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ABSTRACT. Inthis paper we show that the set { Eo(z), B1(x),- - - , En(z)}
of Euler polynomials is a basis for the space of polynomials of degree
less than or equal to n. From the properties of Euler basis poly-
nomials, we give some interesting identities on the product of two
Bernoulli and Euler polynomials.

1. Introduction

The so-called Euler polynomials E,,(x) may be defined by means of

2 e B t
ar1e = = —ZEn(z)m,

n=0

with the usual convention about replacing E™(z) by E,(z) (see [1-22]).

In the special case, £ =0, E,(0) = E, are called the n-th Euler numbers.
As is well known definition, the n-th Bernoulli polynomials are also de-

fined by the generating function as follows:

o] t”
e*t = eB(z')t = Z Bn(w)m,
n=0
with the usual convention about replacing B™(z) by B, (z) (see [1,2,3,10,11]).
In the special case, z = 0, B,(0) = B, are called the n-th Bernoulli num-
bers.
From the definition of Bernoulli and Euler polynomials, we note that

Buz) =) (’l‘) 2B, Eaz)=) (’l‘) 1B,

et —

=0 =0
For n € Z.., we have
dB, dE,
.?(x). = 'n,Bn_l(:B), dx(z) = nEn_l(x).

By the definition of Bernoulli and Euler polynomials, we get
BO =1, Bn(l) -B, = Jl,na Eo = 1, En(l) + En = 2‘50,111

where 4, is Kronecker symbol.
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In [5], L. Carlitz introduced the following formula for the product of two
Bernoulli polynomials:

Bu(@)Ba(@) = T (3 )+ (o Prpanci ) oy s,

where m,n € Z; with m+n > 2.
In [6], L. Carlitz gave the formula for the product of two Eulerian poly-
nomials:

m-—1
Hp(zla)Hn(zla™!) = —(1 - @) Z (rml) Hyp1(c) Bmin—r(z)

m+n—r7r
—a-a ()3 et T
) 1= s (),

where H,,(a) are the m-th Eulerian numbers.

In this paper, we show that the set {Eo(z), E1(z),- - , En(z)} of Euler
polynomials is a basis for the space of polynomials of degree less than or
equal to n. By using the properties of Euler basis polynomials, we give some
interesting formulae for the product of two Bernoulli and Euler polynomials.

2. Some formulae for the product of two Bernoulli and Euler
polynomials

Let Pp, = { Y;a:i* | a; € Q } be the space of polynomials of degree
less than or equal to n. It is easy to show that
(1

ot 12(et+1) 12e(=+‘)° 1 2% 1« o
=TT T3 erl taeo+l 22(}3 (“’+1)+En($)) 7

Note that
(E + l)n +E, = 250',,, Ey=1.
From the definition of Euler polynomials, we have

En(z+1) = zn: (’l‘) Ei(1)z"" = 2" Eo(1) — i (7;) B!

=0 =1
=2z" — Z (1;) Eiz" ! = 22" — E, ().
=0
Hence
E.(z+1)+ E.(z)=
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Ea(z +1) =z( JLICRS: (z)+ZlE:(x)( )

=0 1=0
and

n—1
E.(x+1)+ Ep(z) = 2E,.(z) + Z Eg(:c)( )

=0
From (1), we note that

@ = -(E,,(a:+1)+E (a:)) ,.(m)+2nf( )E‘z(:z:).

1=0

By (2), we see that {Eo(z), Ey(z),--- , En(z)} span P,,. For p(z) € Py, let
p(z) =X p_o bxEx(z) and g(z) = p(z + 1) + p(z). Then we have

(3) g(z) = Z bx (Ek(x +1)+ Ek(x))= i bz,
k=0 k=0
Thus, from (3), we have
4) ¢(z)= i%kk(k —1)e-(k—r4+1)zFT,
k=0

where g("(z) = —9@- andr =0,1,2,-
Let us take z = 0 in (4). Then we have

(5) 9" (0) = 2b,r!.
From (5), we have
(r)(o)
6 =9 r) (r)
(6) b= 5 = 5 (p W +p (0))
Let us assume that 0 = p(z) = Y p_o bx Ex(x). Then, by (6), we get
(7) b, = —(p(")(l) + p(')(O)) , for r=0,1,2,.--k.

From (7), we have {Ep(z), E1(z), -+ , En(x)} is a linearly independent set.
Therefore, we obtain the following theorem.

Theorem 1 . The set {Eo(z), Er(z), - ,En(z)} of Euler polynomials is
a basis for P,.

Let us take polynomisl p(z) € Py, let p(x) = X"} _o bk Ex(z) and g(z) =
p(z + 1) + p(z). Then we have. as a linear combination of Euler basis
polynomials with

(8) p(z) = CoEo(z) + C1E1(T) + - - + CoEn(x).
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The equation (8) can be rewritten as a dot product of two variables:

Co
G
9 p(z) = (Bo(z) Ey(z) ... Ea(x))
Cn
By (9), we get
1 a2 a13 ... ... Gin41
0 1 @3 ... ... G241 Co
0 o 1 ... ... a3nn G
(10) px)=(1 =z ... z") o - , : .
0 0 0 ... 1 ann4 Cn
0 O o ... 0 1

where the a; ; are the coefficient of the power basis that are used to deter-
mine the respective Euler polynomials.
From the definition of Euler polynomials, we note that

B =1, B@=z-3 Bl)=s'-s Bs)=s"—35"+1,
In the quadratic case (n = 2), the matrix representation is
1 -3 0Y) /G
pe)=(01 =z z) |0 1 -1]|C].
0 0 1 Cs
In the cubic case (n = 3), the matrix representation is
o a8 (e
= 2 ,3 - 1
plx)y=01 z 2?2 2% 0o 1 -2||G

0 0 0 1 Cs

In many applications of Euler polynomials, a matrix formulation for the
Euler polynomials seems to be interesting.

Let us take p(z) = Bn(z) € P,. By Theorem 1. we see that p(z) is
given by p(z) = Y f_o bxEx(z). From (6), we have

e = %( ®(1) +p®(0))

2k|n(n 1) (n—k+1)( n_k(1)+3n_k)

(n) ( k(1) + 01,0k + Bn-—k)

(',:)Bn_k if k#n-—1,
1o if k=n—1.

(11)
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Therefore, by (11), we obtain the following proposition.

Proposition 1. Forn € Z,, we have

Ba(z) = :z;j: (:) Bo_tEx(z) + En(x) = g (:) Bo_wEx(a).

Let us consider polynomials p(z) = Y ;_, Bi(z)Bn—k(z) in P,. Then
we have

(12) PO@) = T 2 Boer(e) B ),
where r =0,1,2,--- ,n

By Theorem 1, we see that p(z) is given by p(z) = > ;_, bk Ex(z) € Ph.
From (6) and (12), we note that

(13)
b = 53 (1) +59(0))
1 (n+1)
T ok (n— K+ D) Z{Bt—k(l)Bn—t(l) + Bz-an-z}
’2((_2%)__('_‘)1—){ zBl-kB 1+ 2Bn_1—k + 0k n_.z}
%{Et:k Bi_gBp-1+ Bn-l—k} if k#£n-2,

e o5 o BinsaBaci + B+ ETIR  if k=n—2,
Therefore, by (13), we obtain the following theorem.
Theorem 2 . Forn € Z,, we have

i Bi(z)Bp—i(z)

k=0
l)n

=(n+1) Z n k i {i Bi_xBn-1 + Bn-l—k}Ek(a:) + En—2(z).

=k
Let us take p(z) = Y"p_, mﬁﬁBk(x)Bn_k(z) € P,,. Then we see that

Bk—r(z)Bn—k(z)
T S T

1) (@)= 2’2 (r=0,1,2,--- ,n).

k=r
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From Theorem 1, we see that p(z) is given by p(z) = Y ¢_, bk Ex(z) € Py,.
By (6) and (14), we get
(18)
= —— [ p*) (k)
m-%@:uhm ©)
_ 28 & Bioik(1)Bnai(1) + B Bai
2k! (=k}(n-1)

_ 2"‘ Z (Bi—k + 61,1—k)(Bn—t + 81,n-1) + Bi—xBn—;
(= RimE=1)

1=k
2"" °~  Bj_Bai 2By _1-k
{22 =m0 T 1R " ‘Sk’"‘z}
Btk Bn_1 Bn_1-& H —_
21_ =ity + a1kt if k#n-2,
21;-—2

B —-n Bn— n—3 .
=31 {Zz_n—z ZT—'T-}?W(ET;ﬁ + Bl}'*"(n_-zﬁ if k=n-2.

Therefore, by (15), we obtain the following theorem.

Theorem 3 . Forn € Z,., we have

n

3 (Z) Bi(z)Bn_(z)

k=0

S o

k=0
+n(n —1)2"3E, _s(z).

Let us consider polynomials p(z) = "_11 M,—’Ezg“—géﬁ in Py,,. Then, for
k=0,1,2,-.- ,n—1, we have

16) p*)(z) = 2CkBa_i(z) +(n—1 k Bi—(z)Bni(z)
(16) P (z) kBn-k(z) +(n—1)---(n - )_;H T

where

Timn =1 (n=j+)(n=j-1)--(n - k)
(=) '

17 Ce=
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By Theorem 1, we see that p(z) can be written as p(z) = >_p_, bk Ex(z) in
P,. By (6) and (16), we get
(k) (%)
b = o o5 (¥ +59()
= -275 (2CkBn-k(1) + 2CxBn-x)

(n—1)---(n—k) = {B,_k(l)B,._,(l) + Bi_xBn_i }
2k! T=k)(n=0) :

(18)

+
I=k+1

Note that b,—; = 0. We may assume 0 < k <n ~ 2. Then we have

1
by = E(2Ck3n—k + Crb1,n—k)

(n—1) e { (Bt—x + 61,0~ 1){Bn—t + 81,n—1) +Bi—x.Bn_i }
2Kl — k- 1), 4, Y CE)

<+

1 n—1y ™= Bi_xBnt n—1\ Bn_1—k (" Y
_k_!zc"B""‘“L( k )lgn(l—k)(n—l)-'-( k )n—l—k T Okn-2-

Note that
(19) PM(z) = (" V(z)) = (2Ca-1B1(z)) "= 2Cp-1.

From (17), we have

o __Z(n—l) (n=j4+D)n—j—1)---(n—k)

(n—k)
2 1o (- (B 1
(20) —Tc.!jé:l(n—-k)!(n—j)_sz::l;—_j
_ (n n—l1 n—-k—ll _(n)
_—7’:—{.;;— ;l ;}— %(H -1 = n—k—l)

and

P(1) +p(0) _ 26
2n! nl

(21) Coi=@—-1)Huq, b=

*

where H, = Y0, 4.
Therefore, by (18) (20), and (21), we obtain the following theorem.
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Theorem 4 . For n € N, we have

Z k( Bk(m)B _k(z)

n—2 2(™ n—1 Y
=Z{¥(H"“"H“‘k“)3”'*+( ) X e

k=0 i=k+1

n—1
+ 0&)Bnorx i )’f i k}Ek(z)+ 2 B a(a) + 2 Hams En(2).

Let us take p(z) = > ;_o Bk En—k(z) € Pn. Then we have

(22) p®(z) = zn—("%l), > Bics(e)Bn-s(z).

By Theorem 1, p(z) is given by p(z) = Y r_o bk Ex(z). From (6) and (22),
we have

(23)
b = 5 (P10 + ()

m&,”—%z{&_kum_,m + Bi-sEn-t}

n+1 ( ) Z{(—Et_k + 260,1—k)(—En-t + 200,n1) + E,_kEn_,}

2(n k+1)
= B tEn 1 —2En_k+ 200 |-
n—k+1\k ;

Therefore, by (23), we obtain the following theorem.

Theorem 5 . For n € Z,., we have

ZEk(x)E —k(z)

n+1l paard
= z_:‘_a o k 1 (; Ei_E,_— 2En—k) Ey(z) 4+ 2E, ().

Let us take p(z) = 2% 37 _, %"r@—) € P,,. Then we have

P (z) = 2 Z Ei_i(2z)Ep-i(x)

@) ~ B — k)



By Theorem 1, we see that p(z) can be written as p(z) = Y p_, bk Ex(z) in
P... From (6) and (24), we note that

br = 3 (P10 +p"°’ (©))
2'=- -
Z = (- k)'(n 0! {E'-" DE. (1) + El—kEn—l}

(25) 21 & { (=B + 200,1—k)(—Epn—1 + 280,n—1) + -El—lcEn—I}

T & I=k)in-1)

2k { N Ei_En 2F, & }
= — - + 25[;," .
k! ; =k)}n=0t (I-k)
Therefore, by (25), we obtain the following theorem.

Theorem 6 . Forn € Z,, we have

Ex(2)En—i(z) 2% (N Ei_kEa_ 9F,_
kzo "k'(" k! = kz_o 7 (Z a -‘k)k!(n _(l)! ~ T k‘;!) Ei(z) + 2E,(z).

Let us take p(z) = Yo, F(—-EyEk(z)En_k(x) € P,. Then we have
n-1

26) p® 2CLE,_i(z) + 1)
( ) p (x) k k($) (n L k)(n )

where
(27)
k . .
C, = 2,-=1("—1)---(n-1n-i;1,:(""1"1)"'("_'“) (k=1,2--,n=1),
and Cp=0.

Note that p™(z) = (p*~D(z))'= (2Cn-1E1(z))'= 2Ca-1. By (7), we
get
(28)
b = 5 (P9 +5M()
(n=1)-(n=k) N Ei_x(1)En_t(1) + Et—kEny
2k! (-k)=n-1

1
= ‘,;TCk (En—k(l) + En—k)+
° i=k+41

- (n— 1 nz—:l Ei_ B,
k 7/ S =R —k)

where k=1,2,--- ,n—1.
Note that

1 1 2
= — (5™ (n) = — — 1) =2
(29) bn ol (p 1) +p (0)) 2n!4(n IWYH, an_l.
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Therefore, by (28), and (29), we obtain the following theorem.

Theorem 7 . For n € N, we have

Z p ( Ek (2) En-k(z)

n—-2 n—1 n—1
= Ce) E E._E 2H E
2 2 TRy Dt Bt Bele) + SHnaBule)

Let us consider polynomial p(z) with p(z) = Y., _o Be(z)En—i(z) € Py.
Then we have

(30) P = 2D Y Bk() (o),
I=k

where k = 0,1,2,--- ,n. From Theorem 1, we note that p(z) is given by
p(z) = Y koo biEx(z) in Pp. By (6) and (30), we get

b = 5 (P(1) +59(0)

+ 1) hid
- Sy 2o (Bs DB i)+ s

—(ntl)i{(z + 61,4-k)(~En—t + 200,n-1) + Bi_xE
=3 1k + 01,1k} (—En—1 o.n—1) + Bi—xEn—1

(31)
(n+l)
) (2Bn-k En—k—l + 25k,n—1)
n41
O (Bpicr+2Bass) i k#n-1,
=30 if k=n-1,
n+1 if k=n.

Therefore, by (31), we obtain the following theorem.

Theorem 8 . Forn € Z+, we have 1

f: Bi(2)En_x(z) = (" + 1) (—E,._,, L+ 2Bn_k) Ex(z) + (n+ 1)En(z).
k=0

k=0

Let us take p(z) = 2* 31, prmtgy Br(z) En—k(z) € Pn. Then, for
k=0,1,2,-.. ,n, we have

32 (B () = 2% ; 1 B En_i(z).
(32) p"(z) &(l—k)l(n—l)! 1-k(Z) En—i(z)
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By Theorem 1, let us assume that p(x) = Y ;_, bxEx(z) in P,,. From (6)
and (32), we have

b= o (G0 450

k-1 T
= 2kl Z (l _ k)pl( l)|{Bl k(1)En—i(1) + Bi— kEn—l}

_ 2k-1 (Bi—k + 61,1k )(—=En—t + 200,n—1) + Bl—lcEn—l
(33) "L =D =)l

_ 2k_1{ 2B, i Ep ka1

k)] (n= klw”“*}

k-1 (2B, ke .
- ZT(%,.__f m—ly) if k£#n-1,
0 if k=n-—1.

Therefore, by (33), we obtain the following theorem.

Theorem 9 . Forn € Z,, we have

n n-2
> (’,:) Bi(#)En-i(z) = 3 271 (’,:) {~(~ ) Eucscs + 2B i }+2" Bu(a).
k=0 k=0

Let us consider polynomials p(z) with p(z) = Z,ﬁk H_E)'Bk (z)En-i(z) €
P,. Then we have

(34)
B Bi_i(z)En_i(z)
P®(@) = Cu(Ba-s(@) + En-s(2)) + (n = 1) (n = K) ,§1 TR0
where
(35)
. zrgn—nuwn—j+nm—j—1%~m—k)(k=LZ“wn_1)

n—k
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Note that p(®)(z) = 2C,_; = 2(n—1)!H,_;. By Theorem 1, let us assume
that p(z) = Y_p_o bk Ex(z). From (6) and (34), we have

(36)
be = qu (PO +p%)
Ck{Bn_k(l) + (Bn—k + En—k(l)En-lc)

B (I)En_z(l) 4+ By E,._ }
(t-Fk)(n=-1)

= 2K

+(n-1)---(n- k)z

I=k+1

L Y o
S {Cx@Bak + 81n)~(n = D)o (nmk) 3 bR,

= 3% 2, T=R)m=1)

where k=1,2,--- ,n—1.
_{ —H{ZCkB k=(n=1)-(n—k ;_-,;;-1} if k#n—1,
0 if k=n-1.
By (35),we get

(37) Te = 2 (3) s = B

It is easy to show that
1 1
—_—— (n) (n) = — —_ =
(38)  ba= (p 1) +p (0)) s7(n — 1)1Haoy
Therefore, by (36), (37), and (38), we obtain the following theorem.

2Hn—1
n

Theorem 10 . For n € N, we have
n—1

Z k( =) B+ (@) Bn-t(=)
= z{ ( ) (Hn-1 = Hnox=1)Bn—x — % (n; 1) %}Ek(w)

k=0

+ ;H,._1En(z).
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