracting 2 from
2v of (2v)s, 1 £t £ 2v — 2. This transformation also establishes the fact
that there are exactly C.(2v — 2) elements in class (B).

Finally, we transform the elements in class (C) as follows: Subtract
2, from h; on the right, h > 2, h — 1 < t < h, that is, replace h; by
(h — 2)(t—2). In this way we will get n-colour even compositions of 2v — 2
whose parts are 21,25 or hy,h—1 <t < h on the right, except n-colour even
compositions in one part only. We also replace (2v)(2,—1) by (2v —2)(2,—3)
and (2v) 2,y by (2v — 2)(2,—2), and to get the n-colour even compositions
into one part (2v — 2)(2,—3), (2v — 2)(2,~2)- To get the remaining n-colour
even compositions from C.(2v — 4) we add 2 to the right parts, that is,
replace h; by (h + 2); to get the n-colour even compositions into one part:
(2v—-2), 1 £t < (2v—4), and n-colour even compositions of 2v — 2
having h; on the right, h > 2, 1 <t < h — 2. We see that the number of
n-colour even compositions in class (C) is also equal to C.(2v — 2). Hence,
Ce(2v)+C.(2v —4) = 4C.(2v - 2). viz.,C.(2v) = 4C.(2v —2) — C.(2v—4).

Thus, we complete the proof.

And Guo also defined n-colour even self-inverse compositions in [7].

Definition 2.1 ([7]) An n-colour even composition whose parts read from
left to Tight are identical with when read from right to left is called an
n-colour even self -inverse composition.

Thus, for example, there are 6 n-colour even self-inverse compositions
of 4. ViZ., 41, 42, 43, 44, 2121, 2222.
Guo gave the following theorem.
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Theorem 2.3 ([7]) Let B(e,v) denote the number of n-colour even self-
inverse compositions of v, let B(e,q) denote the generating function for
B(e,4v + 2). Then

ay—p 4= 4v42-t -
Ble, v +2)=(w+2)+ Y. Y tzm( i_+m 1), (10)

t=2 m=l 2m—1
= 242
Ble,q) =) Ble,4v +2)¢" = ﬁ (11)

v=0
where v =0,1,2,-..; t=4k+2,k=0,1,2,...,v—-1.
We shall prove a relation between B(e,4v + 2) and C.(v).

Theorem 2.4 Let B(e,v) denote the number of n-colour even self-inverse
compositions of v, let Ce(v) denote the number of n-colour even composi-
tions of v. Then

B(e,4v + 2) = C(2v) + C.(2v + 2).
Where, v > 1.

From the generating function of B(e,4v +2) and C.(v) we can get the
relation easily. Now we give the combinatorial proof. The following proof
is also similar to Narang and Agarwal’s proof of Theorem3.1 in paper[6].

Proof. Obviously, an even number which is4r 4+ 2 (v =1,2,---) can
have even self-inverse n-colour compositions only when the number of parts
is odd. The central part is even say h and it also satisfies h = 2(mod4).
So we split the self-inverse even n-colour compositions of 4v + 2 into four
classes.

(A) h =2, i.e. the central part is 2;,t = 1.

(B) h =2, i.e. the central part is 2¢,t = 2.

(C) h>2,ie. the central part is h;.

(D) the self-inverse n-colour even compositions in one part only. i.e. (4v +
2)t)1 <t< 4v + 2.

In class(A), For every self-inverse even n-colour composition of 4v + 2
has the central part 2, and two identical even n~-colour compositions of 2v
on each side of the central part 2;. Then we get an n-colour composition
of 2v by deleting 2; and all parts on the right side. This process is one to
one. Thus there are C,(2v) n-colour even compositions.

In class(B), an even self-inverse n-colour composition of 4v + 2 has the
central part 2; and two identical even n-colour compositions of 2v on each
side of the central part 25. We get an n-colour even composition of 2v+2 by
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deleting all parts in the right side of the central part 2,. So we get n-colour
even compositions of 2v + 2 with right extreme is 25.

In class (C), we also split the self-inverse even n-colour compositions
into two classes:

(a) the central part is hy, h > 2,1 <t < 242,
(b) the central part is ke, h > 2,282 <t <h.

Given any self-inverse n—colour even composition in class (a) we replace
h: by (-—’j'—)t, then we get an even n-colour composition of 2v+2 by deleting
all parts on the right of the central part (—"'—), Thus we get n-colour even
compositions of 2v + 2 which have not part 2; or 2; on the right extreme.
This process is one to one.

Next we transform any self-inverse even composition in class (b) as
follows: First, we replace h; by (—+—)h—t+h then we obtain an n-colour
even composition of 2v + 2 by deleting all parts on the left of the central
part (242),_,.;. Second, we split part (2£2),_¢, into two parts: (22 —
2)h—t+1, 21, then we rest (%ﬁ — 2)h—t+1 and 2; to make them on each
side of the composition which have not part (%Ez- —2)p—t+1, and lay 2; on
the right. Hence, we get an n-colour even composition of 2v 4 2 with the
number of parts is more than 2 and 2; on the right. This process is one to
one. For example, 2;652; —214921—452,—222:2;.

Finally, we transform the even compositions in class(D) as follows: Re-
place (4v + 2); by (2v + 2); when 1 <t < 2v + 2. This produces 2v + 2
n-colour even compositions of 2v + 2 in one part only. Then we replace
(4v + 2); by (20 + 2)4p+3-¢ when 20 +2 < t < v + 2. After that, we split
(2v + 2)4p+3—¢ into two ordered parts :(2v) 4, 43¢, 21. In this way we have
n-colour even compositions of 2v + 2 which have two parts and with part
2; on the right. This process is one to one.

Therefore we have all n-colour even compositions of 2v + 2 from class
(B),(C)and (D).

Hence, we have

B(e,4v + 2) = C(2v) + Ce(2v + 2).

We complete the proof.
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