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ABSTRACT. In this study we define and study the Bivariate Gaussian
Fibonacci and Bivariate Ganssian Lucas Polynomials. We give gener-
ating function, Binet formula, explicit formula and partial derivation
of these polynomials. By defining these bivariate polynomials for spe-
cial cases Fiu(z, 1) is the Gaussian Fibonacci polynomials, L, (z,1) is
the Gaussian Lucas polynomials, Fy(1,1) is the Gaussian Fibonacci
numbers and Lyn(1,1) is the Gaussian Lucas numbers defined in [19).

1. INTRODUCTION

Fibonacci Polynomials, were studied in 1883 by the Belgian mathemati-
cian Eugene Charles Catalan and the German mathematician E. Jacob-
sthal. The polynomials f,(z) studied by Catalan are defined by the recur-
rence relation

fn(z) = zfa1(2) + fr-2(z)
where fo(z) = 0, fi(z) = 1, and n > 2. Notice that f,(1) = F, , the nth

Fibonacci number.
Lucas polynomials L,(z), originally studied in 1970 by Bicknell, are

defined by
la(z) = zln_1(z) + ln_2(x)
where lp(z) =2, 1(z) =z and n > 2.
Bivariate Fibonacci polynomials are defined by

fo(2,y) = xfo-1(2,9) + yfn-2(z,y)

where fo(z,y) =0, fi(z,y) =1, and n > 2. By these polynomials f,(z,1)
are the Fibonacci polynomials and f,(1,1) = F},, the nth Fibonacci num-
ber.

Bivariate Lucas polynomials are defined by

ln(z,y) = zlp_1(2,y) + ylo-2(2,7)
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where lo(z,y) = 2, Li(z,y) = z, and n > 2. See that [,,(z,1) are the Lucas
polynomials and [,(1,1) = L,, the nth Lucas number.

The Gaussian Fibonacci sequence in [19] is GFp = i, GF; = 1 and
GF, =GF,_1 4+ GF,_5 for n > 1. One can see that

GF, = F, +iFq

where F), is the usual nth Fibonacci number.

The Gaussian Lucas sequence in [19] is defined similar to Gaussian Fi-
bonacci sequence as GLy = 2—1, GLy = 142i{,and GL, = GL,_1+GLy_»
for n > 1. Also it can be seen that

GLn =Ly +tlpn

where L, is the usual nth Lucas number.

The complex Fibonacci numbers and Gaussian Fibonacci numbers are
studied by some other authors [11, 12, 16]. The complex Fibonacci poly-
nomials were defined and studied in {18] by Horadam. Harman [12] give a
new approach toward the extension of Fibonacci numbers into the complex
plane. Before this study there were two different methods for defining such
numbers studied by Horadam [17] and Berzsenyi {1]. Harman [12] general-
ized both of the methods. In [2, 3, 6, 7] theories of the generalized Fibonacci
and Lucas polynomials are developed. Yu and Liang [26] derive some iden-
tities involving the partial derivative sequences of the bivariate Fibonacci
polynomials F,(z,y) and the bivariate Lucas polynomials L, (z,y). Djord-
jevic [4, 5] considered the generating functions, explicit formulas and partial
derivative sequences of the generalized Fibonacci and Lucas polynomials.
Good [8] points out that the square root of the Golden Ratio is the real
part of a simple periodic continued fraction but using (complex) Gaussian
integers a + ib instead of the natural integers. Tuglu et al. [24] study
the bivariate Fibonacci and Lucas p-polynomials (p > 0 is integer) from
which, specifying z,y and p, bivariate Fibonacci and Lucas polynomials, bi-
variate Pell and Pell-Lucas polynomials, Jacobsthal and Jacobsthal-Lucas
polynomials, Fibonacci and Lucas p—polynomials, Fibonacci and Lucas p—
numbers, Pell and Pell-Lucas p—numbers and Chebyshev polynomials of
the first and second kind, are obtained. Webb and Parberry [27] study
the divisibility properties of the Fibonacci polynomial sequence. Hoggatt
and Long [13] obtain the results including results of Webb and Parberry
and generalize the results to bivariate Fibonacci polynomials. For more
information one can see [9, 10, 14, 15, 20, 21, 22, 23, 25

In this article we define and study the Bivariate Gaussian Fibonacci and
Bivariate Gaussian Lucas Polynomials GF,(z,y) and GL, (z,y). We give
generating function, Binet formula, explicit formula and partial deriva-
tion of these polynomials. Special cases of these bivariate polynomials
are Gaussian Fibonacci polynomials F,(z,1), Gaussian Lucas polynomials
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L,(z,1), Gaussian Fibonacci numbers F,,(1,1) and Gaussian Lucas num-
bers Ln(1,1) defined in [19).

2. BIVARIATE GAUSSIAN FIBONACCI AND LUCAS POLYNOMIALS
Definition 1. The Bivariate Gaussian Fibonacci polynomials GF,(z,y)
are defined by the following recurrence relation

GFry1(z,y) = 2GFL(z,y) + yYGFro1(z,y), n>1 (2.1)
with initial conditions GFy(x,y) =i and GFi(z,y) = 1.
It can be easily seen that
GFﬂ(z’ y) = fn(z, y) + iyfn—l(xg y)

where fp(z,y) is the nth bivariate Fibonacci Polynomial.
[ =]

Definition 2. The bivariate Gaussian Lucas polynomials {GLn(x,¥)},—
are defined by the following recurrence relation
GLn+] (!l:, y) = IBGL,,((B, y) + yGLn—l(m'p y)’ nz>1 (2-2)

with initial conditions GLy(z,y) = 2 — iz and GLy(z,y) = = + 2iy.

Also

GLn(x, y) = ln(xv y) + iyln—l (xa y)

where I, (z,y) is the nth bivariate Lucas Polynomial.

For later use the first few terms of the sequence are as shown in the
following tables

GFa(z,y)
i
1
T+ 1y
z° 4y +izy
z° + 2zy + wy(z® +y)
z* + 3zy + y° + sy (z° + 2zy)

Ol =IOl 3

and

GLn(z,y)
2-iz
x4 12y
z% + 2y + iy(zx)
z7 + 3zy + ty (z° + 2y)
z* + 422y + 2y* + 4y (27 + 3zy)
z° + 5z°y + 5zy° + iy (z* + 4%y + 2y%)

NS M=
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2.1. Some Properties of Bivariate Gaussian Fibonacci and Lucas
Polynomials.

Theorem 1. The generating function for bivariate Gaussian Fibonacci
Polynomials is
t 4 4(1 — xt)

9(t) =Y _ GF(z,y)t" = Tzt —gt%

n=0
and for bivariate Gaussian Lucas Polynomials is
2 — 3t — i(z — 2yt — z%t)
1 — zt — yt2 )

h(t) = i GLn(z,y)t" =

n=0

Proof. Let g(t) be the generating function of the Bivariate Gaussian Fi-
bonacci polynomial sequence GF, (z,y) then

9(t) — ztg(t) — yt°9(t) = GFo(x,y) +tGF(z,y) — ztGFo(z,y)

+ 3t [GFa(z,y) — 2GFp_1(z,y)

n=2
~yGFn_2(z,y))
= t+1i(l—xt)
By taking g(t) parenthesis we get
' _t+i(1—at)
9(t) = 1—at—yt2’
The proof is completed. a

Binet’s formulas are well known and studied in the theory of Fibonacci
numbers. Now we can get the Binet formula of bivariate Gaussian Fi-
bonacci and Lucas polynomials. Let a(z,y) and B(z,y) be the roots of the
characteristic equation

2 —zt—y=0

of the recurrence relation (2.1). Then

T4 /12 +4 z—\/z2+4
a(xay) = _2—}!! ﬁ(x!y) = _____2_._:‘_1_.

Note that a(z,y) + B8(z,y) = = and a(z,y)B(z,y) = —y. Now we can
give the Binet formula for the bivariate Gaussian Fibonacci and Lucas
polynomials.

Theorem 2. Forn >0

an(za y) — Bn(z’y)
a(wa y) - ﬁ(x! y)

o™ Y(z,y) — B (z,y)

GFo(z,y) = YT %) = B y)




and
GLn(z,y) = o™(z,y) + B(z,v) + iy (" (z,9) + B (z,v)) -

Proof. Theorem can be proved by mathematical induction on n. O

Theorem 3. The explicit formula of bivariate Gaussian Fibonacci Poly-
nomials is

54
GF,H.I (x’ y) - Z (n; k) xn—2kyk

k=0
L% n—k—1
+i Z ( X )zn—2k—1yk+1.
k=0

Theorem 4. The explicit formula of bivariate Gaussian Lucas Polynomials
18
[3]

n (n—k\ ,_
GLn(z,y) = Zm( % )3‘" 2yt
k=0

22
. n-1 (m-k-1\ , ok 1kt
+ E ko1 ( k )x Yy
k=0
Theorem 5. Let Dy(z,y) denote the n X n tridiagonal matriz as
1 ¢ 0 ..o 0]
-y oz Y :
-Dn(xay)= 0 -1 =z .0 ,n21
. ‘. ‘. t. y
| 0 -+ 0 -1 =z ]

and let Do(z,y) = i. Then det Dyp(z,y) = GF,(z,y), n > 0.
Proof. By induction on n we can prove the theorem. For n = 1 and n = 2,

det Di(z,y) = 1=GFi(z,y)
det Do(z,y) = z+iy=GF(z,y).

Assume that
det D,,_, (IB, y) = GFn—l (2:, y)

and
det Do (IB, y) = GFn-—2 (:B, y) .
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Then

det D, (z,y) = =zdetD,_;(z,y)+ydetD,_2(z,y)
zGFh1 (z,y) + yGFh—2 (z,¥)
GF, (:L‘, y)

O

Theorem 6. Let H,(z,y) denote the n X n tridiagonal matriz defined as

[ 2 —ix 2% 0 --- 07
1-y i y :
Ho(y)=| o -1 z . o} n21L
. ‘. ‘. ey
0 . 0 -1 z|

Then det Hy,(z,y) = GLp—1(z,y), n 2 0.

Now we introduce the matrix @ (z, y) that plays the role of the Q-matrix.
Let @ (z,y) and P denote the 2 x 2 matrices defined as

|z ¥ |11
Q(x:y)_[l O]andp—[i 0]
Then we can give the following theorem:

Theorem 7. Letn > 1. Then

Qe p=| Griss T |

where fn, (z,y) is the nth bivariate Fibonacci Polynomial.

Proof. We can prove the theorem by induction on n. Forn =1
Ty 11 z+iy =
10 it 0 1 1

[ GF2($)y) f2(xay) :I .
GFi(z,y) hAl(=zy)
Assume that the theorem holds for n = k, that is
kp_ | GFega(2,y)  fesr(z,y)
Qe p=| G ey |



Then for n = k 4+ 1 we have

e = [15][ 8] [1s)
[ y ] [ GFey1(2,y)  frr1(z,y) ]
0 GFi(z,y)  fi(z,y)

_ [ GFua(z,9) fk+z(w,y)]
_GFk+1($,?]) fk+1($)y) '

=8 =8

]
We can extend the definition of bivariate Gaussian Fibonacci polynomi-
als and bivariate Gaussian Lucas polynomials to negative subscripts.
Definition 3. Forn>1

GF_n(z,y) = f-n(z,9) +iyfon(z,y)
(_l)n_l (fn(xa y) - iyfn+l(z» y)

and

GL—n(x)y) = l—n(za y)+ iyl—n—l(xy y)
()" (la(2,y) — iylnsa (2, )

where f(z,y) and l(z,y) are the bivariate Fibonacci and bivariate Lucas
polynomials defined above.

Theorem 8. (Cassini Identity) Forn > 1
GFo1(2,9)GFas1(2,y) = GFE(z,y) = (1 +y — iz) (1) "

Proof. We can prove the theorem by induction on n.
Forn=1 :

GFGF; —GF? = i(z+iy) -1
= ~1-y+iz
= (14y-iz)(-1)"°

and thus the theorem holds. Suppose that the theorem is true for an
arbitrary positive integer k, that is

GFi—1(2,Y)GFr41(z,y) — GFi(z,y) = (1 +y — iz) (=1)Fy* 1.
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Then for k+1
GFi(z,y)GFe12(z,y) — GFE 1 (z,)
_ (GFk+l(z: y) — yGFe_1(z, y))

T
X (G Fy41(2,y) + yGFe(x,y))
—GF13+1(3?, )
= GF . (z,y)+ %GFkﬂ(z,y)GFk(a:, )
~YGFm1(2,Y)GFi11(z,9)
L GFrs (@, 4)C P (2,9) ~ OFEa(2,0)

= %GFk-H (:c, y)GFk (x: y)

—%GFk_l(:c,y)GFk(z, y)
—y (1 +y —iz) (-1)*y*"! - yGFi(z,y)
= LGFci(wv)GFi(z.)
+(1+y —iz) (-1)**y* — yGFi(z,y)
_%?‘GFk—l(z,y)GFk(xay)
= %GFk+l($a ¥)GFi(z,y)
+(1+y —iz) (-1)**y*
~LGF(,y)CFin(2:9)
= (+y-—iz) (-~
This completes the proof. 0
Theorem 9. Forn >1
GLn1(2,9)GLnsa(z,y)-GLE(2,9) = (2% + 4y) (1 +y —iz) (-1)"*'y" .
Theorem 10. Forn > 1
GL(z,y) - (2 + 4) GF2(z,y) = 4" (1 +y —iz) (-1)".
Proof. These theorems can be proved by induction on n. O
Taking z = y = 1 in above theorems we get:
Corollary 1. [19] If z =y =1 then
GFn41GF,1 — GFE = (2—1)(-1)™.



Corollary 2. [19) Ifz =y =1 then
GLpy1GLn_y — GL2 = 5(2 — i) (~1)™+.
Corollary 3. [19] Ifz =y =1 then
GL%,, - 5GF2 =4(2-14)(-1)".
Theorem 11. Forn>1
GL,(2,y) = GFuy1(z,y) + yGFr-1(z,y).

Proof. We proceed by induction on n. Theorem is true for n = 1. Suppose
that theorem is true for n — 1. Then

GLa(z,y) = zGLp_1(x, y) +yGLn—2 (x! y)

= z(GFa(z,y) + yYGFn-2(z,y))
+y(GFa-1(z,y) + yGFy_3(z,y))

= zGF,(z,y) + zyGFh—2(z,y)
+yGFy-1(z,y) + yzGFn-S(w) )]

= zGFu(z,y) + yGFu-1(z,y)
+zyGFa-2(z,y) + y2GFn_3(:l:, )

= zGFy(z,9) + yGFn_1(z,y)
+y (xGFn—2(z’ y) + yG’Fn_3(x, y))

= GFn+l (CC, 3/) +yGFn_4 (:B, y)'

Theorem 12. Forn>1

GLn-I-l (58, y) + yGLn—l (xl y)
2 + 4y '
Theorem 13. The sum of the bivariate Gaussian Fibonacci and bivariate
Gaussian Lucas polynomials are given as:
n
, _ 1 n .
(z) z z" kGFk(zyy) = ‘5 [GFn+2(z: y) -z (:B + zy)]
k=1

= 1
(i1) Zx"—kGLk(wa y) = 5 [GL,,+2((L‘, y) — xn(x2 +2y + "'xy)]
k=1

GF"(:B: y) =

Proof. (i) For n > 2 we have

1
GFa-1(2,9) = -GFan(%,) - §GFn(x,y)-
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Then from this equation

- :l:"_l P
x GFl(x: y) = v GF3(31 y) - VGF2(:B’ y)
. xn—2 xn—l
z" GFZ(x,y) = y GF4(:c,y) - Y GF3(x1 y)
.a: z2
2GFn(z,y) = ZGFn+1(xa y) - ?GFn(w» y)

1
GFo(z,y) = chﬁz(x,y)—gGFnﬂ(x,y).

By adding both sides of the equations we get

= 1
Z " *GFy(z,y) = m [GFut2(z,y) — 2™ (z + iy)] .
k=1

This completes the proof. O
Theorem 14. Forn >0

GF,,(:::, y)GLn(xt y) = ("‘c + 2iy)f2n-] (:L‘, y) +y (1 - y) fon—2 (zs y) .
Proof. From the Binet formulas of GF,(z,y) and GL,(x,y) we have

_ (M=) =B (=)
GRu(a)CLn(ay) = (Goia=trnt

o™ (z,y) - ﬁ"’l(w,y))

o(z,y) — B(z,y)
x (a"(z,y) +B"(z,y)
+iy (" (z,9) + 87 (z,9)))
o®n(z,y) - 6°"(=,9)

o(z,y) - B(z,y)

o~ Yz,y) — B2 (z,y)

o(z,y) — B(z,y)

202" 2(z,y) - " (,y)
o(z,y) — B(=,y)

= fon (2,9) + 2iy fon-1 (z,9) — V¥ fon—2 (2,)
= Zfon-1(2,y) +yfon-2(2,9)

+2iy fan—1(%,9) — ¥ fan—2 (z,9)
= (z+2iy)fon-1(z,9) +y (1 — ¥) fon—2 (z,9)

O

+iy

+2iy
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Corollary 4. [19] Taking z =y =1 in above theorem we get
GFnGLn = (1 + 2i)F2n_].

Theorem 15. For the partial derivatives we have

%(a:’—y) = nGFn (m: y) - iyfn—l (ZL', y)
Oz
oy

where fp(x,y) is the nth bivariate Fibonacci polynomial.

and
= nGFn_l(IC, y) + ifn(x7 y)

Proof. From the partial derivations of the explicit formula of bivariate
Gaussian Lucas polynomials theorem can be proved. O

Theorem 16. Form>1andn>0
GFm-l-ﬂ(x’ y) = fm(wa y)G’Fn+1(a:, y) + yfm—l(xa y)GFn(-'L" y)-

Corollary 5. The norm of the bivariate Gaussian Fibonacci polynomials
18

fa@y) + ¥ ooz y) = Q- 9)fa(2,y) + v fon-a(2,y)
where fn(z,y) is the nth bivariate Fibonacci polynomial.

3. CONCLUSION

In this study we generalized the Gaussian Fibonacci and Lucas num-
bers which were defined in [19] to bivariate Gaussian Fibonacci and bivari-
ate Gaussian Lucas Polynomials. We give many interesting properties of
these polynomials. Special cases of these bivariate polynomials are Gauss-
ian Fibonacci polynomials Fy,(z,1), Gaussian Lucas polynomials L,(z, 1),
Gaussian Fibonacci numbers F,,(1, 1) and Gaussian Lucas numbers L,(1,1)
defined in [19].
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