Expanders and the Affine Building of Sp,,

Alison Setyadi

Abstract

For n > 2 and a local field K, let A, denote the affine building
naturally associated to the symplectic group Sp,(K). We compute
the spectral radius of the subgraph Y; of A, induced by the special
vertices in A,, from which it follows that Y, is an analogue of a
family of expanders and is non-amenable.

Introduction

In (2], Bien considers the problem of constructing a model for an efficient
communication network. Such a model can be represented by a magnifier—
a graph with a small number of edges such that every subset of vertices
has many distinct neighbors (see [2, p. 6]). For a finite graph X, the
“quality” of X as a network can be quantified by its isoperimetric constant
h(X) (see [7, p. 1]). Davidoff, Sarnak, and Valette explore the problem of
explicitly constructing a family of expanders; i.e., a family {X,,} of finite,
connected, r-regular (r > 2) graphs with Card(X,,) — co as m — oo such
that there is an € > 0 satisfying h(X;) > ¢ for all m [7, Definition 0.3.3).
Families of expanders have become building blocks in many engineering
applications, including network designs, complexity theory, coding theory,
and cryptography (see [7, p. 3] and the references cited there). Note that
by (7, p. 4], an infinite family of r-regular Ramanujan graphs is not only a
family of expanders but is also optimal from the spectral viewpoint.

Let K be a local field, and let =, denote the affine building naturally
associated to SL, (K). In [14, Example 3], Saloff-Coste and Woess explicitly
calculate the spectral radius of the simple random walk on the one-complex
Xn of E,. This gives the spectral radius p(X,) of X, [6, Theorem 1]. Then
h(Xx) > 0 (by [3, Theorem 3.3]) and the number of vertices in X, contained
in concentric balls grows exponentially with the radius of the balls (by (3,
Theorem 2.2]); alternatively, Xy, is expanding. Note that h(X,,) > 0 implies
Xn non-amenable (see the paragraph following Theorem 2.7).

Let A, denote the affine building naturally associated to the symplectic
group Sp,(K) < SL2,(K). In this paper, we consider the subgraph Y,
of A, induced by the special vertices in A, (all the vertices in =,, are
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special). Using the techniques of {14, Example 3], we compute p(Yy). Then
h(Y,) > 0 (by [3, Theorem 3.3]) and the number of vertices in ¥;, contained
in concentric balls grows exponentially with the radius of the balls (by (3,
Theorem 2.2]); hence, Y, is also expanding and non-amenable.

After completing this work, we learned that it is also possible to derive
the formula in Proposition 2.6 using the techniques and results of James
Parkinson. Parkinson’s approach is quite general, as it takes a building-
theoretic perspective rather than the group-theoretic one we use. Asin [14,
Example 3], Parkinson’s approach is through a simple random walk: by [12,
Theorem 6.3] and general facts about C*-algebras, the spectral radius of
an isotropic random walk (of which a simple random walk is an example)
on an arbitrary thick, regular, affine building of irreducible type is 2(1),
where A is the transition operator of the random walk and A its Gelfand
transform. To express A(1) for the graph Y, in terms of the order ¢ of
the residue field of K (as in Proposition 2.6 below), one identifies and uses
the underlying root system of the building A,,, together with results about
the Macdonald spherical functions defined in [12, p. 580]. In contrast,
our approach is through the natural association of A,, with Sp, (X)—in
particular, the transitive action of GSp,,(K) (the analogue of GL3,(K) for
Sp,,(K)) on the special vertices in A, (see Proposition 1.4). As a result, we
deduce properties about Sp,,(K) and GSp,,(K)—for example, we produce
a solvable subgroup of GSp,,(K) that acts transitively on the vertices in
Y. In addition, we characterize the set of vertices in Y, adjacent to a given
one in terms of orbits (Proposition 2.4).

I thank Paul Garrett for his help with the Haar measure on @Q described
in Section 2. Finally, the results contained here form part of my doctoral
thesis, which I wrote under the guidance of Thomas R. Shemanske.

1 The Affine Building A,, of Sp,(K)

Fix a local field K with discrete valuation “ord,” valuation ring O, uni-
formizer m, and residue field k & F;. The affine building A, naturally
associated to Sp,,(K) can be modeled as an n-dimensional simplicial com-
plex as follows (see [9, pp. 336 — 337]). Fix a 2n-dimensional K-vector
space V endowed with a non-degenerate, alternating bilinear form (:,-),
and recall that a subspace U of V is totally isotropic if (u,u’) = 0 for all
u,u’ € U. A lattice in V is a free, rank 2n, O-submodule of V, and two
lattices L and L' in V are homothetic if L' = aL for some a € K*; write
[L] for the homothety class of the lattice L. A lattice L is primitive if
(L,L) C O and (,-) induces a non-degenerate, alternating k-bilinear form
on L/wL. Then a vertez in A, is a homothety class of lattices in V with a
representative L such that there is a primitive lattice Lo with (L,L) C 7O
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and wLo C L C Lo; equivalently, L/wLo is a totally isotropic k-subspace
of Lo/mLo. Two vertices t,t' € A, are incident if there are representatives
L €t and L' € t' such that there is a primitive lattice Lo with (L, L) C w0,
(L',L') € 7O, and either 1Lo CLC L' CLoorwly C L' C L C L.
Thus, a maximal simplex or chamber in A,, has n + 1 vertices to,...,tn
with representatives L; € ¢; such that Lo is primitive, (L;, L;) C #O for all
1<i<n,andwloGCLi G--C Lp & Lo.

Recall that a basis {u1,...,%n, w1,...,ws} for V is symplectic if (u;, w;)
= d;; (Kronecker delta) and (u;,u;) = 0 = (w;, w;) for all 4,5. If a 2-
dimensional, totally isotropic subspace U of V is a hyperbolic plane, then
a frame is an unordered n-tuple {A},A?},...,{)}, A2} of pairs of lines (1-
dimensional K-subspaces) in V' such that

1. A! + A% is a hyperbolic plane for all 1 <i < n,
2. A} + A2 is orthogonal to A} + AZ for all i # 3, and
= A +23) 4.+ (AL +22).

A vertex t € Ay, lies in the apartment specified by the frame {/\1,)\1},
{A , A2} if for any reprwentatwe L € t, there are lattices M7 in X! for a,ll
i,j such that L = M} + M2 +.-- + M1 + M2. The followmg lemma is
easily established.

Lemma 1.1.
1. Bvery symplectic basis for V specifies an apartment of A,,.

2. If ¥ is an apartment of A, there is a symplectic basis {uy,...,un,
wy,...,Wn} for V such that every vertez in ¥ has the form

[On%uy + -+ + On®rup + O7% 0y 4 -+ 4 O ay)
for some a;,b; € Z.

Since 7 is fixed, if B = {uy,...,un,wy,...,w,} is a symplectic basis
for V, follow (16, p. 3411) and write (a1,...,an;b1,...,b,)s for the lattice
Or%1uy+: - -+ O uy +Onbrwy +- - -+ Onbrw, and [ay, ..., an; b1,. .., bnls
for its homothety class. Then the lattice L = (a1,...,80;b1,...,bn)8 is
primitive if and only if a; + b; = 0 for all ¢ by [16, p. 3411], and [L] is a
special vertex in A, if and only if a; + b; = p is constant for all i by [16,
Corollary 3.4]. Note that by [16, p. 3412, a chamber in A,, has exactly
two special vertices.

Proposition 1.2. Every special vertez in A, is contained in eractly
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chambers in A,,.

Proof. Lett € A,, be a special vertex. Then the number of chambers in A,
containing ¢ is the number of chambers in the spherical Cy (k) building (cf.
[5, p. 138]). By [13, p. 6], a chamber in the spherical Cy,(k) building is a
maximal flag of non-trivial, totally isotropic subspaces of a 2n-dimensional
k-vector space endowed with a non-degenerate, alternating bilinear form.
An obvious modification of the proof of [15, Proposition 2.4] finishes the
proof. O

Let C € A,, be a chamber with vertices to,...,t,, and let L; € t; be
representatives such that Lo is primitive, (L;,L;) C 7O forall 1 £i < n,
and 7Lo G Ly G --- G L, G Lo. Let X be an apartment of A,, containing
C and B a symplectic basis for V specifying £ as in Lemma 1.1. For all
0<j<n,let .

= (aij),...,a,(..j);b?),...,b,({))g.

Lemma 1.3. The two special vertices in C are [Lo] and [Ly).

Proof. The fact that [Lo) is special follows from [16, Corollary 3.4] and [16,
p. 3411]. To see that [L,] is special, note that if L; represents a special

vertex in C for 1 < j < n, then a(’) b(’) = pu for all ¢ (by [16, Corollary
3.4]), where p € {1,2} (since (L.,L;) C 1r0) But p = 2 implies L; = wLo,
which is impossible. Thus, a; ) +b(J =1for all i and L;/mLo = k™; hence,
j=n. (]

Let
GSp,.(K)={9= (4 B) € Mon(K) : A,B,C,D € M,(K), A'C = C*A,
B'D = D'B, A*D — C*'B = v(g)I, for some v(g) € K*};
alternatively, abuse notation and think of GSp, (K) as
{9 € GLk(V) :V v1,v2 € V, 3 v(g) € K such that
(gu1, gv2) = v(g){v1,v2)}.

Then Sp,,(K) consists of those g € GSp,,(K) such that v(g) = 1; alterna-
tively, (gv1,gv2) = (v1,v2) for all v1,v € V. Let B = {uy,...,un,wy,...,
wn} be a symplectic basis for V and g € GSp,,(K). If t € A, is a vertex
with representative L = (ay,...,an;b1,...,bn)s, define

gt =[On*'guy + -« + O’ gu, + O gw; + -+ + Onbrgw,).
Note that
B, := {v(g) *gu1,...,¥(g) " gun, gw1,...,gwn}
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is a symplectic basis for V; hence, m = ord(v(g)) implies gL = (a; +
m,...,a,.-i-m;bl,...,b,,)gg.

Proposition 1.4. The group GSp,,(K) acts transitively on the special ver-
tices in A,.

Proof. Note that if GSp,,(K) acts on the special vertices in A,, then [16,
Proposition 3.3) implies that the action is transitive. We thus show that
GSp,,(K) acts on the special vertices in A,,. Let t € A,, be a special vertex
and L € t a representative such that there is a primitive lattice Ly with
(L,L) €m0 and wLy C L C Ly. Let X be an apartment of A,, containing
t and [Lo), and let B be a symplectic basis for V specifying ¥ as in Lemma
1.1. Then [16, p. 3411}, the last lemma, and [16, Corollary 3.4] imply

Lo= (c;,...,cn;—cl,...,—c,,)s

and
L= (al,---,an;#—ala---au-an)&

where 4 € {1,2}. Let ¢ € GSp,(K) with ord(v(g)) = m. Since gt =
a1 +m,...,an +m;pu—ay,...,p— an]s,, (16, Corollary 3.4] implies that
it suffices to show gt is a vertex in A,,. First suppose m = 2r for some
T € Z. Then 7~ "gLy is primitive, (x~"gL, 7~ "gL) C 7O, and 7~ "g(wL,) C
w~"gL C 7~ TgLy; i.e., gt is a vertex in A,,. Now suppose m = 2r + 1. If
p =1, then 7~"~1gL is primitive and gt is a vertex in A,. Otherwise,
p=2,and (n~""1gL,n~""1gL) C 70O. Let *Mo = (ay +7,...,8n + 74 —
a1 —7,...,4—an ~7)g,. Then My is primitive and 7 Mo C 7=~ gL C My;
i.e., gt is a vertex in A,. Thus, GSp,(K) acts on the special vertices in
A, a

Call two distinct, incident vertices in A,, adjacent.

Proposition 1.5. The group GSp,(K) takes adjacent special vertices in
Ay to adjacent special vertices in A,,.

Proof. Let t,t' € A, be adjacent special vertices, and let L €t and L' € ¢/
be representatives such that there is a primitive lattice Lo with (L, L) C
70, (L', L') € 7O, and either ntLo CL G L' C Ly or nLo C L' € L C Lo.
By Lemma 1.3, either L' = Ly or L = Ly; i.e., either 7L’ ¢ L'C L’ with
L’ primitive or 7L ¢ L' ¢ L with L primitive. By symmetry, assume
wL G L' ¢ L with L primitive, and let g € GSp, (K) with ord(v(g)) = m.
If m = 2r for some r € Z, then (as in the last proposition) #~"gL is
primitive, (n~"gL’,m~"gL’) C w0, and 7~ "g(xL) ¢ m~"gL' C n"gL.
Similarly, if m = 2r+1, then #~"~gL’ is primitive, (7~"gL, 7~ "gL) C 7O,
and m(7~""1gL!) C 7 "gL C m~""1gL’. O
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Lemma 1.6, Ift,t' € A, are adjacent special vertices andt has a primitive
representative L, then there is a representative L' e t' withwL C L' C L
such that the number of chambers in A,, containing botht and t' equals the
number of mazimal flags of non-trivial, proper k-subspaces of L' /wL.

Proof. Since a chamber C € A, containing both ¢ and t' has n + 1 ver-
tices to,...,tn that have representatives L; € ¢; such that Lo is primitive,
(Li,L;) C 7O for all 1 < i < n,andwlo C Ly G -+ G Ln G Lo,
Lemma 1.3 implies Ly and L, represent the two special vertices in C;
in particular, t = to and ¢ = ¢;,. Let L = Lo and L' = L,. Then
wL C L' C L and varying L;,...,Ln—) over all lattices in V contained in
L and containing 7L such that (L;,L;) C 7O forall 1 <i < n—1 and
wLC L1 G-+ G La—y G L' gives all the chambers in A, containing both
tand ¢'. a

Proposition 1.7. Ift € A, is a special vertez, thent is adjacent to exactly
[Th-, (g™ +1) distinct special vertices in An.

Proof. Let t € A, be a special vertex. By Proposition 1.2, the number
of chambers in A, containing ¢ is [T,,_; ((¢*™ —1)/(g — 1)). Since this
counts a special vertex t' € A,, adjacent to ¢ more than once if there is
more than one chamber in A,, containing both ¢ and ¢/, the last lemma and
[15, Proposition 2.4] finish the proof. (]

Proposition 1.8. Let L be a lattice in V. Then GSp,(O) := GSp,(K) N
GL2,(O) can be identified with {g € GSp,(K) : gL = L}, where g acts on
L as the matriz of a linear transformation with respect to a fized basis for

L.

Proof. It suffices to prove the proposition for any lattice L in V. Let B =
{e1,...,e2n} be the standard unit basis for V, and let L = (0,...,0;0,...,
0)s. Let g € GSp,(K) such that gL = L. Then g € GL2,(0); ie,
g € GSp,,(K) N GL2,(O). On the other hand, any element of GSp,,(K) N
GL2,(0) fixes L. ]

We end this section with some terminology used in Proposition 2.1.
By [5, p. 13], two chambers in A, are adjacent if they have a common
codimension-one face, and a gallery in A, connecting the chambers C,C’ €
A, is a sequence C = Cy,...,Cpn = C’ of chambers in A, such that C;
and C;;) are adjacent for all 0 <7 < m — 1. Recall that any two chambers
in a building can be connected by a gallery.
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2 The Isoperimetric Constant of Y,

The graph theory notation and terminology used in this section is primarily
from (17, p. 7); any terminology not defined there is from [4, pp. 1 - 4],
except for the definition of walk, which is from [11, p. 2]. In particular,
a graph is a finite or countably infinite set X of vertices, together with a
symmetric neighborhood or adjacency relation ~. Let X be a connected,
r-regular (r finite) graph with infinitely many vertices. As in (3, p. 116},
if X' is a subset of X, let X’ denote the set of edges in X incident to
exactly one vertex in X’. Then the isoperimetric constant of X is h(X) :=
inf(Card(8X’)/Card(X")), where the infimum is over all finite, non-empty
subsets X’ of X. Note that h(X) is related to the spectral radius of X:
recall that the adjacency operator A(X) of X acts on the Hilbert space of
functions f : X — C such that ¥,y [f(2)]* < co. Then the spectrum of
A(X) is {A € C: A(X) — M is not invertible}, and the spectral radius of
Xis
p(X) :=sup{|A| : A is in the spectrum of A(X)};

equivalently, p(X) = || A(X)]|, the norm of A(X), by [10, p. 252] (A(X) is
bounded by [10, Theorem 3.2] and can be shown to be self-adjoint). Then
by [3, Theorem 3.1, for a connected, r-regular graph X with infinitely
many vertices, to show h(X) > 0, it suffices to compute the spectral radius
p(X) of X and show p(X) <.

Let Y, be the subgraph of A, induced by the special vertices in A,.
Then by Proposition 1.7, Yy, is ([];,,_; (g™ + 1))-regular. Moreover, [16, p.
3414] implies that Y, has infinitely many vertices.

Proposition 2.1. The graph Y, is connected.

Proof. Let t # t' € Y. Since there is nothing to prove if ¢t and ¢’ are in
a common chamber in A, assume that no chamber in A,, contains both
t and t’. Let C,C’' € A, be chambers such that ¢t € C and t' € C’, and
let C = Cy,...,Cpn = C’ be a gallery in A,, connecting C and C’. For all
0 <7< m-—1, let S; be the set of special vertices contained in C; and
Cit1. Let tg =t, tiyyy =t',and t; € S;—; for all 1 < i < m. Then ¢; and
tiy1 are incident vertices in A,, for all i; hence, for each 0 < i < m, either
t; = tiy1 or t; and t;4; are adjacent vertices in Y,,. But we can remove

vertices from the sequence o, ...,¢,,+1 until we are left with a walk in Y,
connecting ¢ and t’ (since Y,, has no loops, we need successive vertices to
be adjacent). O

If G is a group acting on a set S and a,b € S, write G, for Stabg(a) =
{9 € G:ga=a} and G,b for {gb: g € Go}. The main tool that we use is
the following reformulation of a special case of [17, Theorem (12.10)).

503



Theorem 2.2. Let X be a locally finite, regular graph. If there is a solvable
group Q that acts transitively on X as a group of automorphisms and has
a left Haar measure u(-), then the spectral radius p(X) of X is

Card g't
AX) = E Cardggz t(:; S

where tg is any vertez in X,

Recall that PGSp,,(K) = GSp,,(K)/K*, where we identify K* with
the scalar matrices of GSp, (K). As in [17, Example (12.20)], write g as
a matrix in GSp,(K) while thinking of it as an element of PGSp,(K)
consisting of all its non-zero multiples. Let Q be the image in PGSp,, (K)
of Q', where

Q' ={(4 B) € GSp,(K) : A € Mp(K) is upper triangular},

a minimal parabolic subgroup of GSp,,(K), and let V' be a 2n-dimensional
K-vector space with a non-degenerate, alternating bilinear form (-,-). We
want to apply Theorem 2.2 to the graph Y, with Q@ as above and ¢, =
o = [0*] = [0,...,0;0,...,0]5,, where By := {ey,...,€n, f1,...,fn} is
the standard symplectic basis for V' (fi = en4: for all 7). Note that a
modification of the proof of Proposition 1.3.7 of [1] shows that for any
h € GSp,,(K), there is a g € Sp,(O) such that gh~! € Q’; furthermore,
(hg™Y)o = ho by Proposition 1.8. This, together with Proposition 1.4,
implies that Q acts transitively on the vertices in Y;,. The fact that Q
acts on Y, as a group of automorphisms follows from the fact that Q'
does (see Proposition 1.5). Since the group of upper triangular matrices in
GLj,(K) is solvable, so is Q. Verifying that Q has a left Haar measure is
a straightforward exercise involving topological groups.

Since we take {p = o in (1), it suffices to determine Card(Q o) and
Card(Q,t’) for vertices t’ € Y, with t' ~ 0. For a symplectic basis B for
V and T the apartment of A, specified by B as in Lemma 1.1, follow [17,
Example (12.20)] and write U(B) for the subgraph of Y;, induced by the
special vertices in ¥ (see Figure 1 for a partial picture of U(B) when n = 2).
Let £(n) = {0,1}". Then the neighbors of o in U(Bp) are

Te = [E1y..1En;1 —€1,...,1 — En]B,,

where £ = (£1,...,&n) € £(n), and Proposition 1.8 implies that the stabi-
lizer of 0 in PGSp,,(K) can be identified with PGSp,,(O). It follows that
if g = (9i5) € Qo = QNPGSp,(0) and |- |k is the absolute value of K,
normalized such that |7|g = 1/q, then

lgsilk =1, lgijlk S1ifi<j(withl<i<n)or2n>i>j>n+1,

@)
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Figure 1: Subgraph of Y>.

and g;; = 0 otherwise. For g € £(n), let
ge = diag(m®,...,me wl=e wl=en),

and note that geo = z¢ and Q;, = 9:Q.g;'. Then (2) and a similar
analysis for an element of Q,_ imply that for & = (hi;) € Qo N Qx,,

thijle =1if i = j, (3)
g~ max{0,6i—¢;} ifl<i<j<n,
|hijlre < < g~ mex{0ei~(-€i-n)} jf1<i<n<j<2n, (4)

g~ mex{0,=€i—nteimn} jfn41<j<i<2n,

and h;; = 0 otherwise. In addition, by the orbit-stabilizer theorem,

o and Card(0s,0) = Card(Qurs-0),

where p(-) is a left Haar measure on @ and 1 = (1,...,1) € £(n).

Consequently, to determine Card(Q,z¢) and Card(Qx,0), it suffices to
find u(Q,) and 4(QoNQx, ). Since we can.completely characterize both Q,
and QoNQy, in terms of |- |k, 1(Qo) (resp., u(QoNQx,)) is the product of
the Haar measures of the unconstrained, non-constant entries of an element
g € Q, (resp., of g € Q, N Q;,). Write vol(g;;) for the Haar measure of
the (4, j)-entry of g = (gi;), with vol normalized such that vol(Q) = 1,
vol(rO) = 1/q, and vol(O*) = 1. It follows from (2) that

#(Qo) = 1.

Card(Q,z,) =
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For € € £(n), let |g| := Y-, €. Then
M(g,n):= Z max{0,¢&; —&;}
1<i<j<n
counts the number of 0s that follow each 1 in g. Moreover,
z max{0,&; — (1 —gj-n)} = Z max{0, (e; +¢&;) — 1}
1<ign<j<itn 1£j<i<n

adds the number of 1s in £ to the number of 1s that follow each 1 in ¢; i.e.,
if |€|ln = m, then the last sum is m(m +1)/2. Let £ € £(n) with [g|, =m
and h = (hij) € Qo N Qz,. Then (3) and (4) imply

u(Qo n in) = q—MGm)q—m(m+1)/2;

hence,
Card(@oz) = gM(Emgmim+1)/2 %)

and
Card(Qz,0) = gMU-em)g(n—m)(n—m+1)/2

Since M(1 — g,n) counts the number of Os that precede each 1 in g,
M(g,n) + M(1 — g, n) is the product of the number of zeros in ¢ and |g|,.

Consequently,
Card(Qoz¢)Card(Qs,0) = g""+1/2, ©)

Lemma 2.3. Let g # &’ € E(n). Then for all g € Q,, Tc/ # gze.

Proof. Let € = (€1,...,€,) and g’ = (g},...,€,), and let 1 < £ < n such
that g¢ # &j. If o = gz for some g = (gi;) € Q,, then ggg;,lg € Qq,,
which is impossible since by (2), the (£, £)-entry of g.g_'g satisfies

€¢—£’,

-1
Iguﬂ' K € {q )q}a

contradicting (3). O

It follows that for g, € £(n), the sets Q,z and Q,z¢ are disjoint if
e#¢.

Proposition 2.4. The set of vertices in Y, adjacent to o is N(o) =
Ueee(n) QoTe-
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Proof. First note that by the last lemma and (5),

Card( U Qo"’s) = Z": grm+1)/2 Z gMEm)

£€E(n) m=0 £€E(n),
leln=m
Let
W(n1 m) = Z qM(g,n),
£€E(n),
|lgln=m

and note that by (17, p. 135], W(n, m) = (::l)q’ the number of m-dimensional
subspaces of an n-dimensional F,-vector space, for all 0 < m < n (see [17,
p- 133] for the formula for (1) ). The proof now follows from Proposition
1.7 since for all n > 1,

n n
L35 (). .
m=1 i=0 t q

Corollary 2.5. Ift € A, is a vertex with a primitive representative, then
the set of vertices in Y, adjacent to t is Ugeg(n) QiZe.

Proof. This follows from the last proposition since we only used the fact
that o has a primitive representative. O

Proposition 2.8. The spectral radius of Yy is p(Y,) = 2"g"(n+1)/4,
Proof. This follows from (1), Proposition 2.4, (6), and the fact that

Card(Qz,0) _ Card(Qy.,0)
Card(Qoze) Card(Qogz:)

for all g € Q,. m]
Theorem 2.7. The isoperimetric constant of Y, satisfies h(Y,) > 0.

Proof. By (3, Theorem 3.1] and the last proposition, it suffices to show that
2ngnnt /4 < T2 | (¢™ + 1), which is straightforward. O

Let X be a connected graph with infinitely many vertices and of bounded
degree. Following [8, p. 2480], for a connected, induced subgraph X’ of X
with at least one edge, let o(X’) denote the set of vertices in X’ adjacent to
a vertex in X not in X’. Then X is amenable if inf(Card(o(X’))/Card(X"))
= 0, where the infimum is over all finite, connected, induced subgraphs
X' of X with at least one edge. Note that if X is finite and has at
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Figure 2: In general, Card(o(X’)) < Card(8X’).

least one edge, then X is trivally amenable. Furthermore, if X’ is a
finite, connected, induced subgraph of X with at least one edge, then
Card(o(X’)) < Card(0X') (see Figure 2). On the other hand, since X
has bounded degree, X amenable implies 2(X) = 0.

Corollary 2.8. The graph Y, is non-amenable.

Proof. As noted above, X amenable implies h(X) = 0; hence, h(Yy) > 0
implies Y;, non-amenable. 0O

For z € Yy, let Bi(z) = {y € Y, : d(z,y) < i}, where d(z,y) is the
(graph) distance between z and y.

Corollary 2.9. There is a constant C > 1 such that for all z € Y,, and
for all i € Z2°, Card(B;(z)) > C*.

Proof. This follows from the last theorem and [3, Theorem 2.2]. O

Finally, note that the building A, is a subcomplex of =, (compare
the description of A,, given in Section 1 with the description of =, in [13,
p. 115]); hence, Y, is a subgraph of the one-complex Xs, of E3,. Since
both Y, and X,, are expanding, it is natural to ask about their relative
expansjon properties. It is straightfoward to show that p(Y,) < p(X2,) for
all n > 2, but since the degree of any vertex in Y, is also strictly less than
the degree of any vertex in Xs,, it is unclear what this reveals. On the
other hand, the analogue of Corollary 2.9 holds for X2,. Then Theorems
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2.2 and 3.1 of 3] provide a constant C(Y;,) (resp., C(X2,)) as in Corollary
2.9 (resp., as in the analogue of Corollary 2.9 for X3,) in terms of p(Y,)
and the degree of any vertex in ¥, (resp., in terms of p(X5,) and the degree
of any vertex in X2,). This thus raises the question of whether there is
any relationship between C(Y;) and C(X2,). For example, our data for
2<n<5and q=p', where 1 <i <5 and p is one of the first five primes,
indicates that C(Y;,) < C(X2,); is this always the case?
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