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Abstract

Let G = (V,E) be a graph. A set D C V is a total restrained
dominating set of G if every vertex in V' has a neighbor in D and
every vertex in V — D has a neighbor in V — D. The cardinality of a
minimum total restrained dominating set in G is the total restrained
domination number of G. In this paper, we define the concept of total
restrained domination edge critical graphs, find a lower bound for the
total restrained domination number of graphs, and constructively
characterize trees having their total restrained domination numbers
achieving the lower bound.
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1 Introduction

Let G = (V, E) be a simple graph of order |V| = n(G) and size |E| = m(G).
If there is no confusion, then we omit G in these notations and call G an
(n,m)-graph. The degree of a vertex v in G is the number of vertices
adjacent to v, and denoted by degg(v). A vertex with no neighbor in G
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is called an isalated vertez. A vertex of degree one in G is called an end
vertez, the vertex adjacent to and the edge incident to an end vertex are
called a support vertez and a tail, respectively. An edge is called a strong
edge if it is not a tail. A path P in G is called an end path of G if P
contains an end vertex of G and the degree of each vertex of P in G except
end vertices is 2.

A set D C V is a dominating set of G if every vertexin V — D has a
neighbor in D. The cardinality of a minimum dominating set of G is the
domination number of G and denoted by v(G) (see [5, 6]). If, in addition,
the induced subgraph (D) has no isolated vertex, then D is called a total
dominating set (TDS). The cardinality of a minimum total dominating set
of G is called the total domination number and denoted by 1:(G). The
total domination in graphs was introduced by Cockayne et al. in [1] (see
also [3, 6, 9]).

Throughout this paper, we assume that G contains no isolated vertices.
A set D C V is a total restrained dominating set of G (TRDS) if D is a
TDS of G and also the induced subgraph {V — D) has no isolated vertex.
Note that the set V is a TRDS of G. The cardinality of a minimum to-
tal restrained dominating set of G is called the total restrained domination
number of G and denoted by 7;,.(G). We call a TRDS in graph G of car-
dinality 7:-(G) a 7:r(G) — set. The concept of total restrained domination
was introduced by De-Xiang Ma et al. in [7].

A graph G is said to be total restrained domination edge critical if for
every strong edge e in G, %:+(G — €) > 7r(G). For simplicity, we call
such G a +y-edge critical graph. In this paper, we first characterize ;-
edge critical paths, cycles and caterpillars and find necessary and sufficient
conditions for a graph to be 7,-edge critical. We then proceed to find a
lower bound and an upper bound of 7;,(G) for 7,-edge critical graphs G,
and hence derive a lower bound of ;. (G) for all (n, m)-graphs G. Finally we
characterize the trees which have their total restrained domination number
achieving the lower bound. For unexplained terms and symbols, see [10].

2 Known results

In this section, we state some known results which are useful for proving
our main theorems.
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Proposition A. [2] Let D be a TRDS of a graph G of order n, n > 3.
Then every end vertez and every support vertez of G are in D.

Proposition B. [7] For every integer n, n > 2,

. 3 if n=3,
(i) Yer(Kn) = { 2 ;f z #£3;

) _ [ p+qg if min{pg}=1,
(i)  7r(Kpq) = { 2 if min{p,q} # 1;

(i)  yr(Pn) =n-2 lnT-2J )

@) wr(Ca)=n—2[2].

A tree T is called a caterpillar if the resulting subgraph of T ob-
tained by deleting all its end vertices is a path. We call this path the
spine of the caterpillar. Let T be a caterpillar with spine v;...v; and let
{uo = v1,u1,..., ur41 = v,} be the ordered set of vertices in {vy,...,v,}
with degr(u;) > 2, for each i, 1 < ¢ < k. We denote the number of internal
vertices in (u;,ui+1)-path by 2;, 0 < i < k, and one of the end vertices
adjacent to u;, 0 <i < k+1, by a;.

Proposition C. [2] For every caterpillar T of order n, n > 3, v+(T) =

n-—2zk:lz£:2J.

i=1

Let G be a graph. A set M C E is called a matching if no two edges in
M are adjacent. The cardinality of a maximum matching in G is denoted
by o’/(G). A set L C E is called an edge cover of G if every vertex of G
is incident to some edge of L. The cardinality of a minimum edge cover
is called the edge cover number of G and denoted by #'(G). Obviously,
the edge cover number of a graph is equal to the sum of the edge cover
numbers of its components. The well known Gallai identity relating o (G)
and f'(G) is stated below.

Theorem A. [10] If G is a graph of order n without isolated vertices, then
a'(G)+ B'(G) =n.
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3 ~.-edge critical graphs

In this section, we first characterize -y;.-edge critical paths, cycles and cater-
pillars and provide necessary and sufficient conditions for a graph to be ;-
edge critical. We then proceed to derive a lower bound and an upper bound
for the total restrained domination number of v;-edge critical graphs.

It is obvious that every TRDS of a spanning subgraph H of graph G is
also a TRDS of G. Thus we have:

Observation 1. If H is a spanning subgraph of a graph G, then v, (H) >
'Ytr(G)'

This observation implies that the +;-(G) is nondecreasing if we delete
an edge of G.

Definition. A graph G is a yi-edge critical graph if for every strong
edge e of G, 7r(G — €) > 1 (G).

It is clear that every graph G contains a 7-edge critical spanning
subgraph H with v, (H) = v:+(G). This is seen by removing edges in suc-
cession, whenever possible, without diminishing the total restrained domi-
nation number.

Remark 1. The difference v:+(G — €) — 1:+(G) can be arbitrary large. For
example, in the graph of Figure 1, v+(G) = k+3 while v;,(G—e) = 2k+4,
fork > 1. Note that D = A;UA; is a v (G)-set and D' = A;UA2UB,UB,
is a (G — €)-set, where e is the dotted edge denoted in graph G.

Suppose that G is a graph with components G, Ga, ...,Gy and for each
i, 1 < i<k, D; is a TRDS of G;. Then the union of D; is a TRDS of G.
Thus, we have:

Observation 2. If G is a graph with components G1,Ga,...,Gk, then

k
7e(G) = D %r(Gi)-

i=1

By Observation 2, the following observation is immediate.
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Figure 1: Graph G, where 7;-(G) = k + 3 and (G — €) =2k + 4.

Observation 3. A graph G is y;--edge critical if and only if each compo-
nent of G is yr-edge critical.

Theorem 1.

() The path P, n > 2, is vy,-edge critical if and only if n = 2 or 3 (mod4).
(ii) The cycle Cpn, n > 3, is yr-edge critical if and only if n = 0 or 1 (mod4).

(iii) The caterpillar T is ~;,-edge critical if and only if for each i,0 < i < k,
z; = 2 or 3(mod4) (see page 2 for the definition of z;).

Proof. (i) Consider the path P, of order n and assume that n =0 or 1
(mod4). Let e be an edge adjacent to a tail. Then P, —e is a
graph with two components P, and P,,_,. By Proposition B(iii) and
Observation 2,

7tr(Pn - e) = 'Ytr(P2) + 'Ytr(Pn-Q)
= 2+(n—2)—2'-(_n—_f)__2—|
n—-4
= n-2 I.-—4—J .
Asn =0 or 1(mod4), we have |27*| = | 272|, and so
Tr(Pa= &) =n-2| 272 | = (o).
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Thus, if n = 0 or 1(mod4), then P, is not y,-edge critical.

Now suppose that n = 2 or 3(mod4). Let e be a strong edge of P;.
Then P, — e is a graph with two components P,, and Py,, such that
n1 + n2 = n. By Proposition B(iii) and Observation 2,

Yer(Pn — e) = ’Ytr(Pm) + ’Ytr(Pnz)

-2 -2
n1—2ln14 J+n2—2|-n24 J

- aea(m2]o |22

Assume that at least one of n; or ng is congruent to 0 or 1 modulo 4
(say, n1 =0 or 1(modd), and so | 2472 | = |2t=4|). Then

27+ =] = [ 1

IA

n-—2
< [
and so n — 2(| 272 + [2F2]) > n—2|222); ie., 1er(Po —€) >
Yer(Pn)-
Assume now that n; and na are congruent to 3 modulo 4. In this
case, |272| + 2272 = |252| - 1, and it can be easily observed
that 272 | + | 2222 < | 222 |0 ie., Yer(Pn — €) > Yer(Pn)-

(ii) As C, — e is P, for any edge e in Cyp, by Proposition B(iv), Cn is
~ir-edge critical if and only if

n-2 l-’l_l%%-l = Yer(Pa) > 1r(Cn) =n -2 ‘_gJ .

The inequality above holds if and only if |272| < |}], ie, n =
0 or 1(modd).

(iii) By Proposition A, it can be seen that the caterpillar T is a 7 -edge
critical graph if and only if the (a;, ait+1)-paths are y;.-edge critical,
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for each i, 0 < i < k. By the first part above, the latter holds if and
only if z; +4 = 2 or 3(mod4). Thus, T is y,-edge critical if and only
if for each i, 0 < i < k, z; =2 or 3 (mod4).

Theorem 2. Let G be a graph. Then G is y,.-edge critical if and only if
every 1r(G)-set D satisfies each of the following conditions:

(1) Every component of (D) and (V — D) is a star.

(2) Every vertez in V — D has exactly one neighbor in D.

Note. Condition (2) implies that the number of edges between D and V — D
is equal to n — 7, (G).

Proof. Suppose that G is a y;-edge critical graph and D is a 7;(G)-set.
(1) If {D) or (V — D) has a strong edge, then D is a TRDS for the graph
obtained from G by deleting the strong edge. This contradicts the fact that
G is yir-edge critical. Thus, every component of (D) and (V — D) is a star.
(2) Every vertex in V — D is dominated by some vertex in D. If a vertex
v in V — D has more than one neighbor in D, say u; and uz, then D is a
TRDS of the graph G — u;v, a contradiction. Thus, condition (2) holds.

We now prove the sufficiency by contradiction. Assume that every ¥.(G)-
set satisfies the two conditions, but G is not ;.-edge critical. Let H be a
Yir-edge critical proper spanning subgraph of G such that v (H) = v (G).
Suppose that D is a v,(H)-set. By the above necessity conditions, D
satisfies conditions (1) and (2) in H. Observe that D is also a v;-(G)-set,
but now D no longer satisfies the conditions in G, as G contains at least
one edge not in H. This contradiction shows that G is ;,-edge critical. ®

Corollary 1. Let G be an (n,m)-graph. If G is v,,-edge critical, then

%n—m <7 (G)<2n-m-2.
Proof. Let D be a 7;,(G)-set. By Theorem 2, the number of edges with
one end in D and another one in V — D is equal to n — v,+(G). As (D)

and (V — D) are forests, the number of edges in (D) and (V — D) does not
exceed |D| — 1 and |V — D| — 1, respectively. Thus,

m < (ID|-1)+(V-D|-1)+(n-%(Q))
= (1r(G) = 1) + (n = 7%-(G) = 1) + (n — % (G))

2n— 'Ytr(G) - 2’
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and so
Yr(G) < 2n—m—2.

On the other hand, as the degree of every vertex in (D) and (V — D) is at
least one, we have

m > l_D_I +u+n—’)’tr(G)
, 2 2
= 29, 1% @
3
= -,

ie., 3
n
) -m < 7(G).

4 Total restrained domination number of graphs

In this section, we find some bounds for the total restrained domination
number of graphs.

Lemma 1. Let D be a v(G)-set of a y.-edge critical graph G. If k and
k' are the numbers of components in (D) and (V — D), respectively, then

1G) <k+k <d(G).
Proof. By Theorem 2, every component of (D) and (V — D) is a star.

Let A be the set of the centers of these stars. Then A is a dominating set
of G and |A| = k + k'. Hence

vG) <Al =k +K.

Form a set B C E by selecting an edge from each component of (D) and
(V — D). Then B is a matching of G, and so by above inequality

Y(G) < k+k =|B| <(G)
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Remark 2. Suppose that G is a graph and D is a subset of V such that each
component of (D) and (V — D) is a star. Denote the set of edges between
D and V — D by Fp(G) and let fp(G) = |Fp(G)|. Now we construct e
bipartite multigraph G}, with partite sets X and Y from G with respect
to D as follows. Every vertex in X corresponds to a component of (D)
and every verter in Y corresponds to a component of (V — D). Let k
and k' be the numbers of components in (D) and (V — D), respectively;
50 |X| = k and |Y| = k'. Corresponding to every edge in G joining a
component of (D) and a component of (V — D), there is an edge in G}
joining the two vertices corresponding to the components (note that G},
may contain multiple edges). Then G} is an (n*,m*)-multigraph, where
n* =n(Gp) =k + k' and m* = m(G}) = fp(G).

Referring to the notations in Remark 2, we have:

Lemma 2.
m(Gp) = n(Gp) — (n(G) - m(@)).

Proof. We prove the equality by induction on fp(G). Assume fp(G) = 0.
Then G is a forest with k + &' components, and so m(G) = n(G) — (k+k').
Hence n(G) — m(G) =k + k' = n(Gp) — m(G}).

Assume that fp(G) > 0 and the equality holds for every graph H with
fo(H) < fp(G). Suppose that H is a graph obtained from G by deleting
an edge of Fp(G). Then fp(H) = fp(G)-1 < fp(G), and by the induction
hypothesis, m(Hp) = n(Hp)—(n(H)—m(H)). Since m(H}) = m(Gp)-1,
n(Hp) = n(Gp), m(H) = m(G) — 1 and n(H) = n(G), we have m(G}) =
n(Gp) — (n(G) — m(QG)), as desired. [ ]

Theorem 3. For every +.-edge critical (n,m)-graph G,
B'(G) +n—m < 74(G) £ 2n —m —4(G).
Proof. Let D be a v,(G)-set and G}, be the corresponding (n*, m*)-

multigraph constructed from G as described in Remark 2. By Theorem 2,
m* = fp(G) = n — %,(G), and by Lemma 2, n* — (n — m) = m*. Hence

k+k —(n-m)=n"—(n—-m)=m"=n-%(G),

and so
7(G) = = (k + k) + (n — m).

This equality and the inequalities in Lemma 1 imply that
n—a'(G) + (n—-m) < 1r(G) Sn=7(G) + (n—m).
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Now, by Theorem A, we have
B'(G) +n —m < 1r(G) £ 2n —m - 4(G).
||

Remark 3. The above bounds are sharp, as stars are 7.-edge critical
graphs and their 7y, achieve both lower and upper bounds above.

Corollary 2. If G is an (n,m)-graph, then 1.(G) > B'(G) + n—m.
Proof. Suppose that H is a +;,.-edge critical spanning subgraph of G such

that ¢~ (H) = 7:r(G). Since H is a spanning subgraph of G, each edge cover
of H is an edge cover of G, so 8'(G) < §'(H). Hence by Theorem 3,

B'(G) +n—m < f'(H) +n(H) - m(H) < nr(H) = 10(G)-

Remark 4. In [9] it is proved that if G is an (n,m)-graph, then
3n
Yer (G) 2 b} —m;

and in [4] it is proved that if T is a tree of order n, then
n+2 J

NelT) > [

Since for every graph G of order n, 3 < | 28| < B'(G), the lower bound
obtained in Corollary 2 is sharper than the above two.

Theorem 4. If G is an (n,m)-graph such that v,+(G) = B'(G) + n —m,
then G is y,-edge critical.

Proof. We prove the statement by contradiction. Suppose that G is not
Ter-edge critical. Then there is an edge, say e, such that v, (G—e) = %, (G).
By Corollary 2 and the hypothesis,

1 (G) = BG)+n—-m<p(G-e)+n—-m
= f(G-e)+n(G—-e)—-(m(G—e)+1)
< 1(G-e)-1=7%(G)-1,
a contradiction. n
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Remark 5. For every integer k > 0 there exists a graph G such that
Yr(G) = B'(G) = k + 1. For instance, in the graph G of Figure 2, the set
D =2:L;l: A; i3 a vr(G)-set with |D| = 5k + 2 and the set of bold edges is an
edge cover of size 4k + 1. Moreover, note that graph G is v,.-edge critical.
So this example shows that the converse of Theorem 4 is not true.

A2k

Figure 2: Graph G, where v-(G) - 8/(G) =k + 1.

5 Characterization of trees with minimum +,,

It follows from Corollary 2 that if T is a tree, then 7, (T) > 8'(T) + 1. In
this final section, we characterize all trees T' such that ;. (T) = 8'(T) + 1.
We first present some useful lemmas.

Lemma 3. Suppose that T and T' are two trees such that for some integer
k, %e(T') < 1e(T) + k and B'(T) < B'(T") = k. If 1r(T) = B'(T) +1, then
Yer(T') = B'(T) + 1 and v, (T') = 7 (T) + k.

Proof. By Corollary 2 and the hypothesis, we have

B(T)+1 < %(T) S 1e(T) +k

BT +1)+k=BT)+k)+1< B (T)+1.
Hence %, (T") = B'(T") + 1 and 7r(T") = 7r(T) + k. .

Lemma 4. Suppose that T and T' are two trees such that for some integer
k, 1r(T") < 1r(T) — k and B'(T) < B'(T") + k. If 76 (T) = B'(T) +1, then
7tr(T') = ﬂ'(T') + 1 and 'yt,.(T') = Ytr (T) -k
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Proof. By Corollary 2 and the hypothesis, we have
.B'(T’) +1 < 7%e(T) <% (T) -k
= F'DM+)-k=BT)-k+1<p(T)+1.
Hence 7,r(T") = B'(T") + 1 and %+ (T") = %-(T) — . =
Lemma 5. Let T be a tree with v (T) = '(T) + 1 and P be an end path

with k vertices in T. If D is a ~;r(T)-set such that D' = D -V(P) is a
TRDS for T' = T — V(P), then at most | &5 | vertices of P belong to D.

Proof. Suppose that this is not true; i.e., D contains at least | 51| + 1
vertices of P. By Corollary 2,

ﬂ,(T,) +1< 'Ytr(Tl)'
Since D' = D — V(P) is a TRDS of T",

W@ <121 <101 - (|52 4 =0 - |52 -1

The union of an edge cover of P and an edge cover of T is an edge cover
of T and B'(P) = | &t|. Thus

po e+ EE.

Now we have

FEN+1 < ml) Sw®- | 52| -1
= rm+1- |52 1= - |5
< E@+ 5D - 15 =8

a contradiction. This shows that D contains at most [%f1| vertices
of P. -

Now we construct a family @ of trees recursively as follows:

(i) Let P, be in ®.
(ii) Let T € ® and D be a ;. (T)-set. Then T' € @ if T’ is a tree constructed
from T by performing one of the following operations.
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0;. Add a new vertex ¢t to T and join ¢ to a support vertex in 7. Let

D':=Du{t}.
0. Add a new path abed to T and join vertex a to a vertex s in D. Let
D' := DU {c,d}.

O3. Let abed be an end path in T such that a ¢ D and b,¢c,d € D. Add a
new path ¢z to T', and join ¢ to vertex a. Let D' := (D — {b})U{t, z}.

O4. Let abed be an end path in T such that a ¢ D. Add a new path tzy
to T and join ¢ to a. Let D' := DU {z,y}.

In the following lemma, we show that D' is a v;,.(T")-set and hence &
can be constructed recursively.

Lemma 6. Let T be a tree such that v, (T) = f/'(T)+1 and T' constructed
Jrom T by one of the operations above. Then v,.(T') = f'(T') + 1 and D’
is @ Y (T")-set.

Proof. We first show that if we perform each of the operations above,
then T and T" satisfy the hypothesis of Lemma 3 for some k. Hence we can
conclude that v, (T') = B'(T") + 1. To see this, let M’ be an edge cover of
o

Operation O;. By Proposition A, we have every support vertex is in D, so
it is obvious that D' is a TRDS of T”. Thus 4,(T") < |D'| = %(T) + 1.
Suppose that M is obtained from M’ by deleting the edge incident to t
(note that each edge incident to an end vertex belongs to M’). The set M
is an edge cover for T'; so '(T) < B'(T") — 1. In this case, k = 1 and we
are done.

Operation O.. Similarly, for this operation, we have v,(T") < |D'| =
7er(T) + 2. Suppose that M is obtained from M’ by deleting the edges
incident to the vertices b and d. Since b and d are not adjacent, there
are at least two such edges. Moreover if edge as belongs to M, then we
substitute as with an edge of T incident to s to get an edge cover for 7.
So B'(T) < B'(T") — 2. Hence, in this case, k = 2 and we are done.

Operation O3. For this operation, we have k = 1, and the argument is
similar to the above.

Operation Oy4. Similarly, v+ (7") < 7%-(T) + 2. Kf at,ab € M’, then we can
substitute at with ¢z and get a new edge cover of T”. Hence by symmetry
of edges ab and at, without loss of generality we may assume at ¢ M’.
Thus tz € M', also we know that zy € M’, and so M’ — {tz,zy} is an edge
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cover for T of size §'(T') — 2. Hence §/'(T') < B'(T') -2 and we have k = 2,
and the desired result can be obtained.

For the second part of the lemma, it is seen that in each case D' is a TRDS
of T'. Moreover, in each case for chosen k, we have |D'| = 4;,(T') + k. On
the other hand, by Lemma 3, 7:(T') = % (T') + k. Thus |[D'| = 'ytr(T')
and so D' is a ;- (T")-set.

Theorem 5. The set ® is the set of all trees T with v, (T) = 8'(T) + 1.

Proof. Obviously v (P2) = 2 = §'(P2) +1. Thus by Lemma 6 and using
the induction on the number of the operations, for every tree T in &, we
have . (T) = 8'(T) + 1.

We now show that every tree T of order n with v, (T) = f'(T) + 1 is
contained in ®. Our proof is by induction on n. Forn = 2, we have T’ = P,,
and P, € ®. Suppose that n > 3 and the statement is true for all trees of
order less than n. Our strategy is to find some proper subtree of T', say 1",
that satisfies the hypothesis of Lemma 4. Hence v;-(T") = '(T')+1 and by
the induction hypothesis, T belongs to ®. Moreover, we find 7" such that T
can be constructed from 7" by performing one of the operations O,, ..., 04,
and conclude that T € ®.

Thus, let T be a tree of order n > 3 with 7,.(T) = §'(T) + 1. Note that,
by Theorem 4, T is y;-edge critical. Suppose that D is a 4;-(T)-set, P is
the longest path in T and c is a support vertex in P.

If degr(c) > 2, then c¢ is adjacent to two end vertices, say ¢ and d. By
Proposition A, the vertices ¢,d and ¢ are in D. Since D' = D - {t} is
a TRDS in T" = T - {t}, 1+(T') < %-(T) — 1. On the other hand, the
union of an edge cover of T = T — {t} and edge ct is an edge cover of
T, so B'(T) < B'(T') + 1. On the other hand, the union of a 7;,(T")-set
and {t} is a TRDS of T. Thus 7;+(T) < %-(T") + 1, and so 7;+(T) =
7r(T') + 1. Therefore the tree T is a desired subtree of T from which T
can be constructed by O;.

Assume now that degr(c) = 2. Then c is adjacent to an end vertex, say d
and vertex, say b. If degr(b) = 1, then T = P; and P; € ®. Assume that
degr(b) > 2. Then we have the following two cases to consider.

Case 1. degr(b) > 2.

In this case, b has a neighbor not in P, say ¢. By our choice of P, it is
obvious that the length (say !) of the longest path bt... beginning with
bt is at most two. By Proposition A, the vertices ¢,d,t and the neighbors
of t other than b (if there exist) are in D. Thus, for l = 1 and I = 2,
Yer (T — bc) = 7+ (T'), which contradicts that T is 7;.-edge critical.

Case 2. degr(b) =
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In this case, let the neighbors of b be vertices a and c. If degr(a) = 1, then
T = Py, while v,(Py) # B'(Ps) + 1. Thus, we consider the following two
subcases.

Case 2.1. degr(a) > 2.

Assume that ¢ is a neighbor of a not in P. Let I be the length of longest
path at... beginning with at. Then, by the choice of P, it is obvious that
! < 3. The following three cases can happen.

Case 2.1.1. I =1.
By Proposition A, the vertices a,c and d are in D, so b is also in D. This
is a contradiction for, by Theorem 2, every component of (D) is a star.

Case 2.1.2. 1 = 2.

If z is an end vertex adjacent to ¢, then by Proposition A, vertices ¢, d,t and
z arein D. If b € D, then a has two neighbors in D, which, by Theorem 2,
contradicts that T is a +;,.-edge critical graph. Hence b € V — D, and since
it should not be an isolated vertex in (V' — D), we have a ¢ D. In this case,
let ' = T — {t,z}. It can be seen that T can be constructed from T by
performing O3. Moreover it can be easily checked that the union of an edge
cover of T' and the edge ¢z is an edge cover of T'; so §/(T) < B'(T")+1. On
the other hand, (D U {b}) — {z,t} is a TRDS of 7" (note that degr(a) > 2
and T is v;,-edge critical, hence by Theorem 2 all neighbors of a except ¢
arein V — D); 30 7:r(T') < %+(T) — 1, and we are done in this case.

Case 2.1.3.1=3

Let atzy be a longest path beginning with at of length 3. Note that the
path obtained by substituting the subpath atzy with subpath abcd in P is
also a longest path in T'. So by symmetry, we may assume that degr(t) = 2
and degr(z) = 2. By Proposition A, the vertices ¢,d,z and y are in D.
If b and ¢ both belong to D, then a has two neighbors in D which, by
Theorem 2, contradicts that T is v;.-edge critical. Hence at least one of
band tisin V — D, say t € V — D. Since there is no isolated vertex in
(V- D) and = € D, we have a ¢ D. In this case, let 7' = T - {t,z,y}.
Then T can be constructed from T by performing O4. Moreover, it can be
easily seen that the union of an edge cover of 7" and the set {iz,zy} is an
edge cover of T'; so §'(T) < B'(T') +2. On the other hand, D — {z,y} is a
TRDS of T' and 80 7:-(T") < 7»(T") — 2, and we are done in this case.

Case 2.2. degr(a) = 2.
In this case, we denote the neighbors of a by b and s. By Proposition A,
vertices ¢ and d should be in D. '
If b ¢ D, then since (V — D) contains no isolated vertex, a ¢ D and s € D
to dominate a. In this case, let 7' = T — {a,b,c,d}. Then T can be
constructed from T" by performing O,. It can be easily shown that 7" and
T’ satisfy the conditions of Lemma 4 for k = 2.
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If b € D, then a € V — D, because, by Theorem 2, every component of
(D) is a star. Since there is no isolated vertex in (V — D), a € V- D
implies that s ¢ D. If degr(s) > 2, let T' = T — {a,b,c,d}, then the set
D - {b,¢,d} is a 7~ (T")-set (note that, by Theorem 2, all neighbors of s
except one are in V — D), while D contains three vertices of the end path
abed in T. This contradicts Lemma 5. Thus degr(s) # 2. However, in the
case that degr(s) = 1, we have T' = P;, while 7;.(P;) # f'(Ps) + 1. Hence
degr(s) = 2. Furthermore since a ¢ D, the only other neighbor of s is in
D. So (D — {b}) U {s} is also a ~;(T)-set which does not contain b. We
are done so long as b ¢ D. n
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