The Relative *n*-th Commutativity Degree of 2-Generator *p*-Groups of Nilpotency Class Two

Fadila Normahia Abd Manaf

Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia. fnormahia@yahoo.com

Nor Haniza Sarmin

Department of Mathematical Sciences, Faculty of Science and Ibnu Sina Institute for Fundamental Science Studies,
Universiti Teknologi Malaysia,
81310 UTM Johor Bahru, Johor, Malaysia.
nhs@utm.my

Ahmad Erfanian and Behnaz Tolue

Department of Mathematics
and Center of Excellence in Analysis on Algebraic Structures,
Ferdowsi University of Mashhad,
P.O.Box 1159, 91775, Mashhad, Iran.
erfanian@um.ac.ir and b.tolue@gmail.com

Abstract

Let H be a subgroup of a finite group G. The relative n-th commutativity degree, denoted as $P_n(H,G)$ is the probability of commuting the n-th power of a random element of H with an element of G. Obviously, if H=G then the relative n-th commutativity degree coincides with the n-th commutativity degree, $P_n(G)$. The purpose of this article is to compute the explicit formula for $P_n(G)$, where G is a 2-generator p-group of nilpotency class two. Furthermore, we observe that if we have two pairs of relative isoclinic groups, then

they have equal relative n-th commutativity degree.

1 Introduction

Let G be a finite group and n a positive integer. In [8], Mohd Ali and Sarmin introduced the n-th commutativity degree as the probability that the n-th power of a random element of G commute with another element, defined as

$$P_n(G) = \frac{|\{(x,y) \in G^2 : [x^n,y] = 1\}|}{|G|^2}.$$

They focused on $P_n(G)$, where G is a 2-generator 2-group of nilpotency class 2 (see [8]). If n=1 then $P_1(G)$ is the commutativity degree, which was investigated by Erdös and Turan in [2]. Later Erfanian et al. generalized their results to the relative case. They defined the relative n-th commutativity degree of a subgroup H of G as the ratio

$$P_n(H,G) = \frac{|\{(h,g) \in H \times G : [h^n,g] = 1\}|}{|H||G|}.$$

They generalized several facts, which are valid for the commutativity degree in [4]. In [7], Lescot proved that two isoclinic groups have equal commutativity degrees. The concept of isoclinism which determines an equivalence relation on the class of all groups has been introduced by Hall [5] in order to classify p-groups. Isoclinism have been largely studied in the literature, one can refer to [1, 6, 7] for more details. A weaker form of isoclinism is called relative isoclinism (see [3]) which we shall use. First of all, we need the following lemma.

Lemma 1.1. Let G be a group with an arbitrary subgroup H. Then the map

$$\gamma(H,G): {}^{H}/\!(Z(G)\cap H) \times {}^{G}/\!(Z(G)) \rightarrow [H,G]$$

$$(\overline{h},\widetilde{g}) \longmapsto [h,g]$$

is well defined, where $\overline{\cdot}$ and $\widetilde{\cdot}$ denote the natural epimorphisms $H \to H/(Z(G) \cap H)$ and $G \to G/Z(G)$, respectively.

Definition 1. Let H_i be a subgroup of G_i for i = 1, 2. Then the pair (α, β) is called a relative isoclinism from (H_1, G_1) to (H_2, G_2) whenever

(i) α is an isomorphism from $G_1/Z(G_1)$ to $G_2/Z(G_2)$ such that the restriction of α on $H_1/(Z(G_1)\cap H_1)$ induces an isomorphism from $H_1/(Z(G_1)\cap H_1)$ to $H_2/(Z(G_2)\cap H_2)$.

(ii) β is an isomorphism from $[H_1, G_1]$ to $[H_2, G_2]$, which maps $[h_1, g_1]$ to $[h_2, g_2]$, in which $h_2 \in \alpha(h_1 Z(G_1) \cap H_1)$ and $g_2 \in \alpha(g_1 Z(G_1))$.

If there is such a pair (α, β) with the above properties, then we say that (H_1, G_1) and (H_2, G_2) are relative isoclinic and it is denoted by $(H_1, G_1) \sim (H_2, G_2)$.

It is clear that if $H_1 = G_1$ and $H_2 = G_2$, then the pair (α, β) is an isoclinism between G_1 and G_2 . In the next section, we will generalize Lescot's result [7] for two relative isoclinic pairs. In fact, we show that if $(H_1, G_1) \sim (H_2, G_2)$, then $P_n(H_1, G_1) = P_n(H_2, G_2)$. Moreover, we will compute $P_n(H, G)$ and $P_n(G)$ when G is a 2-generator p-group of nilpotency class two.

2 Main Results

In this section, we obtain the exact formula for n-th commutativity degree of a finite 2-generator p-group of nilpotency class two. It is clear that if G is a 2-generator p-group of nilpotency class two, then $G/Z(G) \cong \mathbb{Z}_{p^k} \times \mathbb{Z}_{p^k}$ and G' is a cyclic group of exponent p^k for some k. We begin with some lemmas.

Lemma 2.1. Let G be a 2-generator p-group of nilpotency class two. Then

$$P_n(G) = \frac{1}{|G|} \sum_{x \in G} \frac{1}{|x^{p^m} Z(G)|},$$

where $n = p^m l$ and gcd(p, l) = 1.

Proof. It is easy to get the equation $P_n(G) = P_{p^m}(G)$ and then, the definition of $P_n(G)$ yields:

$$P_n(G) = \frac{1}{|G|} \sum_{x \in G} \frac{|C_G(x^{p^m})|}{|G|} = \frac{1}{|G|} \sum_{x \in G} \frac{1}{|(x^{p^m})^G|}.$$

Let $\phi_{x^{p^m}}: G \to [x^{p^m}, G]$ be the epimorphism defined by $\phi_{x^{p^m}}(g) = [x^{p^m}, g]$, where $[x^{p^m}, G] = \langle [x^{p^m}, g] : g \in G \rangle$. Then $ker(\phi_{x^{p^m}}) = C_G(x^{p^m})$ and hence $G/C_G(x^{p^m}) \cong \mathbb{Z}_{[x^{p^m}Z(G)]}$. Therefore, the proof is complete.

For every p-group X we may define $\Omega_i(X)$ as the group generated by all elements $x \in X$ such that $x^{p^i} = 1$, for every integer $i \geq 0$. We are now ready to state our main result as follows:

Theorem 2.2. Let G be a finite 2-generator p-group of nilpotency class two and H be a subgroup of G such that $H/(Z(G) \cap H) \cong \mathbb{Z}_{p^*} \times \mathbb{Z}_{p^*}$.

(i) If
$$s \leq m$$
, then $P_n(H,G) = 1$.

(ii) If
$$t \le m < s$$
, then $P_n(H, G) = \frac{(s-m)(p-1)+p}{p^{s-m+1}}$.

(iii) If
$$0 \le m < t$$
, then $P_n(H,G) = \frac{(s-t)(p-1)p^{t-m} + p^{t-m+1} + p^{t-m} - 1}{p^{s+t-2m+1}}$,

where $n = p^m l$, gcd(p, l) = 1, p is a prime, s,t are positive integers and $s \ge t$.

Proof. Since two relative isoclinic pairs of groups have equal probabilities, we conclude that $P_n(H,G) = P_n(HZ(G),G)$ (see [6]). Therefore, we may assume that $Z(G) \leq H$. Since $\gcd(p,l) = 1$, then we have $P_n(H,G) = P_{p^m}(H,G)$. Now, let $n_i = |\{h \in H : |hZ(G)| = p^i\}|$ and $\Omega_i(H/Z(G)) = \Omega_i^*(H)/Z(G)$. Clearly, for $i \geq 1$ we get $n_i = |\Omega_i^*(H) \setminus \Omega_{i-1}^*(H)|$ and there are three cases:

- (1) If i = 0, then $n_0 = |Z(G)|$,
- (2) if $i \le t$, then $n_i = |Z(G)|p^{2(i-1)}(p^2-1)$, and
- (3) if $t < i \le s$, then $n_i = |Z(G)|p^{i+t-1}(p-1)$.

Applying the above discussions and Lemma 2.1, we have

$$P_{p^m}(H,G) = \frac{1}{|H|} \sum_{h \in H} \frac{1}{|h^{p^m} Z(G)|} = \frac{1}{|H|} \left(\sum_{i=0}^m n_i + \sum_{i=1}^{s-m} \frac{n_{i+m}}{p^i} \right). \tag{1}$$

We now consider three cases:

Case 1: If $m \geq s$, then $H^{p^m} \subseteq Z(G)$ so that $P_{p^m}(H,G) = 1$.

Case 2: If $t \le m < s$, then by using (1) we get:

$$\begin{split} P_{p^m}(H,G) &= \frac{1}{|H|} \left(\sum_{i=0}^m n_i + \sum_{i=1}^{s-m} \frac{n_{i+m}}{p^i} \right) \\ &= \frac{1}{|H|} \left(|H| - \sum_{i=1}^{s-m} n_{i+m} + \sum_{i=1}^{s-m} \frac{n_{i+m}}{p^i} \right) \\ &= \frac{(s-m)(p-1) + p}{p^{s-m+1}}. \end{split}$$

Case 3: If $0 \le m < t$, then (1) yields:

$$\begin{split} P_{p^m}(H,G) &= \frac{1}{|H|} \left(\sum_{i=0}^m n_i + \sum_{i=1}^{s-m} \frac{n_{i+m}}{p^i} \right) \\ &= \frac{1}{|H|} \left(|H| - \sum_{i=1}^{s-m} n_{i+m} + \sum_{i=1}^{t-m} \frac{n_{i+m}}{p^i} + \sum_{i=t-m+1}^{s-m} \frac{n_{i+m}}{p^i} \right) \\ &= \frac{(s-t)(p-1)p^{t-m} + p^{t-m+1} + p^{t-m} - 1}{p^{s+t-2m+1}}. \end{split}$$

The proof is thus complete.

The following corollary is a direct consequence of Theorem 2.2.

Corollary 2.3. Let G be a 2-generator p-group of nilpotency class two such $|G'| = p^k$. Then

$$P_n(G) = \begin{cases} 1, & m \ge k, \\ \frac{p^{k+1} + p^k - 1}{p^{2k+1}}, & otherwise, \end{cases}$$

where $n = p^m l$, gcd(p, l) = 1 and p is a prime.

We conclude this section by showing that the relative isoclinic pair of groups have the same relative n-th commutativity degrees. The following theorem classifies pairs of groups (H,G) by means of relative isoclinism, where H is a subgroup of G.

Theorem 2.4. Let H_i be a subgroup of G_i , for i = 1, 2. If (H_1, G_1) and (H_2, G_2) are relative isoclinic, then $P_n(H_1, G_1) = P_n(H_2, G_2)$.

Proof. Suppose that (α, β) is an isoclinism between (H_1, G_1) and (H_2, G_2) . By the definition 1, we get:

$$\begin{split} \frac{|H_1||G_1|P_n(H_1,G_1)}{|Z(G_1)\cap H_1||Z(G_1)|} &= \frac{|\{(h_1,g_1)\in H_1\times G_1: [h_1^n,g_1]=1\}|}{|Z(G_1)\cap H_1||Z(G_1)|} \\ &= |\{(\overline{h_1},\widetilde{g_1})\in \overline{H_1}\times \widetilde{G_1}: \beta(\gamma(H_1,G_1)(\overline{h_1^n},\widetilde{g_1}))=1\}| \\ &= |\{(\overline{h_1},\widetilde{g_1})\in \overline{H_1}\times \widetilde{G_1}: \gamma(H_2,G_2)\alpha^2(\overline{h_1^n},\widetilde{g_1})=1\}| \\ &= |\{(\overline{h_2},\widehat{g_2})\in \overline{H_2}\times \widehat{G_2}: \gamma(H_2,G_2)(\overline{h_2^n},\widehat{g_2})=1\}| \\ &= \frac{|\{(h_2,g_2)\in H_2\times G_2: [h_2^n,g_2]=1\}|}{|Z(G_2)\cap H_2||Z(G_2)|} \\ &= \frac{|H_2||G_2|P_n(H_2,G_2)}{|Z(G_2)\cap H_2||Z(G_2)|}, \end{split}$$

as required.

References

- [1] J. C. Bioch, On n-isoclinic groups, Indag. Math., 38 (1976), 400-407.
- [2] P. Erdös and P. Turan, On some problems of statistical group theory, Acta Math. Acad. Sci. Hung., 19 (1968), 413-435.
- [3] A. Erfanian, R. Rezaei and F. G. Russo, Relative *n*-isoclinism classes and relative *n*-th nilpotency degree of finite groups, submitted.
- [4] A. Erfanian, B. Tolue and N. H. Sarmin, Some considerations on the *n*-th commutativity degrees of finite groups, to appear in *Ars. Comb.*.
- [5] P. Hall, The classification of prime-power groups, J. Reine Ang. Math., 182 (1940), 130-141.
- [6] N. S. Hekster, On the structure of n-isoclinism classes of groups, J. Pure Appl. Algebra, 40 (1986), 63-65.
- [7] P. Lescot, Isoclinism classes and commutativity degrees of finite groups, J. Algebra, 177 (1995), 847-869.
- [8] N. M. Mohd Ali and N. H. Sarmin, On some problems in group theory of probabilistic nature, *Technical Report*, *Department of Mathematics*, *Universiti Teknologi Malaysia*, *Johor*, *Malaysia*, (2006).