Lattices associated with subspaces in d-bounded distance-regular graphs*

Jun Guo

-Math. and Inf. College, Langfang Teachers' College, Langfang, 065000, P. R. China

Abstract

Let $\Gamma=(X,R)$ denote a d-bounded distance-regular graph with diameter $d\geq 3$. A regular strongly closed subgraph of Γ is said to be a subspace of Γ . For $0\leq i< i+s\leq d-1$. Suppose Δ_1 and Δ_0 are subspaces with diameter i and i+s, respectively, and with $\Delta_1\subseteq \Delta_0$. Let $\mathcal{L}(i,i+s;d)$ denote the set of all subspaces Δ' with diameters $\geq i$ such that $d(\Delta_0\cap\Delta')=\Delta_1$ and $d(\Delta_0+\Delta')=d(\Delta')+s$ in Γ including Γ . If we partial order $\mathcal{L}(i,i+s;d)$ by ordinary inclusion (resp. reverse inclusion), then $\mathcal{L}(i,i+s;d)$ is a poset, denoted by $\mathcal{L}_O(i,i+s;d)$ (resp. $\mathcal{L}_R(i,i+s;d)$). In the present paper we show that both $\mathcal{L}_O(i,i+s;d)$ and $\mathcal{L}_R(i,i+s;d)$ are atomic lattices, and classify their geometricity.

Keywords: Distance-regular graph; Subspaces; Geometric lattice.

1 Introduction

In this section We first recall some terminology and definitions about finite posets and lattices ([1, 2]), then introduce some concepts concerning d-bounded distance-regular graphs and our main results.

Let P be a poset. For $a, b \in P$, we say a covers b, denoted by b < a, if b < a and there exists no $c \in P$ such that b < c < a. If P has the minimum

^{*}Address correspondence to Jun Guo, E-mail: guojun_lf@163.com

(resp. maximum) element, then we denote it by 0 (resp. 1) and say that P is a poset with 0 (resp. 1). Let P be a finite poset with 0. By a rank function on P, we mean a function r from P to the set of all the integers such that r(0) = 0 and r(a) = r(b) + 1 whenever b < a.

A poset P is said to be a *lattice* if both $a \vee b := \sup\{a,b\}$ and $a \wedge b := \inf\{a,b\}$ exist for any two elements $a,b \in P$. Let P be a finite lattice with 0. By an *atom* in P, we mean an element in P covering 0. We say P is atomic if any element in $P \setminus \{0\}$ is a union of atoms. A finite atomic lattice P is said to be a geometric lattice if P admits a rank function P satisfying P is said to be a geometric lattice if P admits a rank function P satisfying P is said to be a geometric lattice if P admits a rank function P satisfying P is said to be a geometric lattice if P admits a rank function P satisfying P is said to be a geometric lattice if P admits a rank function P satisfying P is said to be a geometric lattice if P admits a rank function P satisfying P is a said to be a geometric lattice if P admits a rank function P satisfying P is a said to be a geometric lattice if P admits a rank function P satisfying P is a said to be a geometric lattice if P admits a rank function P satisfying P is a said to be a geometric lattice if P admits a rank function P satisfying P is a said to be a geometric lattice if P admits a rank function P is a said to be a geometric lattice if P admits a rank function P is a said to be a geometric lattice if P admits a rank function P is a said to be a geometric lattice if P admits a rank function P is a said to be a geometric lattice if P admits a rank function P is a said to be a geometric lattice if P and P is a said to be a geometric lattice if P and P is a said to be a geometric lattice if P and P is a said to be a geometric lattice if P is a said to be a geometric lattice if P is a said to be a geometric lattice if P is a said to be a geometric lattice if P is a said to be a geometric lattice if P is a said to be a geometric lattice if P is a said to be a geometric lattice if P is a said to be a geometric lattice if P is a said to be a geometric lattice if P

Now we shall introduce some concepts concerning d-bounded distanceregular graphs. Let $\Gamma = (X, R)$ be a connected regular graph. For vertices u and v in X, let $\partial(u, v)$ denote the distance between u and v. The maximum value of the distance function in Γ is called the diameter of Γ , denoted by $d = d(\Gamma)$. For vertices u and v at distance i, define

$$C(u,v) = C_i(u,v) = \{ w \mid \partial(u,w) = i-1, \partial(w,v) = 1 \},$$

$$A(u,v) = A_i(u,v) = \{ w \mid \partial(u,w) = i, \partial(w,v) = 1 \}.$$

For the cardinalities of these sets we use lower case letters $c_i(u, v)$ and $a_i(u, v)$.

A connected regular graph Γ with diameter d is said to be distance-regular if $c_i(u,v)$ and $a_i(u,v)$ depend only on i for all $1 \leq i \leq d$. The reader is referred to [3] for general theory of distance-regular graphs.

Recall that a subgraph induced on Δ of Γ is said to be *strongly closed* if $C(u,v) \cup A(u,v) \subseteq \Delta$ for every pair of vertices $u,v \in \Delta$. Suzuki ([9]) determined all the types of strongly closed subgraphs of a distance-regular graph.

A distance-regular graph Γ with diameter d is said to be d-bounded, if every strongly closed subgraph of Γ is regular, and any two vertices x and y are contained in a common strongly closed subgraph with diameter $\partial(x,y)$. For instance, the ordinary 5-gon is a 2-bounded distance-regular graph. But the ordinary 6-gon is not a 3-bounded distance-regular graph. Indeed, let $1 \sim 2 \sim 3 \sim 4 \sim 5 \sim 6 \sim 1$ be the ordinary 6-gon. Then it is clear that $1 \sim 2 \sim 3$ is strongly closed, but it is not regular. By [8, Theorem 1.3],

[11, Theorem 4.3] and [10], all the following graphs are d-bounded distance-regular graphs: When $a_1=0$ and $a_2\neq 0$, all distance-regular graphs with classical parameters $(3,b,\alpha,\beta)$; Hamming graph H(d,q) $(d\geq 3,q\geq 2)$ with classical parameters $(d,b,\alpha,\beta)=(d,1,0,q-1)$; when $c_2\geq 1$ and $a_1\neq 0$, Hermitian forms graph $Her_{-b}(d)$ $(d\geq 3)$ with geometric parameter $(d,b,\alpha)=(d,-r,-1-r)$, where r is a prime power; when $c_2\geq 1$ and $a_1\neq 0$, dual polar graph $2A_{2d-1}(-b)$ $(d\geq 3)$ with geometric parameter $(d,b,\alpha)=(d,-r,r(1+r)/1-r)$, where r is a prime power; when $a_1=0$, the dual polar graph $D_d(b)$ $(d\geq 4)$ with classical parameters $(d,b,\alpha,\beta)=(d,0,0,1)$, where b is a prime power; when $c_2>1$ and $c_1\neq 0$, all distance-regular graphs with geometric parameter $(d,b,\alpha)=(d,-r,-(1+r)/2)$, where c_1 is an odd prime power.

Weng ([11, 12]) used the term weak-geodetically closed subgraphs for strongly closed subgraphs, obtained the basic properties and characterized when a distance-regular graph is d-bounded. A regular strongly closed subgraph of Γ is said to be a subspace of Γ . For any two subspaces Δ_1 and Δ_2 of Γ , the intersection of all subspaces that contain Δ_1 and Δ_2 is called the join of Δ_1 and Δ_2 , and denoted by $\Delta_1 + \Delta_2$.

The results on the lattices generated by subspaces in d-bounded distance-regular graph with diameter d can be found in Gao, Guo and Liu ([4]), Guo and Gao ([6]), Guo, Gao and Wang ([7]).

Let $\Gamma=(X,R)$ denote a d-bounded distance-regular graph with diameter $d\geq 3$. For $0\leq i< i+s\leq d-1$. Suppose Δ_1 and Δ_0 are subspaces with diameter i and i+s, respectively, and with $\Delta_1\subseteq\Delta_0$. Let $\mathcal{L}(i,i+s;d)$ denote the set of all subspaces Δ' with diameters $\geq i$ such that $d(\Delta_0\cap\Delta')=\Delta_1$ and $d(\Delta_0+\Delta')=d(\Delta')+s$ in Γ including Γ . If we partial order $\mathcal{L}(i,i+s;d)$ by ordinary inclusion (resp. reverse inclusion), then $\mathcal{L}(i,i+s;d)$ is a poset, denoted by $\mathcal{L}_O(i,i+s;d)$ (resp. $\mathcal{L}_R(i,i+s;d)$). In this paper we show that both $\mathcal{L}_O(i,i+s;d)$ and $\mathcal{L}_R(i,i+s;d)$ are atomic lattices, and classify their geometricity. Our main results are the following.

Theorem 1.1. Let Γ be a d-bounded distance-regular graph with diameter $d \geq 3$. For $0 \leq i < i + s \leq d - 1$, the following hold:

- (i) $\mathcal{L}_R(i, i+s; d)$ is a finite atomic lattice.
- (ii) $\mathcal{L}_R(i, d-1; d)$ is a finite geometric lattice.
- (iii) For $i + s \le d 2$, $\mathcal{L}_R(i, i + s; d)$ is a finite geometric lattice if and only if for any two elements Δ' and Δ'' ,

$$d(\Delta') + d(\Delta'') - d(\Delta' \cap \Delta'')$$

$$\begin{cases}
= d(\Delta' + \Delta''), & \text{if } \Delta' + \Delta'' \in \mathcal{L}_R(i, i + s; d) \setminus \{\Gamma\}, \\
\le d - s + 1, & \text{otherwise.}
\end{cases}$$

Theorem 1.2. Let Γ be a d-bounded distance-regular graph with diameter $d \geq 3$. For $0 \leq i < i + s \leq d - 1$, the following hold:

- (i) $\mathcal{L}_O(i, i + s; d)$ is a finite atomic lattice.
- (ii) $\mathcal{L}_O(i, d-1; d)$ is a finite geometric lattice.
- (iii) For $i + s \le d 2$, $\mathcal{L}_O(i, i + s; d)$ is a finite geometric lattice if and only if for any two elements Δ' and Δ'' ,

$$\begin{split} & d(\Delta') + d(\Delta'') - d(\Delta' \cap \Delta'') \\ & \geq \left\{ \begin{array}{l} d(\Delta' + \Delta''), & \text{if } \Delta' + \Delta'' \in \mathcal{L}_O(i, \ i+s; \ d) \backslash \{\Gamma\}, \\ d-s+1, & \text{otherwise} \,. \end{array} \right. \end{split}$$

2 Proofs of main results

In this section we discuss lattices in d-bounded distance-regular graphs. We begin with some useful Propositions.

Proposition 2.1. ([11, Lemma 2.6]) Let Γ be a d-bounded distance-regular graph with diameter d. Then we have $b_i > b_{i+1}$ where $0 \le i \le d-1$.

Proposition 2.2. ([12, Lemmas 4.2, 4.5]) Let Γ be a d-bounded distance-regular graph with diameter d. Then the following hold:

- (i) Let Δ be a subspace of Γ and $0 \leq i \leq d(\Delta)$. Then Δ is distance-regular with intersection numbers $c_i(\Delta) = c_i$, $a_i(\Delta) = a_i$, $b_i(\Delta) = b_i b_{d(\Delta)}$.
- (ii) For any vertices x and y, the subspace with diameter $\partial(x, y)$ containing x, y is unique.

Proposition 2.3. ([4, Lemma 2.1]) Let Γ be a d-bounded distance-regular graph with diameter $d \geq 2$. For $1 \leq i+1 \leq i+s \leq i+s+t \leq d$, suppose Δ and Δ' are two subspaces satisfying $\Delta \subseteq \Delta'$, $d(\Delta) = i$ and $d(\Delta') = i+s+t$. Then the number of the subspaces with diameter i+s containing Δ and contained in Δ' is

$$\frac{(b_i-b_{i+s+t})(b_{i+1}-b_{i+s+t})\cdots(b_{i+s-1}-b_{i+s+t})}{(b_i-b_{i+s})(b_{i+1}-b_{i+s})\cdots(b_{i+s-1}-b_{i+s})}.$$

Proposition 2.4. ([4, Lemma 2.8]) Let Γ be a d-bounded distance-regular graph with diameter d. Suppose Δ and Δ' are two subspaces. If $d(\Delta \cap \Delta') \neq \emptyset$, then $d(\Delta) + d(\Delta') \geq d(\Delta \cap \Delta') + d(\Delta + \Delta')$.

Proposition 2.5. ([5, Lemma 2.8]) Let Γ be a d-bounded distance-regular graph with diameter $d \geq 2$. For $0 \leq i \leq i+s$, $i+t \leq i+s+t \leq d$, let Δ and Δ' be two subspaces in Γ with diameter i+s and i+t, respectively, such that $d(\Delta \cap \Delta') = i$ If $d(\Delta) + d(\Delta') = d(\Delta \cap \Delta') + d(\Delta + \Delta')$, then the following hold:

- (i) For fixed $x, y \in \Delta \cap \Delta'$ with $\partial(x, y) = i$, for all vertices $u \in \Delta$ with $\partial(u, x) = l$, $\partial(u, y) = i + l$, $0 \le l \le s$, and for all vertices $v \in \Delta'$ with $\partial(x, v) = i + m$, $\partial(y, v) = m$, $0 \le m \le t$, we have $\partial(u, v) = i + l + m$.
- (ii) For all subspaces Δ_1 containing $\Delta \cap \Delta'$ in Δ , and for all subspaces Δ_2 containing $\Delta \cap \Delta'$ in Δ' , we have $d(\Delta_1) + d(\Delta_2) = d(\Delta_1 \cap \Delta_2) + d(\Delta_1 + \Delta_2)$.

Proof of Theorem 1.1.

(i) For any two elements Δ' , $\Delta'' \in \mathcal{L}_R(i, i + s; d)$,

$$\Delta' \vee \Delta'' = + \{ \Delta \in \mathcal{L}_R(i, i + s; d) | \Delta \subseteq \Delta' \cap \Delta'' \},$$

$$\Delta' \wedge \Delta'' = \bigcap \{ \Delta \in \mathcal{L}_R(i, i + s; d) | \Delta \supseteq \Delta' + \Delta'' \}.$$

Therefore $\mathcal{L}_R(i, i+s; d)$ is a finite lattice.

Note that Γ is the minimum element. Let P(j;d) be the set of all subspaces Δ' with diameter j such that $d(\Delta_0 \cap \Delta') = \Delta_1$ and $d(\Delta_0 + \Delta') = d(\Delta') + s$ in Γ , where $i \leq j \leq d - s$. Then P(d - s; d) is the set of all atoms in $\mathcal{L}_R(i, i + s; d)$. In order to prove $\mathcal{L}_R(i, i + s; d)$ is atomic, it suffices

to show that every element of P(j;d) ($i \leq j \leq d-s$) is a union of some atoms. The result is trivial for j=d-s. Suppose that the result is true for j=d-s-l. For $\Delta \in P(d-s-(l+1);d)$. Fixed $x,y \in \Delta_1$ with $\partial(x,y)=i$, by Proposition 2.2, $\Delta_1=\{x\}+\{y\}$. Fixed a vertex $u \in \Delta_0$ such that $\partial(u,x)=s$, $\partial(u,y)=s+i$ and fixed a vertex $v \in \Delta$ such that $\partial(x,v)=d-s-l-1$, $\partial(y,v)=d-s-l-1-i$, by Proposition 2.2, $\{u\}+\{y\}=\Delta_0$, $\{x\}+\{v\}=\Delta$. By Propositions 2.5, $\partial(u,v)=d-l-1$. Fixed a vertex $w \in \Gamma$ such that $\partial(v,w)=l+1$, $\partial(u,w)=d$, then $\Delta \subseteq \{x\}+\{w\}$ and $\partial(x,v)=d-s$. By Proposition 2.4, $\partial(x,v)=d-s$. Thus $\partial(x,v)=d-s$. By Propositions 2.3 and 2.1, the number of the subspaces with diameter $\partial(x,v)=\partial(x,v)=\partial(x,v)$ is

$$e = \frac{b_{d-s-l-1} - b_{d-s}}{b_{d-s-l-1} - b_{d-s-l}} \ge 2.$$

By Propositions 2.5, there exist two different subspaces $\Delta', \Delta'' \in P(d-s-l;d)$ containing Δ . Suppose $\widetilde{\Delta} = \Delta' \vee \Delta''$. Then $d(\widetilde{\Delta}) = d-s-l-1$ or d-s-l. If $d(\widetilde{\Delta}) = d-s-l$, by Proposition 2.2 $\Delta' = \widetilde{\Delta} = \Delta''$, a contradiction. It follows that $d(\widetilde{\Delta}) = d-s-l-1$ and $\Delta = \widetilde{\Delta} = \Delta' \vee \Delta''$ by Proposition 2.2 again. By induction Δ is a union of some atoms. Therefore, $\mathcal{L}_R(i, i+s; d)$ is a finite atomic lattice.

- (ii) It is obvious that $\mathcal{L}_R(i, d-1; d)$ is a geometric lattice.
- (iii) For any $\Delta \in \mathcal{L}_R(i, i + s; d)$, we define

$$r_R(\Delta) = \left\{ egin{array}{ll} 0, & ext{if } \Delta = \Gamma, \ d-s+1-d(\Delta), & ext{otherwise.} \end{array}
ight.$$

It is routine to check that r_R is the rank function on $\mathcal{L}_R(i, i + s; d)$.

For $i + s \leq d - 2$. Suppose that $\mathcal{L}_R(i, i + s; d)$ is a finite geometric lattice. Then for any two subspaces Δ' and Δ'' ,

$$r_R(\Delta' \vee \Delta'') + r_R(\Delta' \wedge \Delta'') \le r_R(\Delta') + r_R(\Delta'').$$

If $\Delta' + \Delta'' \in \mathcal{L}_R(i, i + s; d) \setminus \{\Gamma\}$, then by Proposition 2.5, $\Delta' \vee \Delta'' = \Delta' \cap \Delta''$ and $\Delta' \wedge \Delta'' = \Delta' + \Delta''$. It follows that

$$r_R(\Delta' \vee \Delta'') + r_R(\Delta' \wedge \Delta'')$$

$$= d - s + 1 - d(\Delta' \cap \Delta'') + d - s + 1 - d(\Delta' + \Delta'')$$

$$\leq r_R(\Delta') + r_R(\Delta'')$$

that is $d(\Delta') + d(\Delta'') \le d(\Delta' \cap \Delta'') + d(\Delta' + \Delta'')$. By Proposition 2.4, $d(\Delta') + d(\Delta'') = d(\Delta' \cap \Delta'') + d(\Delta' + \Delta'')$.

If $\Delta' + \Delta'' = \Gamma$ or $\Delta' + \Delta'' \notin \mathcal{L}_R(i, i + s; d)$, then by Proposition 2.5, $\Delta' \vee \Delta'' = \Delta' \cap \Delta''$ and $\Delta' \wedge \Delta'' = \Gamma$. It follows that

$$r_R(\Delta' \vee \Delta'') + r_R(\Delta' \wedge \Delta'')$$

$$= d - s + 1 - d(\Delta' \cap \Delta'')$$

$$\leq r_R(\Delta') + r_R(\Delta'')$$

$$= d - s + 1 - d(\Delta') + d - s + 1 - d(\Delta''),$$
that is $d(\Delta') + d(\Delta'') \leq d(\Delta' \cap \Delta'') + d - s + 1.$

Conversely, for any two subspaces Δ' , $\Delta'' \in \mathcal{L}_R(i, i + s; d)$,

$$\Delta' \wedge \Delta'' = \left\{ \begin{array}{ll} \Delta' + \Delta'', & \text{if } \Delta' + \Delta'' \in \mathcal{L}_R(i, i + s; d) \backslash \{\Gamma\}, \\ \Gamma, & \text{otherwise.} \end{array} \right.$$

It is routine to check that $\mathcal{L}_R(i, i+s; d)$ is a finite geometric lattice. \square

Proof of Theorem 1.2.

(i) Clearly, $\mathcal{L}_O(i, i + s; d)$ is a finite lattice.

Note that Δ_1 is the minimum element. Let P(j;d) be the set of all subspaces Δ' with diameter j such that $d(\Delta_0 \cap \Delta') = \Delta_1$ and $d(\Delta_0 + \Delta') = d(\Delta') + s$ in Γ , where $i \leq j \leq d - s$. Then P(i+1;d) is the set of all atoms in $\mathcal{L}_O(i,i+s;d)$. In order to prove $\mathcal{L}_O(i,i+s;d)$ is atomic, it suffices to show that every element of P(j) $(i+1 \leq j \leq d-s)$ is a union of some atoms. The result is trivial for j=i+1. Suppose that the result is true for j=i+l. For $\Delta \in P(i+(l+1))$. By Propositions 2.1 and 2.3, the number of subspaces with diameter i+l containing Δ_1 and contained in Δ is

$$\frac{(b_i - b_{i+l+1}) \cdots (b_{i+l-1} - b_{i+l+1})}{(b_i - b_{i+l}) \cdots (b_{i+l-1} - b_{i+l})} \ge 2.$$

By Proposition 2.5, there exist two different subspaces $\Delta', \Delta'' \in P(i+l;d) \cap \Delta$. Let $\widetilde{\Delta} = \Delta' \vee \Delta''$. Then $d(\widetilde{\Delta}) = i+l$ or i+l+1. If $d(\widetilde{\Delta}) = i+l$, by Proposition 2.2 $\Delta' = \widetilde{\Delta} = \Delta''$, a contradiction. It follows that $d(\widetilde{\Delta}) = i+l+1$ and $\Delta = \widetilde{\Delta} = \Delta' \vee \Delta''$ by Proposition 2.2 again. By induction Δ is a union of some atoms. Hence $\mathcal{L}_O(i, i+s; d)$ is a finite atomic lattice.

- (ii) It is clear that $\mathcal{L}_O(i, d-1; d)$ is a geometric lattice.
- (iii) For any $\Delta \in \mathcal{L}_O(i, i + s; d)$, define

$$r_O(\Delta) = \left\{ egin{array}{ll} d-s-i+1, & ext{if } \Delta = \Gamma, \\ d(\Delta)-i, & ext{otherwise.} \end{array}
ight.$$

It is routine to check that r_O is the rank function on $\mathcal{L}_O(i, i + s; d)$.

For $i + s \leq d - 2$. Suppose that $\mathcal{L}_O(i, i + s; d)$ is a finite geometric lattice. Then for any two subspaces Δ' and Δ'' ,

$$r_O(\Delta' \vee \Delta'') + r_O(\Delta' \wedge \Delta'') \leq r_O(\Delta') + r_O(\Delta'').$$

If $\Delta' + \Delta'' \in \mathcal{L}_O(i, i + s; d) \setminus \{\Gamma\}$, then by Proposition 2.5, $\Delta' \wedge \Delta'' = \Delta' \cap \Delta''$ and $\Delta' \vee \Delta'' = \Delta' + \Delta''$. It follows that

$$r_O(\Delta' \vee \Delta'') + r_O(\Delta' \wedge \Delta'') = d(\Delta' + \Delta'') - i + d(\Delta' \cap \Delta'') - i$$

$$\leq r_O(\Delta') + r_O(\Delta'')$$

$$= d(\Delta') - i + d(\Delta'') - i,$$

that is $d(\Delta') + d(\Delta'') \ge d(\Delta' \cap \Delta'') + d(\Delta' + \Delta'')$.

If $\Delta' + \Delta'' = \Gamma$ or $\Delta' + \Delta'' \notin \mathcal{L}_O(i, i + s; d)$, then by Proposition 2.5, $\Delta' \wedge \Delta'' = \Delta' \cap \Delta''$ and $\Delta' \vee \Delta'' = \Gamma$. It follows that

$$r_O(\Delta' \vee \Delta'') + r_O(\Delta' \wedge \Delta'') = d - s - i + 1 + d(\Delta' \cap \Delta'') - i$$

$$\leq r_O(\Delta') + r_O(\Delta'')$$

$$= d(\Delta') - i + d(\Delta'') - i,$$

that is $d(\Delta') + d(\Delta'') \ge d(\Delta' \cap \Delta'') + d - s + 1$.

Conversely, for any two subspaces Δ' , $\Delta'' \in \mathcal{L}_O(i, i + s; d)$,

$$\Delta' \vee \Delta'' = \begin{cases} \Delta' + \Delta'', & \text{if } \Delta' + \Delta'' \in \mathcal{L}_O(i, i + s; d) \setminus \{\Gamma\}, \\ \Gamma, & \text{otherwise.} \end{cases}$$

It is routine to check that $\mathcal{L}_O(i, i + s; d)$ is a finite geometric lattice.

Acknowledgement

This research is supported by Foundation of Hebei Province Education Department (2007137) and "LSAZ200702 program" of Langfang Teachers' College.

References

[1] M. Aigner, Combinatorial Theory, Springer-Verlag, Berlin, 1979.

- [2] G. Birgkhoff, Lattice Theory, 3rd ed., American Mathematical Society, Providence, RI, 1967.
- [3] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer Verlag, New York, 1989.
- [4] S. Gao, J. Guo and W. Liu, lattices generated by strongly closed subgraphs in d-bounded distance-regular graphs, European J. Combin., 28 (2007), 1800-1813.
- [5] S. Gao, J. Guo, B. Zhang and L. Fu, Subspaces in d-bounded distanceregular graphs and its applications, *European J. Combin.*, 29 (2008), 592-690.
- [6] J. Guo and S. Gao, Lattices generated by join of strongly closed subgraphs in d-bounded distance-regular graphs, Discrete Math., 308 (2008), 1921-1929.
- [7] J. Guo, S. Gao and K. Wang, Lattices generated by subspaces in d-bounded distance-regular graphs, Discrete Math., in press.
- [8] Y. Pan and C. Weng, Three bounded properties in triangle-free distance-regular graphs, European J. Combin., in press.
- [9] H. Suzuki, On strongly closed subgraphs of highly regular graphs, European J. Combin., 16 (1995), 197-220.
- [10] Ming-hsu Tsai, Construct pooling spaces from distance-regular graphs, NCTU Master Thesis, June 2003.
- [11] C. Weng, D-bounded distance-regular graphs, European J. Combin., 18 (1997), 211-229.
- [12] C. Weng, Classical distance-regular graphs of negative type, J. of Combin. Theory Ser. B, 76 (1999), 93-116.