ON THE NUMBER OF
SUBPERMUTATIONS WITH
FIXED ORBIT SIZE

ABDALLAH LARADJI ABDULLAHI UMAR *

Abstract

Consider an n-set, say X, = {1,2,...,n}. An expo-
nential generating function and recurrence relation for
the number of subpermutations of X,,, whose orbits are
of size at most k£ > 0 are obtained. Similar results for
the number of nilpotent subpermutations of nilpotency
index at most k, and exactly & are also given, along with

arithmetic and asypmtotic formulas for these numbers.
12

1 Introduction and Preliminaries
Let X, = {1,2,...,n}. Then a (partial) transformation o

Doma C X, — Ima C X, is said to be full or total 1f
Dom, o = X,,; otherwise it is called strictly partial. A partial
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transformation is nilpotent if of = @ (the empty or zero map)
for some positive integer k. The nilpotency indez of a nilpotent
ais k, if of = @ and o*~! # @. The set of partial one-to-one
transformations of X,,, with composition as binary operation, is
known as the symmetric inverse semigroup and is denoted by
I,,. Partial one-to-one transformations are also called subpermu-
tations, see Cameron and Deza [3]. A (sub)permutation without
fixed points is called a (partial) derangement. Each subpermu-
tation a (of X,) can be pictured as a digraph on n vertices with
ij an edge of a if ia = j. Each component of such a digraph
is called an orbit, and they are of two types: cycles (including
1-cycles or fixed points) and simple paths. Note that whilst the
size and length of a cycle are the same, the length of a path
is its size minus one, except for the empty path which has size
and length equal to zero. Moreover, the nilpotency index of
a subpermutation coincides with the maximum size of its con-
stituent paths, except the empty subpermutation or zero whose
nilpotency index is one.

As far back as 1987, Gomes and Howie (7] remarked that very
little has been written on I,. Despite the appearance of the
books of Lipscomb [12] and Ganyushkin and Mazorchuk [6] and
numerous papers (for example, [1, 4, 5, 8, 9, 10, 11]), the study of
I, is still in its infancy relative to its cousin S,,, the permutation
group on an n-set or even T, the full transformation semigroup
on an n-set.

It is known (see for example, Wilf [14]) that o(n, k), the number
of permutations of n objects the size (or length) of all of whose
cycles is at most k, has exponential generating function

2704 . 12/
(1) e=te /24 - +2~/ ,
and satisfies the recurrence

k—1

(2) o(n+1,k)= Z( )'a(n 3, k).

3=0



Our aim in this note is to obtain similar results for po(n, k), -
the number of subpermutations of X,, with orbits of size at most
k(> 0). As a by-product, we obtain a recurrence relation and
the exponential generating function for v(n, k), the number of
nilpotent subpermutations of n objects with nilpotency index
at most k£ and those with nilpotency index exactly k.

Let b(n, k) be the number of subpermutations on X, all of
whose orbits are of size at most k and without fixed points, so
that they may contain j-cycles for 1 < j < k, but not 1-cycles.
In other words, b(n, k) is the number of partial derangements of
X, all of whose orbits are of size at most k. Then b(n, k) = b(n,n)
if £ > n, and it is clear that po(n, k) = Y0, (1) (n—1, k), since
each subpermutation on X, can be decomposed into a partial
identity component and a partial derangement component. The
following lemma is needed:

Lemma 1.1 Let k be a positive integer. Then, a sequence (u,)
with ug = 1 satisfies the recurrence relation

Up = ClUn—1+Co(n—1)up_g+ - - +cx(n—1)(n—2)- - - (n—k+1)up_s

if and only if its exponential generating function is
> ﬁ"—:z:" — gor@teaz? /24t cpzt k.
n>0

Proof. Let the sequence (u,) satisfy the above recurrence rela-
tion and let f(z) = X,50 22" Then

UnZ" Up 12" 2 un_zx"‘2
zf'(z) = —— =0z + ez
LoD L - T Sy
n—k
+Ck:l:k Un—kT

= (az+cz?+-- +cazk)f(z),
i e, f'(z) = (c1 + coz + - - + cxx® 1) f(z). Integrating gives

f(:z:) — ecl:z:+cg:r:2/2+ e ck:c"/k’
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as required. The converse is easily proved by reversing the above
steps. O

2 Subpermutations with Fixed Orbit
Size

Proposition 2.1 Let po(n, k) be the number of subpermuta-
tions of X, with orbit size at most k. Then the ezponential
generating function of po(n, k) is

e2::+3:c2/2+ o H(k+1)z*/k

Proof. For each partial derangement « of X,, with all its orbits-
of size at most k, we consider two cases.

Case 1. n is in some j-cycle (2 < j < k). Thus we have
(n—=1)b(n—2,k)+ (n—1)(n—2)b(n—3,k) + ---
+(n-1)(n—-2)---(n—k+1)b(n — k,k).

Case 2. n is not in any j-cycle. In this case either, n is not
in any path or n is in a path size 2 or 3 or - - or k, since there
is a unique path of size 0, the empty path and no path of size
1. Thus we have b(n — 1,k) +2(n — 1)b(n — 2,k) + ---
+k(n—1)(n—2)---(n— k + 1)b(n — k, k), such maps in this
case.

We therefore obtain

b(n,k) = b(n—1,k)+3(n—1)bn—2,k)+ ---
+ (k+1)(n—-1)(n—-2)---(n— k+1)b(n — k, k).

By Lemma 1.1, we infer that gi(z), the exponential generating
function of b(n, k) is

Gu() = e+ -+,

Now using the fact (mentioned above) that

po(n,k) =3 (’;) b — i, ),

1=0
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we see that the exponential generating function of po(n, k) is

e2:c+3:c2/2+ o (k+1)z*/k
?

as required. (|
Using Lemma 1.1 it is not difficult to deduce the following
recurrence relation for po(n, k) :

Proposition 2.2 Let po(n,k) be the number of subpermuta-

tions of X, with orbit size at most k. Then forn > k > 2,

po(n, k) satisfies the recurrence relation

po(n, k) = 2po(n—1,k)+3(n—1)po(n—2,k)+ ---
+k+1)(n-1)(n—-2)---(n—k+1)po(n —k, k),

where po(n,0) = 1, po(n,1) = 2" and po(n,n + r) = po(n,n)
for all nonnegative 7.

Proposition 2.3 Let po(n,k) be the number of subpermuta-
tions of X,, with orbit size at most k. Then

2n1~(%)n2 .. (&-]Ic-_l)nknl

nllng! .. -nk!

po(m k)=

n1+2n2+4++kn=n

?

where ny,ng, - -+, N > 0.

Proof. Let the exponential generating function of po(n, k) be
g(z). Then

pa(n, k)xn 2r _3z2/2 (k+1)z* [k
z - ————— e . e L —— e
9(=) nzzo n!

2n1(_g_)n2 - (E;’jci)nkxn

- 5

n1+2n2+--+kng=n ni !'n,z! cee nk!
Hence
2"1 §n2“‘ !‘_’Ll_ nkn!
pa('n,, k) = Z (2) ( % )

ol - -l
ni+2no+--+knr=n n1ng T
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where n,no,...,n; > 0. o -

Cameron [2, pp. 69-60] proved that for n > 1, o(n,2) is
even and o(n,2) > /(n!). We have similar results for po(n, k).

Lemma 2.4 Let po(n, k) be the number of subpermutations of
X, with orbit size at most k. Then

) even if n is odd,
po(n, k) s { odd if n is even.
Proof. First observe that from the recurrence (in Proposition
2.2) po(n, k) is clearly even if n is odd. However, if n is even,
then for k > 2

po(n, k) = po(n —2,k) = po(2,k) = po(2,2) = 7(mod 2),
that is, po(n, k) is odd. D

Proposition 2.5 Let v(n,k) be the number of nilpotents of I,
with nilpotency index at most k. Then the exponential generat-
ing function of v(n, k) is

Y
"l '
n>0

Proof. Decomposing a subpermutation a of X,, all of whose
orbits are of size at most k into a (full) permutation component
and a nilpotent component, we obtain that

n

po(n, k) =3 (’:)a(z k)v(n — 3, k).

=0

Now from Eqn.(1) and Proposition 2.1, we see that the ex-
ponential generating function of v(n, k) is

e2z+3.1:2/2+ e+ (k+1)zk [k—(z+x?/2+ - +xF[k) _ e:c+:1:2+ o 4zk

)

as required. 0
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Corollary 2.6 [18, A000262]. The exponential generating func-

tion for the number of nilpotent subpermutations of X, is
P A S e=/(1-z)

Again, using Lemma 1.1 it is not difficult to deduce the fol-
lowing recurrence relation for v(n, k) :

Proposition 2.7 Let v(n, k) be the number of nilpotents of I,
with nilpotency index at most k. Then for n > k > 2, v(n,k)
satisfies the recurrence relation

vin,k) = v(n—-1k)+2(n—-1vn—2,k)+ ---
+ k(n—1)---(n—k+v(n—kk),

withv(n,1) = 1 and v(n,n+7) = v(n,n) for all nonnegative r.

Using the same argument as in the proof of Proposition 2.3 we
obtain the following corresponding result.

Lemma 2.8 Forn > 0, we have

v(n, k)
1

= n! —— e
nl!nzl oo nk!

n142ng4-tkng=n

5 (n1+n2+~-~+nk) n!
)
n1+2na+-+kng=n N, N2, .., T (nl +ng -+ + nk)'

where ny, N, ...,ng > 0.

Lemma 2.9 Forn > k > 2 we have n(n — 1)|v(n, k) — 1.

Proof. From the expression for v(n, k) in Lemma 2.8, we see
that if n; # n then 2n; + 3n3 +--- + kng > 1, that is,

2(n2+n3+--°)+n3+2n4+---+(k—2)nk21.
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So,if k> 2
2me+ng+---)+ng+2ng+---+ (k—2)nx > 2,

- which implies n — (ny +ng + - - - +ng) > 2. Hence
is divisible by n(n — 1).

If ny = n then we get the first term in the sum expression
for v(n, k) equals to 1. This implies that if £ > 2 then
n(n—1)|v(n, k) — 1. O

n!
(n1+n2+--+ng)!

Using the above lemma and the fact that if £ = 2, we have
i(n,2) = v(n,2) — 1, we see that for k > 3,

i(n, k) = v(n, k) —v(n,k-1) = (v(n,k) - 1) — (v(n, k- 1) - 1),

where all terms on the right hand side are divisible by n(n — 1).
Hence, for all k > 2, we see that n(n —1)|i(n, k). Thus, we have
proved the following:

Proposition 2.10 Let i(n, k) be the number of nilpotents in I,
of index ezactly k. Then for all k > 2, we have that n(n —
1)|i(n, k). In particular, for all k > 2, i(n, k) is always even.

Proposition 2.11 Let i(n, k) be the number of nilpotents in I,
of index exactly k. Theni(n,1) =1, i(n,n+r) = i(n,n) for all
nonnegative r, and forn > k > 2, i(n, k) satisfies the recurrence
relation i(n, k) =i(n — 1,k) +2(n— 1)i(n — 2,k) + ---
+k(n=1)---(n—k+1)i(n - k, k).

Proof. This follows from the obvious fact that i(n, k) = v(n, k)—
v(n,k — 1), for £ > 2 and Proposition 2.7. 0

Remark 2.12 The triangular arrays of numbers b(n, k), pa(n, k),
v(n,k) and i(n,k) are as at the time of submitting this paper
not in Sloane [13]. However, b(n,n) is [13, A144085]; po(n,n)
is [18, A002720]; v(n,n) is [13, A000262]; and i(n,n) is [13,
A000142].
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n\k|0[1[ 2 3 4 5 6 | Xb(n,k)

0 |1 1

1 111 2

2 111( 4 6

3 111110 | 18 30

4 111146 | 78 | 108 234

5 1/1)94 | 486 | 636 | 780 1998

6 1]1]784 3096 | 4896 | 5760 | 6600 | 21138

Table 2.1 Some computed values for b(n, k)

a\k|0]| 1] 2 3 4 5 6 | po(n,k)
0 1 1
1 112 3
2 1] 4 7 12
3 118 26 | 34 69
4 1{16] 115 | 179 | 209 520
) 1]32] 542 | 1102 | 1402 | 1546 4625
6 1{64]2809 (7609 | 10759 | 12487 | 13327 | 47056

Table 2.2 Some computed values for po(n, k)

n\k[1] 2] 3 ] 4] 5 6 [Zv(nk)
1 |1 1
2 [1] 3 4
3 (1] 7] 13 21
4 [1]25[ 49 | 73 148
5 |1] 81261 | 381 [ 501 1225
6 |[1]331]1531[2611[3331[4051| 11856

Table 2.3 Some computed values for v(n, k)
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n\k|1] 2 | 3 4 | 5| 6 |Xi(n,k)
1 1 1

2 1] 2 3

3 1] 6 6 13

4 124 | 24 | 24 73

5 1|80 | 180 | 120 | 120 501

6 1133012001080 (720|720 4051

Table 2.4 Some computed values for i(n, k)

3 An Inequality and Asymptotic Re-
sult

In this section we prove results for po(n, 2) a.nalogoué to those
for ¢(n,2) from [2] and [14].

Proposition 3.1 Forn > 4, po(n,2) > 6(3)*1v/nl

Proof. The proof is by induction. First note that 6(3/2)3(v4!) =

6 < 115 = po(4,2) and 6(3/2)4VE = TV < 542 =

po(5,2). Now consider
po(n,2) = 2po(n—1,2)+3(n—1)po(n —2,2)

> 2.6() /(= 1) +3(n—1)-6(3)"*/(n - 2!
- 6(%)"‘3[3\/(_77,——1)! +3vA=Ty(n- 1)

= 36— Dl +va—T]

> 3. 6(%)"-3\/7?

> 6() VAl
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as required. Note that we have used the following inequality:

vVa<l+yn-1 ]

Proposition 3.2 For n > 2, we have

_ | 1(mod 6) ifnis even,
po(n,2) = { 2 (mod 6) if n is odd.

Proof. From the recurrence
po(n+1,2)—po(n—1,2) = 3(n+1)po(n—1,2)+6(n—1)po(n—2, 2),

we see that po(n+1,2) = (3n+4)po(n—1,2) (mod 6). Now, if
n is odd then po(n+1,2) = po(n—1,2) (mod 6), and if n is even
then po(n+1,2) = 4po(n—1,2) (mod 6). But po(1,2) = 2, and
so po(n,2) = 2(mod 6), for all n odd. Also pa(2,2) = 7, and so
po(n,2) = 1(mod 6), for all n even. O

It is known that o(n,2), the number of involutions in S,,

satisfies )
O'(TL, 2) ~ \7§nn/2e—n/2+v’n—l/4’

as n — oo, [14, (5.4.14)]. This asymptotic formula can be
obtained using Hayman’s method, see for example, Wilf [14].
The same method can be applied to obtain a similar result for
po(n,2). However, we need the following special case of a more
general result due to Hayman, see Wilf [14].

Theorem 3.3 Let f(z) = e”®), where p(z) is a nonconstant
polynomial with nonnegative real coefficients. Then the coeffi-
cients a, of the Taylor series of f(z) satisfy

a(n) ~ (2n(rp'(r) + r’p"(r))) " 2errn,

as n — 0o, where r is the positive real root of rp'(r) = n.

457



Combined with Stirling’s approximation formula:
n! ~ (g)“\/27rn,

as n — 0o, the above theorem gives the result:

r—n/2

po(n,2) ~ = (1"

1-1

n

where r = @— is the positive root of rp'(r) = n with p(r) =
2r + 3r%/2. Now since £ — 0 as n — 0o, we obtain after some
routine manipulation the following result.

Proposition 3.4 Let po(n,2) be the number of subpermuta-
tions of X,, with orbit size at most 2. Then as n — 00, we
have

1
po(n,2) ~ —¢ (VI + 3+ 1),
where r = YAzl

An element « in I, is called a quasi-idempotent if a* = a2, that
is, o? is an idempotent. Clearly all idempotents and involutions
are quasi-idempotents. We have

Proposition 3.5 The number of quasi-idempotents in I, is
po(n,2).

Proof. We show that « in I, is a quasi-idempotent if and only
if all the orbits of o are of size at most 2. If a has a 3-cycle
say, (ajaza3) then clearly o2 contains the 3-cycle (a;a3az) and
so o2 is not an idempotent, that is, « is not a quasi-idempotent.
Similarly, if a has a simple path of length 3 say, (ajazas] then
clearly o? contains the path (a;a3] and so a? is not an idempo-
tent, that is, « is again, not a quasi-idempotent. The converse
is clear. m]
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