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Abstract: Combined with the edge-connectivity, this paper investigates
the relationship between the degree-sum of adjacent vertices, girth and
upper embeddability of graphs, and obtains the main result: Let G be a
k-edge-connected simple graph with girth g. If there exist an integer m
(1 £ m < g), such that for any m consecutively adjacent vertices z;(i =
1,2,---,m) in any non-chord cycle C of G, it has

ch(l'z) > —T)'m'*'kTm +(2-g)m

f==1
where k = 1,2,3, n = |V(G)|, then G is upper embeddable and the upper
bound is best possible.
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1 Introduction

For graphical terminology not explained in this paper, readers are referred
to [1). All graphs considered here are finite and undirected and, unless
explicitly stated otherwise, they are also connected. A graph is denoted
by G = (V(G), E(G@)), with V(G), E(G) be its vertex set and edge set,
respectively. In general, we allow graphs to have loops and multiple edges.
Graphs which lack both multiple edges and loops will be called simple. The
minimum length of a cycle in a graph G is the grith g(G) of G, or simply
by g if the graph is clear from the context. And if G does not contain a
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cycle, we set g(G) = co. An edge which joins two vertices of a cycle but is
not itself an edge of the cycle is a chord of that cycle. For any cycle (not
necessarily the shortest one) which does not have any chord, we call it a
non-chord cycle. For any nonnegative integer z, |z| denotes the largest
integer no more than x. And the cardinality of a set X will be denoted by
|X].

Recall that the mazimum genus of a graph G, denoted by ya(G), is the
maximum integer k with the property that there exists a cellular embedding
of G on the orientable surface Sy of genus k. Since any cellular embedding
must have at least one face, then the Euler’s formula implies that v)s(G) <
I_ﬂzc—."lj, where B(G) = |E(G)| — |V(G)| + 1 is known as the Betti number
(also called the cycle rank) of G. A graph G is said to be upper embeddable if
m(G) = [ﬂzglj . It is clear that if G is a tree, then G is upper embeddable,
so we will also assume that the graphs considered in this paper have at
least one cycle. Since the original investigation of the maximum genus
of graphs by Nordhaus, Stewart and White [2], the maximum genus of
graphs has received a considerable attention. Many authors were dealing
particularly with upper embeddability of graphs [2, 3, 4, 5]. A known
result due to Xuong [5] showed that every 4-edge-connected graph is upper
embeddable, however, a little weaker condition of k-edge-connectivity (1 <
k < 3) cannot guarantee the result [6]. So, the problem of what conditions
 may be added to get a k-edge-connected (1 < k < 3) upper embedded graph
arises naturally. In [7], Huang and Liu studied the relationship between the
upper embeddability of graphs and the degree-sum of nonadjacent vertices,
and obtained the following results:

Theorem A7 Let G be o 2-edge connected(or 3-edge connected) simple
graph. If for any uwv ¢ E(G) it has

(V@I =2, V(O +1
3

dofu) +da(v) 2 2

then G is upper embeddable. Furthermore, the lower bound is best possible.
Naturally, people may ask whether there exists any relationship between
the upper embeddability of graphs and the degree-sum of adjacent vertices.
In this paper, we give an affirmative answer to this question, and obtain
the following main theorem:
Theorem. LetG be a k-edge-connected simple graph with girth g. If there
exist an integer m (1 <m < g), such that for any m consecutively adjacent
vertices z; (1 = 1,2, --,m) in any non-chord cycle C of G, it has

> do(e) > gt 2 -om

i=1
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where k = 1,2,3, n = |V(G)|, then G is upper embeddable and the upper
bound is best possible.

This paper is organized as follows. Some basic lemmas are given in
Section 2. Section 3 is devoted to the proof of Theorem and Corollary.
And in the last section, we will remark that the conditions and results of
Corollary are better than those of Theorem A when g > 4, furthermore,
some upper embeddable graphs which can’t be determined by Theorem A,
but can be determined by Corollary, are presented.

2 Basic Lemmas

Let G be a graph and A € E(G), G\ A is the graph obtained from G
by removing all edges in A. Let T be a spanning tree of G, denote by
&(G,T) the number of components of G \ E(T) with odd number of edges.
The Betti deficiency é€(G) of the graph G is defined to be the minimum of
£(G,T) over all spanning trees T

In the study of maximum genus, one of the most remarkable facts is that
this topological invariant can be characterized in a purely combinatorial
form. The following lemma due to Xuong [3] is a basic result in studying the
maximum genus of a graph G, which gives a formula on s (G) by means
of £(G) and B(G), and also presents a necessary and sufficient condition
for an upper embeddable graph.

Lemma 1.8 Let G be a graph. Then

(1) 1m(G) = BC5EQ), gnd

(2) G is upper embeddable if and only if §(G) < 1.

Lemma 1 tells us that the maximum genus yp(G) of a graph G is
mainly determined by £(G).

Let G be a connected graph and A C E(G), let ¢(G \ A) and (G \ A)
denote the number of components of G\ A and the number of components
of G\ A with odd Betti number, respectively. Nebesky [4] gave another
combinatorial expression of £(G) :

Lemma 2.14  Let G be a connected graph. Then
£(C) =  max {(G\A)+5(G\A4) - |4] -1},

Let G be a graph and A C E(G), F;,, F;,,- -, F;, be some connected
components of G\ A. Denote by E(F;,, Fj,,- -+, F;,) the set of those edges
of G whose two end vertices are respectively in two pairwise subgraphs F;;
and F;,, for 1 < j,t < s and j # ¢, and let E(F,G) denote the edge set
consisting of all such edges e € E(G) such that one end vertex of e is in F
but the other not in F.
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The following result due to Huang [8] provides a structural characteriza-
tion of a not upper embeddable graph, namely, the graph G with §(G) > 2.
Lemma 3.8) LetGbea graph. If G is not upper embeddable, i.e. £(G) =
2, then there exists an edge subset A of G satisfying the following properties:

(1) e(G\ A) =b(G\ 4) 2 2;

(2) For any connected component F' of G\ A, F is a vertex-induced
subgraph of G;

(3) |E(F,, Fiyy -+, F,)| £ 25—3 for any s (s > 2) distinct components
F‘inﬂzr”'?-pi, OfG A;

(4) €(C) = 2(G\ 4) - |4] - 1.

Under the conditions and conclusions of Lemma. 3, let Fy, Fy,---, F; be
all connected components of G \ A, then we have the following Lemma 4.
Lemma 4. (1) For any connected component F of G\ A, if G is k-edge-
connected, then lE(F G)| 2 k;

(2) 1Al =5 Z |E(F;, G)l;
@ IfGis k edge-connected then

2, for k=1,
l=c(G\A) 2> 3, for k=2,
6, for k=3.

Proof. It is clear that properties (1) and (2) are true, therefore, we only
need to prove property (3).

For k = 1, it is obvious that property 3 holds by Lemma 3(1).

For k = 2 or 3, by the properties (1) and (2), we know that |A4| =

l
$ 2 |B(F,G)| 2 §l, So
k
§(C) =2(G\ A) ~|A| -1<2 -5l 1.

Since £(G) > 2, then 21 — £ — 1 > 2, which implies

6 {3fork 2,

L2375 =1\ 6 for k=3

3 The Proof of Theorem and Corollary

Now, we move to the proof of Theorem.
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Proof. Suppose that G is not upper embeddable, then there exists an
edge set A C E(G) such that the properties (1)-(4) of Lemma 3 are all
satisfied. Let F1, F,---, F} be all connected components of G \ A, where
l=¢(G\ A) > 2. For any vertex z € V(F}), i = 1,2,---,1, let da(z) =
dg(z)—dF, (). Lemma 3(1) tells us that B(F;) = 1 (modulo 2) for1 <i < I,
and so F; is not a tree, i.e, F; has at least one non-chord cycle. First of all,
we will prove the following claim.

Claim. For1 <i <, let C!' = ziz}-.-zizi (s > g) be any non-chord
cycle of F;, then for any m (1 < m < g) consecutively adjacent vertices
zi, Tk ,x,‘,tm_l € V(C?%), (1 £t; < |V(C?)| and the subindices of =
are modulo |V(C*)|), it has

ti+m—1

' ; E(F;,G
Y daeh) < mEF, G)|
Jj=ti 9

Subproof. Suppose that Claim is false, then there must exist m, such
that for any m consecutively vertices on cycle C*, we have

i ' i ; E(F;, G
da(@) + da(zh) + da(@s) + - +da(ai,) > TEFECN (g |
i i i i E(F;,G
da(zh) +da(zh) + da(al) + - +dalzl 1) > m| (gz )
i i i i E(F;, G
da(zd) +da(sl) +da(ah) + - +da(ai,_y) > THEE O (g )
From the summation of the above inequalities, we can easily get
mzd ( mlE(FnG)I
F=1
Since s > g, so
~ (o ; E(F,,G
=1

But by the definition of d4(z}), we know

> da(=}) < |E(E;,G)|

=1
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This contradiction means that Claim is true. :
Now we continue to the proof of Theorem. Since G is simple, and so is
F;, then for any z € V(F;), we have

dr,(z) < |V(F)| - (9 -2),

By Claim, for any non-chord cycle C? of F;, there exist m consecutively
adjacent vertices 73,2} 41, *» %, 4m-1 € V(C?), (1 <t; <|V(C)| and
the subindices of = are modulo |V(C‘)|), such that

ti+m-—1 ]

j=t: g

Therefore
ti+m—1 ti+m—1 ti+m—1

Y de@) = 3. dn()+ Y. dalal)

J=ti J=t; j=ti
m|E(F;, G)|
g

IA

m|V(F)| -m(g -2) +

By Lemma. 3(3), we have
SRSl mIE(FuG)I

Y dole) <mZIV(F.|—mz<g 2+ 3 MEEQ)

i=1l gj=t; i=1
5mn—ml(g—2)+@%
(1)
However, the conditions of Theorem tell us that

titmrl km
Z dg(a:)> = 1),‘,_l_z-i-—§-+(2—g)m

thus
t ti+m-—1 mnl k

Z Z dG( 1)2 +2 g l +(2-g)ymi (2)

i=l  j=t;
Combining inequality (1) and inequality (2), we can easily get
2m(2l — 3)

mnl kml
F-12r2 ' g +(2—g)ml<mn-ml(g—2)+

By inequality (3), we have

mng — 6m { 2, for k

3)

H

1
2,
3

= 3, fork
S - Am 6, fork
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This is a contradiction to Lemma 4(3), so G is upper embeddable.
Next we will show that the bound in Theorem is best possible, that is
the strict inequality ” > ” in Theorem can’t be replaced by ” > ”.

€1 €1 e3
€2

G 1 GZ

€6 €5

er €s
[ y
e1 €4
€g
ez €3
Gs
Fig. 1

It can be seen that the graphs Gi(k = 1,2,3) shown in Fig.1 are k-
edge-connected with ¢ = 3. Set m = 3, for any 3 consecutively adjacent
vertices ax; in any non-chord cycle of Gk, k,j = 1,2,3, it is easy to check
that

. _ 3|V(G) | 3k
> de,(ax;) > 6+k = PSR Gl

i=1
We set Ay = {e1} for Gy; Ay = {e1, ez} for Gy; and Az = {e;, e, -, €9}
for G3; then
(G \ Ak) + b(G \ Ax) — |Ak] -1 =2.

By Lemma 2, £(G) > 2, i.e. Gy is not upper embeddable.
Until now, we have completed the proof of Theorem. O

Corollary. Let G be a k-edge-connected simple graph with girth g, and
C =1x1Z3... 2,21 (s > g) be any non-chord cycle of G. If there erist an
integer m (1 < m < |§]), such that for any m consecutively nonadjacent
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vertices i, Tig2, .- -, Tivam—2 (1 <1 < s, and subindices are modulo s ) in
C, it has

-1
~ mn k

Z de(Tiya;) > [T —;2 +(2-g)m

where k = 1,2,3, n = |V(G)|, then G is upper embeddable.
Proof. First, we define a mapping o on vector (aj @2 ...as—1 )T such
that:

al Qs
a2 a
g . =
as—1 Qs—2
as as—1

LetX—(1010 10 ---

)lx,, and A, B and C be three
2m-—1

matrixes as follows:

A= (dg(z1) dg(x2) de(zs) --- de(zs) ),

B=( X o(X) o*(X) -+ o }(X)),

1000 ---01
1100 --- 00
2 I
0000 -.-10
0000 --- 11
8Xs
Set P=AB = (p1 p2 -+ ps). Obviously, for 1 < i < s, p; =

-1
Act-1(X) = mz dg(zis2i), 0°(X) = X. From the conditions of Corol-
=0

lary, we have

mn km
—_— (2 —
>Frret +(@2-gm (1)
Let Q=PC=(q1 g2 -- @s), it is quite clear that ¢; = p; + piy1 =

2m—1
Z de(ziy;), i=1,2,---,s, i+1 (modulo s). By inequality (4), we have

D> 2mn + 2km +(2-g)2m
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Thus,

gy 2mn 2km
Z de(2it;) > “1E 12 + p +(2-g)2m
So G is upper embeddable by Theorem. O

4 Remarks

In this section, we will prove that the conditions and results of Corollary
are better than those of Theorem A when g > 4 and present some upper
embeddable graphs which cannot be determined by Theorem A, but can
be determined by Corollary.

Remark 1. First, it is easy to see that the conditions of Corollary are more
weaker than those of Theorem A. Second, the lower bounds of Corollary are
better than those of Theorem A when g > 4. Since by takingm =2, k=2,
we have

mn km 2n 4
GoiEsa g TR = Gyt t@-92

2n

< —__

< 3-3

- 2n-2) 5

- 3 3
2(n-2)

< —3—-1

And by taking m = 2, k = 3, we have

2 6
i +-’%E+(2—g)m e—— - +(2 g)2

(k—1)2+2 (3-1)2+2
n 5
< —-_Z
- 3 2
_ n+l lz
-3 6
n+1
< 3 -2

Remark 2. There indeed exist upper embeddable graphs with g > 4 which
can be determined by Corollary, but can’t be determined by Theorem A.
Let Similar Petersen Graph be the 2-edge connected graph shown in the left
hand side of Fig.2, and C(18,9) be the 3-edge connected graph obtained
by adding edges v;v;49 (¢ = 1,2,.--,9) to the cycle Cys, which is shown
in the right hand side of Fig.2. It is a routine task to check that the two
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above graphs are upper embeddable according to Corollary just by taking
m = 2, but their upper embeddability can’t be determined by Theorem A.

® &

Similar Petersen Graph C(18,9)
Fig. 2

Remark 3. When g = 3, there also exist upper embeddable graphs which
can be determined by Corollary, but can’t be determined by Theorem A.
Let G4 and G5 be the two graphs shown in Fig.3. It is seen that G4 and Gg
are 2-edge connected and 3-edge connected, respectively. It is easy to check
that the two graphs are upper embeddable according to Corollary by taking
m =1, but their upper embeddability can’t be determined by Theorem A.

@ &

Fig. 3
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