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Abstract

Let I = (X, R) denote a d-bounded distance-regular graph with
diameter d > 3. A regular strongly closed subgraph of I is said to be
a subspace of I'. For 0 < i <i4s <d— 1. Suppose A; and A are
subspaces with diameter < and i+ s, respectively, and with A; C Ao.
Let £(z, i + s; d) denote the set of all subspaces A’ with diameters
2 i such that d(Ap N A") = A; and d(Ao + A') = d(A)+sin T
including T'. If we partial order L£(%, i + s; d) by ordinary inclusion
(resp. reverse inclusion), then L(%, i + s; d) is a poset, denoted by
Lo(i, i+ s; d) (resp. La(4, i+ s; d)). In the present paper we show
that both Lo(%, i+ s; d) and Lg(i, i+ s; d) are atomic lattices, and
classify their geometricity.
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1 Introdliction

In this section We first recall some terminology and definitions about finite
posets and lattices ([1, 2]), then introduce some concepts concerning d-
bounded distance-regular graphs and our main results.
Let P be a poset. For a,b € P, we say a covers b, denoted by b <- a, if
b < a and there exists no ¢ € P such that b < ¢ < a. If P has the minimum
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"(tesp. maximum) element, then we denote it by O (resp. 1) and say that
P is a poset with 0 (resp. 1). Let P be a finite poset with 0. By a rank
function on P, we mean a function r from P to the set of all the integers
such that 7(0) = 0 and r(a) = 7(b) + 1 whenever b < a.

A poset P is said to be a lattice if both a V b :=sup{a,b} and a A b :=
inf{a, b} exist for any two elements a,b € P. Let P be a finite lattice with
0. By an atom in P, we mean an element in P covering 0. We say P is
atomic if any element in P\ {0} is a union of atoms. A finite atomic lattice
P is said to be a geometric lattice if P admits a rank function r satisfying
r(aAb) +r(aVbd) <r(a) +r(b),Va,beP.

Now we shall introduce some concepts concerning d-bounded distance-
regular graphs. Let I' = (X, R) be a connected regular graph. For vertices u
and v in X, let 8(u, v) denote the distance between u and v. The maximum
value of the distance function in I' is called the diameter of I, denoted by
d = d(T'). For vertices u and v at distance i, define

C(u,v) = Ci(u,v)={w]d(u,w)=1-1,0(w,v) =1},

A(u,v) = Ai(u,v) = {w]|d(u,w) =1,0(w,v) =1}.
For the cardinalities of thesé sets we use lower case letters ¢;(u,v) and
ai(u,v).

A connected regular graph I’ with diameter d is said to be distance-
regular if c;(u,v) and a;(u,v) depend only on i for all 1 < ¢ < d. The
reader is referred to [3] for general theory of distance-regular graphs.

Recall that a subgraph induced on A of I is said to be strongly closed
if C(u,v) U A(u,v) C A for every pair of vertices u,v € A. Suzuki ([9))
determined all the types of strongly closed subgraphs of a distance-regular
graph.

A distance-regular graph I' with diameter d is said to be d-bounded, if
every strongly closed subgraph of I is regular, and any two vertices z and y
are contained in a common strongly closed subgraph with diameter 8(z, y).
For instance, the ordinary 5-gon is a 2-bounded distance-regular graph.
But the ordinary 6-gon is not a 3-bounded distance-regular graph. Indeed,
et 1~2~3~4d~5~6~1bethe ordinary 6-gon. Then it is clear that
1 ~ 2 ~ 3 is strongly closed, but it is not regular. By [8, Theorem 1.3],
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(11, Theorem 4.3] and [10], all the following graphs are d-bounded distance-
regular graphs: When a; = 0 and a3 # 0, all distance-regular graphs with
classical parameters (3,5, a, 8); Hamming graph H(d,q) (d > 3,q > 2)
with classical parameters (d,b,a,8) = (d,1,0,g — 1); when c; > 1 and
a; # 0, Hermitian forms graph Her_;(d) (d > 3) with geometric parameter
(d,b,a) = (d,—r,~1 — r), where r is a prime power; when ¢, > 1 and
a; # 0, dual polar graph 2A454_1(—b) (d > 3) with geometric parameter
(d,b,a) = (d,—r,7(1 + r)/1 — r), where r is a prime power; when a; =0,
the dual polar graph Dy(b) (d > 4) with classical parameters (d, b, @, 8) =
(d,5,0,1), where b is a prime power; when ¢, > 1 and a; # 0, all distance-
regular graphs with geometric parameter (d,b,a) = (d,—r, —(1 + 7)/2),
where r is an odd prime power.

Weng ([11, 12]) used the term weak-geodetically closed subgraphs for
strongly closed subgraphs, obtained the basic properties and characterized
when a distance-regular graph is d-bounded. A regular strongly closed
subgraph of I is said to be a subspace of I'. For any two subspaces A; and
A, of T, the intersection of all subspaces that contain A; and Aj is called
the join of A; and A,, and denoted by A; + A,.

The results on the lattices generated by subspaces in d-bounded distance-
regular graph with diameter d can be found in Gao, Guo and Liu ([4]), Guo
and Gao ([6]), Guo, Gao and Wang ([7]).

Let I' = (X, R) denote a d-bounded distance-regular graph with di-
ameter d > 3. For 0 < i < i+s < d-1. Suppose A; and Ap are
subspaces with diameter ¢ and i + s, respectively, and with A; C Ag. Let
L(3, i+s; d) denote the set of all subspaces A’ with diameters > ¢ such that
Ao N A’) = Ay and d(Ap +A') = d(A’) + s in T including T. If we par-
tial order L(%, i+ s; d) by ordinary inclusion (resp. reverse inclusion), then
L(i, i+s; d) is a poset, denoted by Lo (3, i+s; d) (resp. Lg(i, i+s; d)). In
this paper we show that both Lo (3, ¢+ s; d) and Lg(%, i+ s; d) are atomic
lattices, and classify their geometricity. Our main results are the following.

Theorem 1.1. Let T’ be a d-bounded distance-regular graph with diameter
d>3. For0<i<i+s<d-1, the following hold:
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(i) Lr(:, i+ s; d) is a finite atomic lattice.
(i) Lr(, d—1; d) is a finite geometric lattice.

(iii) Fori+s <d—2, Lg(%, i+ s; d) is a finite geometric lattice if and
only if for any two elements A’ end A",
d(A’) +d(A") - d(A' N A")
=d(A' + A"), if A"+ A" € La(i, i + s d)\{T},
{ <d-s+1, otherwise.
Theorem 1.2. Let T" be a d-bounded distance-regular graph with diameter
d>38. For0<i<i+s<d-—1, the following hold:

(i) Lo(i, i+ s; d) is a finite atomic lattice.
(ii) Lo(i, d—1; d) is a finite geometric lattice.
(iii) Fori+s <d-—2, Lo(i, i + s; d) is a finite geometric lattice if and
only if for any two elements A’ and A",
d(A') + d(A”) — d(A'n A")
S d(A' + A"), fA'+ A" € Lo(i, i+ s; A\{T'},
Tl d-s+1, otherwise.

2 Proofs of main results

In this section we discuss lattices in d-bounded distance-regular graphs.

We begin with some useful Propositions.

Proposition 2.1. (11, Lemma 2.6]) Let T be a d-bounded distance-regular
graph with diameter d. Then we have b; > biy; where 0 < i< d~—1.

Proposition 2.2. ({12, Lemmas 4.2, 4.5] ) Let T be a d-bounded distance-
regular graph with diameter d. Then the following hold:

(i) Let A be a subspace of ' and 0 < i < d(A). Then A is distance-
reqular with intersection numbers c;(A) = ¢, ai(A) = a;, bi(A) =
b; — by(a)-

(ii) For any vertices = and y, the subspace with diameter 9(z,y) contain-

ing ¢,y is unique.
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Proposition 2.3. (/4, Lemma 2.1]) LetT be a d-bounded distance-regular
graph with diameterd > 2. For1 <i+1<i+s<i+s+t < d, suppose A
and A’ are two subspaces satisfying A C A, d(A) = i and d(A') = i+5+t.
Then the number of the subspaces with diameter i + s containing A and
contained in A is _
(b — bitste)(Bit1 = birste) -« (birs—1 — biysit)
(Bs = biys)(Bit1 = bits) -+ (bits—1 — bigs)

Proposition 2.4. ([4, Lemma 2.8]) LetT be a d-bounded distance-regular
graph with diameter d. Suppose A and A’ are two subspaces. If d(ANA') #
@, then d(A) + d(A") > d(ANA') + d(A + A).

Proposition 2.5. (/5, Lemma 2.8]) Let T be a d-bounded distance-regular
graph with diameter d > 2. For0<i<i+s,i+t<i+s+t<d, let A
and A’ be two subspaces in T' with diameter i + s and i + t, respectively,
such that d(ANA') =i If d(A) +d(A’) = d(ANA') + d(A + A), then the
following hold: o

(i) For fized z,y € AN A’ with 8(z,y) = i, for all vertices u € A with
O(u,z) =1, O(u,y) =i+, 0 <1< s, and for all vertices v € A’ with
O(z,v) =i+m, 8(y,v) =m, 0 < m < t, we have (u,v) =i+1+m.

(ii) For all subspaces A; containing AN A’ in A, and for all subspaces
Az containing ANA' in A', we have (A1) +d(Ag) = d(A; NAR) +
d(Al + A2).

Proof of Theorem 1.1.
(i) For any two elements A’, A" € Lg(3,i+ s; d),
A'VA" = +{A € Lp(:,i + s; d)|A C A'N A"},
A'A A" =N{A € Lg(i,i+s; d)JAD A’ + A"}
Therefore Lg(%,% + s; d) is a finite lattice.

Note that I is the minimum element. Let P(j; d) be the set of all
subspaces A’ with diameter j such that d(A¢NA’) = A; and d(Ag+A') =
d(A')+sinT, where i < j < d—s. Then P(d—s; d) is the set of all atoms
in Lp(4, i+ s; d). In order to prove Lg(i, i + s; d) is atomic, it suffices
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to show that every element of P(j; d) ({ < j < d — s) is a union of some
atoms. The result is trivial for j = d — s. Suppose that the result is true
forj=d—s—1. For A € P(d-s— (l+1);d). Fixed z,y € A; with
8(z,y) = i, by Proposition 2.2, A} = {z} + {y}. Fixed a vertex u € Aq
such that 8(u,z) = s, (u,y) = s + ¢ and fixed a vertex v € A such that
&(z,v) = d—s—I-1, 8(y, v) = d—s—I—1—i, by Proposition 2.2, {u}+{y} =
Ao, {z}+{v} = A. By Propositions 2.5, 8(u,v) = d—I— 1. Fixed a vertex
w € I such that 8(v,w) = Il + 1, 8(u,w) = d, then A C {z} + {w} and
d({z} + {w}) = d — 5. By Proposition 2.4, d(({z} + {w}) N A¢) < i. Thus
({z} + {w}) N Ap = A,. By Propositions 2.3 and 2.1, the number of the
subspaces with diameter d — s — ! containing A in {z} + {w} is
bd—s-1-1 = bd—s

= Pacotor—baei > 2
By Propositions 2.5, there exist two different subspaces A/, A” € P(d —
s = l; d) containing A. Suppose A=A'VA" Thend(d)=d—s—1~—1
ord—s—1 If d{A) = d — s — I, by Proposition 2.2 A’ = A=A"a
contradiction. It follows that d(A) = d—s—I—1and A=A = A’VA” by
Proposition 2.2 again. By induction A is a union of some atoms. Therefore,

Lg(i, i + s; d) is a finite atomic lattice.
(ii) It is obvious that Lg(Z, d — 1; d) is a geometric lattice.
(iii) For any A € Lg(3, i + s; d), we define

0, ifA=T,

A) =
rr(A) {d—s+1—d(A), otherwise.

It is routine to check that rp is the rank function on Lg(%, i + s; d).

For i + s < d — 2. Suppose that Lg(i, ¢ + s; d) is a finite geometric
lattice. Then for any two subspaces A’ and A”,

TrR(A'V A") + rr(A’ A A”) < TR(A') + TR(A”).

If A’ + A” € Lp(i, i + s; d)\{T'}, then by Proposition 2.5, A’ v A" =
A'NA" and A’ A A" = A’ + A”. Tt follows that
rrR(A'V A") + rp(A' AA")
d—s+1~-dA'NA")+d—s+1-d(A'+ A")
Tr(A') + rr(A”)
d—s+1-d(A)+d-s+1-d(A"),

A
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that is d(A’) + d(A”) < d(A’ N A”) + d(A’ + A"). By Proposition 2.4,
d(4’) +d(A") = d(A' N A") + d(A' + A").
IfA"+ A" =T or A’ + A" ¢ Lg(i, i + s; d), then by Proposition 2.5,

A'VA"=A"NA" and A’ AA” =T. It follows that
’I‘R(A' \ A”) + ‘I’R(A' A A")
d—s+1-d(A'nA")
rr(A’) + rr(A")
= d—s+1-d(A) +d—s+1-dA"),
that is d(A’) + d(A”) < d(A'NA")+d—-s+1.
Conversely, for any two subspaces A/, A" € Lg(i, i + s; d),

A+ A", A+ A" € Lp(i, i+ s; d\{T},
T, otherwise.

IA

AI A All = {
It is routine to check that Lg(i, i + s; d) is a finite geometric lattice. O

Proof of Theorem 1.2.

(i) Clearly, Lo(z,i + s; d) is a finite lattice.

Note that A; is the minimum element. Let P(j; d) be the set of all
subspaces A’ with diaméter j. such that d(AgNA’ ) =A4A;and d(Ao+A") =
d(A')+sinT, where i < j < d—s. Then P(i+1; d) is the set of all atoms
in Lo(i, i + s; d). In order to prove Lo(i, i + s; d) is atomic, it suffices to
show that every element of P(j) (¢+ 1 < j < d — s) is a union of some
atoms. The result is trivial for 7 =i+ 1. Suppose that the result is true for
j =i+l For A € P(i+(l+1)). By Propositions 2.1 and 2.3, the number
of subspaces with diameter i + ! containing A, and contained in A is

(bs = bigig1) - (Birio1 = bivina) 9.
(0i = bigt) -+ (bir—1 —bipr) T
By Proposition 2.5, there exist two different subspaces A/, A” € P(i +
L, d)NA. Let A= A'VA”. Then d(A) =i+lori+l+1. IfdA) =i+l
by Proposition 2.2 A’ = A = A”, a contradiction. It follows that d(A) =
i+l+1and A=A =A’V A" by Proposition 2.2 again. By induction A
is a union of some atoms. Hence Lo(%, i + s; d) is a finite atomic lattice.
(ii) It is clear that Eo'(z', d — 1; d) is a geometric lattice.
(iii) For any A € Lo(i, i + s; d), define
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d-—s—i+1, ifA=T,
d(A) -, otherwise.

ro(4) = {

It is routine to check that 7o is the rank function on Lo (%, i + s; d).
For i + s < d — 2. Suppose that Lo(i, ¢ + s; d) is a finite geometric
lattice. Then for any two subspaces A’ and A",
ro(A'V A") + ro(A' A A") < ro(A') +ro(A").
If A’ + A" € Lo(i, i + s; d)\{T'}, then by Proposition 2.5, A’ A A" =
A’NA” and A’V A" = A’ + A”. 1t follows that
ro(A'VA") +1o(A'AA") = d(A'+A")—i+d(A'NAY) —d
< ro(4') +ro(A")
= d(A') —i+d(A") -1,
that is d(A’) + d(A”) > d(A*N A”) +d(A + A").
IfA’+ A" =T or A’ + A" ¢ Lo(i, i + s; d), then by Proposition 2.5,
AAA"=A'"NA" and A’V A" =T. It follows that
ro(A'VA") +10(A'AA"y = d—s—i+1+d(A'NA") -
ro(A') +ro(A")
= d(A)—-i+d(A") -4,
that is d(A’) + d(A”) > d(A'NA") +d —s+ 1.
Conversely, for any two subspaces A’, A" € Lo(4, i + s; d),

A+ A", ifA + A" € Lo(i, i+ s; d)\{T},
T, otherwise.

IA

A'vA”={

It is routine to check that Lo(3, i + s; d) is a finite geometric lattice. O
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