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Abstract
In this paper we show that the crossmg number of the complete
J + 2n.

tripartite graph K2,4,» is 6| = J|_

1 Introduction

Computing the crossing number of a given graph is, in general, an elusive
problem. Exact values are known only for very restricted classes of graphs.
In fact, computing the crossing number of a graph is NP-complete [3]. A
good updated survey on crossing numbers is [8].

A longstanding problem of crossing numbers is the Zarankiewicz con-
jecture which asserts that the crossing number of the complete bipartite
graph K, ,, is given by

mmlnn
(1)

Z(myn) = ||| IGl—=

It is only known to be true for m < 6 and for m = 7 and n < 10 (see [7] and
[9]). Recently, E. deKlerk et al. give a new lower bound for the crossing

number of K n (see [2]).
It is natural to generalize the Zarankiewicz conjecture and to ask: What

is the crossing number for the complete tripartite graph Ky, »:? In [1]
Asa.no showed that the crossing numbers of K 3, and Kz 3, are Z(4,n) +
L= J and Z(5,n) +n, respectively. In [5] we have applied similar techniques
a.s in [1] to find the crossing numbers of Ki,1,n K1,2.2,0, K1,1,1,2,n, and
K1,4,n- In [6] we have proved that the crossing number of K» 4., is Z(6,n)+
2n if it is true for n < 55, assumed that the Zarankiewicz conjecture is true
for m = 7. In this paper we prove
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Theorem 1.1. The crossing number of Ko 4.5 is ¢(K2,4,n) = Z(6,n)+2n.

Here are some definitions. Let G be a simple graph with the vertex set
V and the edge set E. A drawing of a graph G is the image of an injective
map from G into the plane such that each vertex is represented by a distinct
point and each edge is represented by a simple curve without any vertex
drawn in its interior. A drawing is good if any two edges share at most
one common point including endpoints, and any non-vertex intersection
between two edges is a transverse crossing. '

A common point of two edges other than an endpoint is a crossing.
For a good drawing D of K34, we denote by ¢(D) the total number of
crossings. Then the crossing number of K3 4,», denoted by ¢(K2,4,) is the
minimum of ¢(D) among all good drawings D of K3 4n. A drawing D is
optimal if ¢(D) = ¢(K2,4,n)-

Remark. We often make no distinction between a graph-theoretical object
(such as a vertex or an edge) and its drawing. Throughout this work we have
taken special care to ensure that no confusion arouses from this practice.

Let (X,Y,Z) be the partition of K4, where X = {z1,z2}, Y =
{v1,--,va}, and Z = {z1,...,2n}. Let A and B be subsets of the edge
set B. In a drawing D the number of crossings of edges in A with edges in
B is denoted by c(A, B). Especially, c(A, A) will be denoted by c(A4). We
note the following formulas which can be shown easily

(AUB) = c(A)+c(B)+c(4,B) (@)
(4,BUC) = c(A,B)+c(4,C), (3)

where A, B, and C are mutually disjoint subsets of E. The set of edges
which are incident to a vertex v is denoted by E(v).

2 Crossing number of Ky,

The idea of the proof of Theorem 1.1 is as follows. If ¢(K2,4,n) < Z(6,7)+2n
then the K 4 in the optimal drawing of K3 4., must be drawn in some spe-
cial form, namely, the K5 4 must be drawn such that it contains a region
with at least 5 vertices on its boundary. By analyzing each one of these
drawings of K34 carefully we can conclude that it is impossible to ex-
tend these drawings to a drawing of K3 4., with crossing number less than
Z(6,n) + 2n. First we have the following

Lemma 2.1. There are ezactly 8 drawings of Ka 4 such that a region erists
with at least 5 vertices on its boundary (see Figure 1).

Proof. From [4] we know that there are 6 non-isomorphic drawings of K23
shown in Figure 2.
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To obtain a drawing of K34 from these drawings of K>3 such that
there is a region with at least 5 vertices of K34 on its boundary, the only
candidates are Dy, Dy, D4, and Ds. To obtain a drawing of K3 4 from Dy,
D,, Dy, and D5 we need to draw a new vertex in a region of K> 3 and draw
new edges connecting the new vertex and the two vertices denoted by e in
each D; of Figure 2.

IR
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DAY DA DA DA

Dy Dy Dg Dy Dy
Figure 1.
] XA I
D1 D2 D3 D4 DB D6
Figure 2.

For D; we can assume that the new vertex is located in the unbounded
region (Figure 3(a)). Then the possible good drawings are shown in Fig.
3(b) and (c) being isomorphic to D} and D}, respectively.

[o}

Figure 3(a). Figure 3(b). Figure 3(c).
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For D, the new vertex can be located as in Figure 4(a), (b), or (c), due
to symmetry. All possible good drawings for Figure 4(a) are as in Figure
4(d) to (i) being isomorphic to Dg, D}, D3, D7, Dg, and Dj, respectively.
From Figure 4(b) and (c) one can obtain only D} and Dj, respectively.

4 B4 I I Y

(b)

M%NN

Figure 4.

For D, the new vertex must be drawn in the unbounded region as in
Figure 5(a). The possible good drawings are as in Figure 5(b) to (f) being
isomorphic to D, D4, Dg, D%, and Dg, respectively.

(a) (b)
Figure 5.

For Ds the new vertex can be located as in Figure 6(a) to (d) by sym-
metry. The possible good drawings from Figure 6(a) are Figure 6(e) to (h),
which are isomorphic to D}, D§, Di, and Dj, respectively. The possible
drawings from Figure 6(b) to (d) are Dg, Dg, and D3, respectively. This
shows that the drawings in Figure 1 are all the possible drawings. O
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Figure 6.

Proof of Theorem 1.1. First consider a drawing of K34, as in Figure 7
which is the Turdn drawing of K¢, with suitable edges being added. One
can check that the crossing number of this drawing of K 4., is Z(6,n)+2n
implying ¢(K2,4,n) < Z(6,7n) + 2n.
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Therefore it suffices to show that ¢(K24,) = Z(6,n) + 2n. We will
prove it by induction on n. For n = 1, since K34,) contains K34, we have
c(K2,4,1) = ¢(K3,4) = 2 from [7). For n =2, since K342 contains K44, we
have ¢(K2,4,2) 2 ¢(Ks,4) = 4 from [7}. Now suppose

o(Koam-2) 2 2Z(6,n—2)+2(n—2); (4)

c(K2,4n) < Z(6,n)+2n,
where n > 3. Thus there exists a good drawing D of K3 4,» such that
(D)L Z6,n)+2n—-1. . (5)

Let W be the subgraph of K34, induced by X UY. From (2) and (3) it
follows

¢(D) = (W) + C(U E(z)) + Z c(W, E(2:)). (6)
i=1 =1
Since 7., E(z;) is isomorphic to Kg », from [7] we have (U=, E(z:)) 2
Z(6,n). Hence, by (5) and (6) we get

(W) + Y (W, E(z:)) < 20— 1. ™)
i=1

Therefore ¢(W, E(z;)) < 1 for some 1 < i < n. Without loss of generality we
assume that ¢(W, E(2;)) < 1. There are two cases to be considered: Case
(i): ¢(W, E(z1)) = 0 and Case (ii): ¢(W, E(z1)) = 1. Before considering
Cases (i) and (ii) we prove
Lemma 2.2. Let F = W U E(z1). If ¢(F) 2 2 and c(F, E(2;)) 2 5 for
2 <i<n, then ¢(D) > Z(6,n) + 2n.

Proof of Lemma 2.2. By (2) and (3), we have

n n
o(D) = e(F) + (| J E(z:)) + ) e(F, E(z)). (8)

i=2 =2
Note that Ui, E(z) is isomorphic to Kgn-1. Thus c(Ui, E(z)) 2
Z(6,n — 1) from [7]. Hence, by (8) and the assumptions we get ¢(D) >
24+ 2Z(6,n—1)+5(n—1) 2 Z(6,n) + 2n. a

2.1 Case (i). ¢(W, E(z)) =0.

From ¢(W, E(z;,)) = 0 we can conclude that the drawing W in the drawing
D has a region with all vertices of X UY on its boundary. From Lemma
2.1 the drawing of W must be as in Dj, Dj, or Dg.

If W = Dj, then F must be drawn as in Figure 8.
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Figure 8. Figure 9.

If z; for 2 < i < n lies in any region being not marked with *, we can
check that

o(F, E(z)) > 5. 9
If z; for 2 £ 7 < n lies lies in any region marked with *, we have
o(F, E(z)) 2 (W, E(z)) > 4 (10)

since there are four vertices of X UY which are not on the boundary of
the region marked with * and the boundary of this region is formed by the
edges of W.

We claim that it is impossible for 2;, where 2 < i < n, lying in the
region marked with *, that ¢(F, E(z;)) = 4. To prove this we may suppose
that z; lies in the region marked with * and ¢(F, E(z;)) = 4. From (10),

c(W,E(22)) =4 and c(E(z1),E(2)) = 0. (11)

For 3< k <n, E(z)U E(23) U E(2x) is isomorphic to K3¢6. Hence, from
(7] and by (2), (3) we have c(E(z1) U E(z2), E(2x)) + c(E(z1), E(22)) > 6.
By (11) it follows

c(E(21) U E(22),E(2x)) 26 for 3<k<m. (12)
Let E' = E — (E(21) U E(22)). Then by (2), (3) we have
oAD) = oE)+e(B(z)U E(z2)) + (W, E(z1))

+e(W, E(22)) + ) _ e(E(21) U E(z2), E()).
k=3

(13)

Note that E’ is isomorphic to K3 4,,—2. Therefore, from (4), (11), (12), (13),
and ¢(W, E(21)) = 1 we get ¢(D) > Z(6,n—2)+2(n—2)+1+4+6(n—-2) >
Z(6,n) + 2n which contradicts (5). This proves the claim.

By the claims (10) and (9) we know that ¢(F, E(z;)) > 5 for 2 < i < n.
From Figure 8, ¢(F) = 2. Hence, by Lemma 2.2 we have ¢(D) > Z(6,n) +
2n. .
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If W = Djor Dg, then F must be drawn as in Figure 9. In both cases,
we have c(F, E(z;)) > 5 for 2 < ¢ < n. Figure 9 implies ¢(F) > 2. Hence,
by Lemma 2.2 we have ¢(D) > Z(6,n) + 2n.

2.2 Case (ii). (W, E(2)) =1.

There exists a region in W such that its boundary contains at least 5
vertices in X UY. By Lemma 2.1 the subgraph W must be drawn as
one of the D} where 1 < i < 8 in Figure 1. If W # Dj, then by
¢(W,E(z1)) = 1 and the graph F must be drawn as in Figures 10 to 16
if W = Di,Dj,Dj, Dg, Dg, D5, and Dg, respectively. In each of these
drawings, we can conclude that ¢(F, E(z;)) > 5 for 2 < i < n. Note also
that c(F') > 2 for each of these drawings. Hence, by Lemma 2.2 we have
¢(D) = Z(6,n) + 2n.

21 21 2]
Figure 10. Figure 11.
21 21
2 %
S |

Figure 12. Figure 13.
oz 21

Figure 14. Figure 15.
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- Figure 16. Figure 17.

Finally, we consider W = Dj. By ¢(W, E(%)) = 1, the drawing of F
must be as in Figure 17. From now on we make the following assumption
on the subindex z, 2 < 7 < n. If 2 lies in the region marked with * then

e(F, E(z:)) 2 (W, E(2)) 2 3. (14)
Similar to the proof of the claim right after (10), one can prove that
o(F E(z)) >4 (15)

if 2; lies in the region marked with *. If 2; lies in the region marked with
~ we have

o(F, E(z)) > 4. (16)
Note also that
c(Exy,E(z)) 2 3 if o(F, E(z)) < 4 (17

if 2; lies in the region marked with ~. To see this, suppose z; lies in the
region marked with ~ and ¢(W, E(2;)) < 2. If ; lies in the region marked
with ~ then z; lies in a region of the drawing of W which contains exactly
four vertices of X UY (see Figure 18) and this implies ¢(W, E(2;)) > 2.
Therefore, ¢(W, E(z;)) = 2. In order to satisfy c(W, E(z;)) = 2 the drawing
of WU E(z;) can only be as in Figure 19(a), 19(b), or 19(c). However, if
W U E(z;) is drawn as in Figure 19 one can easily see that c(F, E(z;)) > 5.
This proves (17).
Note also that if z; lies in the region marked with o, then

c(F, E(2;)) > (W, E(z)) > 4. (18)
If z; lies in the region which is not marked with ~, %, and ¢ then we have

c(F, E(z;)) = 6. {19)
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Zi ~5

Figure 18. (a) (b) (c)
Figure 19.

Let I; be the number of vertices z; such that z; lies in the region marked
with *. Let lo be the number of vertices z; such that z; lies in the region
marked with ~ and c(F, E(z;)) < 4. Let I3 be the number of vertices
2; such that z; lies in the regions marked with o. Therefore, from (14),
(17), and (18) the number of vertices 2; such that ¢(W, E(z;)) > 3 is at
least 3°3_, 1;. Hence, 30, c(W, E(z:)) > 3y? alit(n—-1- W)
since c(f)V E(zJ)) >1forl <j<n(see Flgure 17) Hence, from (7),
(W, E(z1)) =1, and ¢(W) =1 we have

3

Syl (20)

=1
On the other hand, from (15), (16), (18), and (19) we have

n

3
> e(F, E(z)) 2 4h + 4y +4ls + 6(n— 1= ) 1y). (21)
i=2 i=1

Thus, by (20) and (21) we have

n

S olF, E(z)) 2 6(n - 1) -

=2

(22)

From (8), (22), and the fact that ¢c(F) = 2 (see Figure 17), we have c(D) >
2+ Z(6,n— 1) +6(n— 1) — 2| ™ 2_|>Z(6n)+2n 0
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