Possible volumes of ¢-(v, ¢ + 1) Latin trades
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Abstract

The concept of ¢-(v, k) trades of block designs previously has been stud-
ied in detail. See for example A. S. Hedayat (1990) and Billington (2003).
Also Latin trades have been studied in detail under various names, see A. D.
Keedwell (2004) for a survey. Recently Khanban, Mahdian and Mahmoodian
have extended the concept of Latin trades and introduced ¢-(v, k) Latin trades.
Here we study the spectrum of possible volumes of these trades, S(¢, k).
Firstly, similarly to trades of block designs we consider (¢t + 2) numbers
8 = 211 — 20+ g < 4 < ¢ 41, as critical points and then we show
that s; € S(¢,k), forany0 < i <t+1, andif s € (8i,8i+1),0 < i < ¢,
then s ¢ S(t,t + 1). As an example, we determine S(3, 4) precisely.
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1 Introduction and Preliminaries

Let V := {1,2,...,v} and V* be the set of all ordered k-tuples of the ele-
ments of V, i.e. V¥ := {(z1,...,2x) | =i € V,i = 1,...,k}. Also, let
V= {(u1,...,w)r |ui € V,i=1,...,t}, where I isat-subsetof {L,..., k}.
For a pair of elements of V¥ and V}, where I = {iy,...,i;} andi; < --- < 4y,
we define

(u1,.--,ue)r € (21,...,2%) = uj =gz, i=1...,t

Next we define t-inclusion matrix M = M(t-(v, k)), as in [13]). The columns
of this matrix correspond to the elements of V* (in lexicographic order) and its
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rows correspond to the elements of Uy V}, where the union is over all ¢-subsets of
{1,...,k}. The entries of this matrix are O or 1, and are defined as follows.

Mu,,udn(@me) =1 > (U181 € (T1,...,72).

A t-(v,k) Latin trade T = (T1,T3) of volume s consists of two disjoint col-
lections T and T, each of s elements from V¥, such that for each ¢-set I C

{1,...,k}, and for every element (uy,...,u:)1 of V{, the number of elements
of T) and T that contain (uy,...,u:)s is the same. Note that in checking the
containment of an element (uy, ..., us)s, elements of I are arranged in increas-

ing order. The volume of a Latin trade T is denoted by vol(T"). It is clear from
the .definition above, that for any ¢’ < ¢, every ¢-(v,k) Latin trade is also a
t'-(v, k) Latin trade. For simplicity, the notation of ¢-Latin trade is commonly
used for this combinatorial object. The spectrum of ¢-(v, k) Latin trades, S(t, k)
is the set of all integers s, such that for each s there exists a t-(v, k) Latin trade of
volume s, A t-(v, k) Latin trade of volume 0 is considered always to exist, thatis a
- trade with T} = T> = Q) which will be called trivial trade. In a t-(v, k) Latin trade
T = (T1, T?) both collections T; and T cover the same elements. This set of ele-
ments is called the foundation of T and is denoted by found(T'). Note that v can
be any integer such that v is at least the size of the foundation of T'.

Example 1 In the following a 3-(3,4) Latin trade T = (T1,T2) of volume 15
and with found(T') = {1, 2, 3} is given. :

3 3222112211313 2:2
T, 323 212121213 2 3 2
33 3333322221111
23 3 12 212112 3 2 2 3
33 2221122113322
T 3 23212121213 2 32
33333 3322221111
322 311 212 21 2 3 3 2

As it is noted in [13]}, the set of all ¢-(v, k) Latin trades is a subset of the null
space of the t-inclusion matrix M = M(it-(v, k)). Also t-Latin trades have a
close relation with orthogonal arrays. For example, the intersection problem of
two orthogonal arrays may be studied as a problem in ¢-Latin trades.

One of the important questions is:

Question 1 What is the spectrum of t-(v, k) Latin trades?
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Similar question about the spectrum of trades of block designs was raised in [15],
and two basic conjectures were stated. Since then many results on this subject are
published. For a survey see [10] and [2].

The special case of 2-(v, 3) Latin trades is previously studied in detail and is re-
ferred with different names such as “disjoint and mutually balanced” (DMB) par-
tial Latin squares by Fu and Fu (see for example [7]), as an “exchangeable partial
groupoids” by Drépal and Kepka [6] as a “critical partial Latin square” (CPLS)
by Keedwell ([11] and [12]), and as a “Latin interchange” by Diane Donovan
et al. [4], and recently as a “Latin bitrade” by Drdpal et al. (see[5], [14], and [9]).
See [3] for a recent survey.

Following [14] we will refer them as Latin bitrades. Let L, and L, be two Latin
squares of the same order n. A Latin bitrade T = (P, Q) consists of two partial
Latin squares P and ) obtained from L, and Ly, respectively, by deleting their
common entries. Note that 2-(v, 3) Latin trades are more general than Latin bi-
trades: in the former, repeated blocks and multiple symbols in rows, columns and
cells are aliowed.

Example 2 The following is a Latin bitrade of volume 7. (It should be noted that
one empty row and one empty column are deleted.)

Io21] -
21 13 39
- 132]23

A result in [8] answers the Question 1 in the special case of Latin bitrades. Here
we state several theorems about existence and nonexistence of ¢-(v, k) Latin trades
of specified volumes, and we determine the spectrum of ¢-(v, ¢ + 1) Latin trades
fort =1,2,and 3.

2 Possible volumes of ¢-Latin trades

Most of the concepts and definitions about ¢- (v, k) Latin trades are borrowed from
t-(v, k) trades of block designs. For example: volume, spectrum, ¢-inclusion
matrix, frequency vector, etc. Specially, we show that there are close relations
between the spectrum of these two combinatorial objects. But, in spite of all the
similarities, some differences are observed between them, both in properties and
in the methods of proof of lemmas and theorems.

By the following lemma all existence results of £-(v,t + 1) Latin trades can be
extended to ¢t-(v, k) Latin trades.

Lemma 1 Foranyk >t + 1, we have S(t,t + 1) C S(t, k).
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Proof. Let T = (T1,T>) be a t-(v,t + 1) Latin trade of volume s. For each
ordered (¢ + 1)-tuple in Ty and T>, we add (k — t — 1) fixed elements z of
V as (t + 2)™ to k*" coordinates. Then we obtain two collections T} and T3
containing of ordered k-tuples. Clearly T* = (T7,T5) is a t-(v, k) Latin trade of
volume s. ]

Lemma 2 By using any t-(v,k) Latin trade of volume s, we can obtain a
(t +1)-(v, k + 1) Latin trade of volume 2s.

Proof. Let T = (T}, T) be a t-(v, k) Latin trade of volume s. Choose two dis-
tinct elements z and y € V. The following construction (see Figure 1) produces
a (t + 1)-(v, k + 1) Latin trade T* = (T}',T5) of volume 2s. That is, for con-
structing T"* we adjoin two new distinct symbols x and y (respectively) to the
first component of each element of 7 and T (respectively), to obtain T} and T3
(respectively).

T; I3
X X
X X
T . T
X X
y y
y y
T . T
y y
Figure 1 u

Remark 1 Assume we have two t-(v, k) Latin trades, T = (Ty,T2) and R =
(R1,R2). Then T+ R=(TYUR;,T2URy) and T-R= (T URz,TzURl)
are two t-(v, k) Latin trades. Note that the elements which appear in both sides
are omitted. So T+ R and T — R are of volumes |T\|+|Ry| - |T\N Rz | - |T2NR; |
and |T1| + |Rz| — |T1 N Ry| — |T2 N Ry|, respectively.

Remark 2 If we look at each ordered k-tuple in T; and R; , i = 1, 2, as a
variable (each element of Ty and R, with positive sign and each element of T» and
Ry with negative sign), then the two operations above coincide with the concept



of two algebraic + and — operations. For this reason sometimes we denote a
t-(v,k) Latintrade T = (T,T2) as T = (T} — T3).

To apply linear algebra, we correspond to each ¢-(v, k) Latin trade T = (T1,T3),
a frequency vector T, where the components of T are corresponded with all ele-
ments of V¥ (in lexicographic order). For each z € V¥, T(z) is defined as in the
following:

P if z € T (p times),
T(x)={ —qg if z € T (g times),
0 otherwise.

Let M be the t-inclusion matrix M = M(t-(v,k)). Then it is an easy exer-
cise to prove that MT=0, where 0 is the zero vector. And conversely if T,
with integer components, is a vector in the null space of M then it determines
a t-(v, k) Latin trade T' = (T}, T2). T is obtained from the positive components
and T3 is obtained from the negative components of vector T. In other words,
there is a one-to-one correspondence between the null space of M over the ring Z
and the set of all ¢-(v, k) Latin trades. The following lemma is the fact mentioned
in Remark 1, but in a linear algebraic approach. '

Lemma 3 Consider two t-(v, k) Latin trades, T = (T), — T>) and R = (R, —
Ry). ThenT + R = (T + R1) — (T2 + Ry) is also a t-(v, k) Latin trade.

Proof. Let T and R be the frequency vectors of T and R, respectively, and M
be the ¢-inclusion matrix M = M(¢-(v, k)). We have MT= 0 and MR= 0. Thus
M(T+R)= 0, i.e. (T+R) belongs to the null space of M. Therefore T + R is a
t-(v, k) Latin trade. ]

Remark 3 In the previous lemma if TyNRy = Ry NT, = 0, then vol(T +R) =
vol(T) + vol(R).

In [13], a t-(v, k) Latin trade is represented by a homogeneous polynomial of
order k as follows. Let P = P(z,,%3,...,%,) be a homogeneous polynomial of
order k whose terms are ordered multiplicatively (meaning that for example for
11 # i2 the term x4, T, Ty, - - - T;, is different from 4,24, 24, - - - z;,, €tc.) Now
we correspond a frequency vector T, with v* components (in lexicographic order)
to polynomial P as in the following:

Forz = (i1,12,...,%) € V¥ we let T(z) be the coefficient of z;, T, Zi, - - Ts,,
in P. So, if the resulting vector T satisfies the equation MT= 0, then we refer
to polynomial P as a ¢-(v, k) Latin trade. It is easy to show that this definition
is equivalent to the previous definition of ¢-(v, k) Latin trade. This representation
helps us in constructing ¢-(v, k) Latin trades of desired volumes,
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The following theorem is proved by using polynomial representation of
t-(v, k) Latin trades.

Theorem 1 For each s; = 21! —2t+1)—i 0 < § < t+ 1, there exists a
t-(v, k) Latin trade of volume s; withk > t + 1.

Proof. For 7 = 0 the trivial trade is the answer. Foreach i,1 < i <¢+1,
let T = (T1 — T2) and R = (R; — Ry) be two t-(v, k) Latin trades defined as
follows:
T = T] - T2

=(zy — T2) - - - (T2e—2i+1 — T2e—2i42)(T2t—2i+3 — Tar—2i44) * -

(Tot41 — T2e42)T2043 * *  Thye41, -and

R = R1 - R2
= —(z1 — 2) - - - (Toe—2i41 — Tae—2i+2)(Y2t—2i43 — T2e—2i44) "
(Yat41 — T2e42)T2043 * *  Thtt1,

where inside each parenthesis variables are different from each other, and also for
eachj, y; # z;. Now T + R is a t-(v, k) Latin trade, by Lemma 3. T and R
are the same in ((¢t + 1) — ©) parentheses. So, in T + R, the following terms are
cancelled out with their negatives:

(%1 = 22) - - - (Tag-2i41 — T2e—-2i42)T2(t—i+2) * ** T2(t+1)T243 * - * Tht41. Thus
T + R is a t-(v, k) Latin trade of volume s; = 2¢+1 — 2(t+1)~i, n

To continue our discussion we need to define levels of a trade. We may de-
compose a t-Latin trade T' and obtain other (¢ — 1)-Latin trades. Let T =
(T1,T3) be a t-(v,k) Latintrade and let j € {1,...,k} andz € V. Take
T = {(z1,...,2&)|(z1,...,2¢) € T; and z; = z}, fori = 1, 2. Delete z
from the j*" coordinate in all elements of T} and T} to obtain T}’ and T4', respec-
tively. Now T = (T}, T,') isa (¢ — 1)-(v', k — 1) Latin trade, which is called a
level trade of T in.the direction of j.

Example 3 In Example 1 for j = 3, there exist three level trades. For example,
Jor x = 3 the level trade in the direction of j = 3 is as follows.

3 3 2 2 2 1 1
T'[3 2 3 1 2 1
2 3 31 2 2 1
3 3 2 2 1 1
(3 2 3 2 1 2 1
32 2 3 1 1

490



Note that the level trade above is a Latin bitrade, which also can be represented as
in Example 2.

Lemma4 Let T = (T, T3) be a t-(v,t + 1) Latin trade of volume s with only
two non-trivial level trades in some direction j. Then the volume of these level
trades are equal, say to a, and so s = 2a.

Proof. Without loss of generality assume j = 1. It is easy to see that the structure
of T = (T1,T2) is the same as structure of T* in Figure 1, where k = ¢ + 1.
So the two level trades of T in the direction of j = 1 have the same volume a.
Moreover, if T/ = (T, T2) is one of these level trades, then the other level trade
isT" = (Tz,Tl). ]

Now we investigate the spectrum of ¢-(v, ¢ + 1) Latin trades.
Proposition 1 S5(1,2) = Ny \{1}.

Proof. It is clear that a 1-(v, 2) Latin trade of volume 1 does not exist. Suppose
8 > 2, the following array form a 1-(v, 2) Latin trade of volume s.

1 2 3 -+ s—1 s
Tl 2 3 ... s-1 s

1 2 3 - s—-1 s
ol g 3 4 .« 5 1 -

The following result of H-L. Fu. is an instrument in building an induction base.

Proposition 2 [8] A Latin bitrade T = (P, Q) of volume s exists if and only if
s € Np\{1,2,3,5}.

Proposition 3 S(2,3) = Np\{1,2,3,5}.

Proof. Obviously, there exist no 2-(v, 3) Latin trades of volumes 1 and 2. Assume
that T' is a 2-(v, 3) Latin trade of volume 3 (or 5). Then by Lemma 4, each of
these two numbers must decompose into at least three positive numbers from the
set S(1,2) = {0,2,3,4, ...} which is impossible.

Each Latin bitrade is a 2-(v, 3) Latin trade, so Ng\{1, 2, 3,5} C §(2, 3). ]

Theorem 2 There exists no t-(v,t + 1) Latintrade of volume s, for any
s0=0<s<2 =3,

Proof. We proceed by induction on ¢. The statement obviously holds for the case
t = 1. Assume, by induction hypotheses, the statement holds for all values less
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than ¢, i.e. if a is the volume of a t'-Latin trade (' < t), thena > 2t We show
that theorem holds for ¢ also. Suppose the statement is not true for ¢, and let T be
a t-(v,t + 1) Latin trade of volume s with 0 < s < 2°. T has at least two non-
trivial level trades in each direction. Suppose in some direction j, T has [ level

trades of volumes ay, ay, .. ., a;, wherel > 2and s = @, +- - - + @;. By induction
hypotheses a; > 2¢~!, for each i. Therefore s > - 28~ > 2. 2¢~1 = 2¢, which
is a contradiction. n

Theorem3 For any s € (2041 — 2Wl)—i gt+l _ o(t+1)-(i+1))
1 < i < t, there does not exist any t-(v,t + 1) Latin trade of volume s.

Proof. We proceed by induction on ¢. For case ¢ = 1, there is nothing to be
proved. For t = 2, statement follows from Proposition 3. Assume, by induction
hypotheses, that statement holds for all values less than ¢ (t > 2), e ift <t
then there exists no ¢-(v', ¢’ + 1) Latin trade of volume s', where s} = 2¢'+1 —
A= < gt < 1 _QEH)-G+D) — g1 < § < #'. We show that it holds
for t also. Suppose in contrary for some ¢ and some s, where s; < 8 < 8;4.1, there
exists a t-(v, t + 1) Latin trade of volume s. We show a contradiction. There are
three cases to consider:

Case 1. In some direction T has only two non-trivial level trades. So by Lemma 4
we have s = 2s', where s’ is the volume of some (¢ — 1)-(v',t) Latin trade.
Therefore we have § < s' = § < %t or

9(t—1)41 _ of(t-1)+1]-i o ot L g(t=1)+1 _ ol(t=1)+1]-(i+1)

which is a contradiction.

Case 2. In each direction T" has more than two non-trivial level trades, and in some
direction it has only three non-trivial level trades. So s = a+ b+ ¢, where for each

- value of a, b and c there exist (¢ — 1)-(v’, ) Latin trades of these volumes. Note

that by Theorem 2 we have a,b,c > 2"1. We claim that at least two of values a,
b and c are equal to 2¢71,

Proof of claim: We know that the critical points in the case ¢ — 1, in increasing
order, are

s, =08 =2"15,=3.20"2 5, =7.2!"3 . sl =2-1.
ifa=2"1andb, c>3-2¢72, then
s=a+b+c>2"14+2-3-2"2 =2071(1 + 3) = 2,
which is impossible, because, s < 841 = 2¢*! — 1. So we have either

A)a=b=2"landc=2t-2""7 forsomej, 1<j<t or
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b)a=b=2"landec>2t - 1.

In(a) wehave s = a+b+c = 22071 42t — 2t—7 = gt+1 _ o(t+1)-(j+1),
This means that s is a critical point of case ¢, which is a contradiction. In (b) we
have s=a+b+c>2-2'"1 42t —1 =21 _ 1, which is also impossible.

Case 3. In all directions T has at least four non-trivial level trades. This means that
s= ZLl a;, where [ > 4 and for each a; there exists a (¢ — 1)-(v’, t) Latin trade
of volume a;. But then we have s > 4 - 2!=1 = 2¢+1 which is impossible. a

3 Spectrum of 3-(v, 4) Latin trades

For two integers a and b with a < b we denote [a,b] = {a,a +1,...,b}. We
prove the following theorem. .

Theorem 4 S5(3,4) = No\([1,7]U[9,11] U {13}).

Proof. By Lemma 2 and Proposition 3, for each even number
s € Np\([1, 7Ju[9, 11Ju{13}) we can construct a 3-(v, 4) Latin trade of volume s.
A 3-(v, 4) Latin trade of volume 15 is given in Example 1 and 3-(v, 4) Latin trades
of volumes 17, 19, and 21 are given in the Appendix. 3-(v,4) Latin trades of
volumes 23 and 25 may be constructed by combination of 3-(v, 4) Latin trades
of volumes (8 and 15) and (8 and 17), respectively (Lemma 3). So, up to this
point we know that for each s(k) = 2k + 1, where 7 < k < 12, there exists a
3-(v,4) Latin trade of volume s(k). For k > 13 we write s(k) = s(k — 4) + 8,
and then, by induction and by Lemma 3, for each ¥ > 13 we can obtain a
3-(v,4) Latin trade of volume s(k). Now the proof is complete by Theorems 2
and 3. [ ]

4 Future Research

The study of ¢-(v, &) Latin trades when & = ¢ + 1, is of special interest. For
example similar to Latin bitrades, some 3-(v, 4) Latin trades may also be denoted
by T = (M, N), where M and N are two partial Latin cubes obtained from some
Latin cubes C and C; by deleting their common entries. This geometrical view
will shed a light to studying questions and conjectures about 3-(v, 4) Latin trades.

Question 2 What are the implications in geometrical interpretation of
3-(v,4) Latin trades?

A Latin bitrade is called k-homogeneous if each row and each column contains
exactly k elements, and each element appears exactly k times (see for example [1],
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for more information). We may define a k-homogeneous ¢-(v,t.+ 1) Latin trade

and seek for their existence.

of k-homogeneous

spectrums

possible

the

are

Question 3 What

t-(v,t + 1) Latin trades?

5 Appendix

(4, 4) Latin trade of volume 17:
222111331133222
321321323232321

2
2

A3

22211133113322211
32132132323232121

3323223112

2221111111

(o B o}

A 3-(4,4) Latin trade of volume 19:

— e - = N
-t N - -— O e
N =t = O vl vt ey
AN = NN~
NN —~ N AN — N
NN - AN -
N M o=~ N N — N
— NN~ — NN
—~ < NN —_<t N -
NN AN (o B o Mo Bl
Nt N - Nt N
-_—ee— N r—t ey ) v
— NN o™ — NN AN
— N - — < N M
N = N — AN =N A
N NN NN o
NFT N Nt N —
N AN NN NN
N onao NN
& &

A 3-(3,4) Latin trade of volume 21:

— ] pma) g — e ()
— N — N L e B ]
N =t — N O vt vt -
AN AN o~ AN AN~
NN — N AN = N
N AN - N AN~
N N NN~ A
—t o O N - — NN
— AN NA — NN
AN~ NN N~ NN
NANNM NN AN~
NN~ (o B sl o I o}
N ANy~ nAaNNAqN
NN NN NN o -~
_—— AN — 0}
- N - - NN
N = N - N~
NN N NN
NN o AN N —
AN mMm N NN e
N Mo - N NN o
& &
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