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Abstract

The closed neighborhood Ngle] of an edge e in a graph G is the
set consisting of e and of all edges having a common end-vertex with
e. Let f be a function on E(G), the edge set of G, into the set
{-1,1}. If 2 zenie f(x) 2 1 for at least k edges e of G, then f is
called a signed edge k-subdominating function of G. The minimum of
the values 3° ey S (e), taken over all signed edge k-subdominating
function f of G, is called the signed edge k-subdomination number
of G and is denoted by 7;,(G). In this note we initiate the study of
the signed edge k-subdomination in graphs and present some (sharp)
bounds for this parameter.
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1 Introduction

Let G be a simple graph with the vertex set V(G) and the edge set E(G).
We use [8] for terminology and notation which are not defined here. The
minimum and maximum vertex degrees in G are respectively denoted by
§(G) and A(G). The line graph of a graph G, written L(G), is the graph
whose vertices are the edges of G, with ef € E(L(G)) when e = uv and
f=vwin G. It is easy to see that L(C,) = C, and L(P,) = Py-1.

Two edges e;, ez of G are called adjacent if they are distinct and have a
common end-vertex. The open neighborhood Ng(e) of an edge e € E(G) is
the set of all edges adjacent to e. Its closed neighborhood is Ngle] = Ng(e)u
{e}. For a function f : E(G) — {-1,1} and a subset S of E(G) we define

f(8) = X .cs f(e). If S = Ngle] for some e € E, then we denote f(S) by
fle]. For each vertex v € V(G) we also define f(v) = 3 ¢ p(o) f(€), where
E(v) is the set of all edges incident to vertex v. A function f : E(G) —
{-1,1} is called a signed edge k-subdominating function (SEKSDF) of G, if
fle] > 1 for at least k edges e of G. The minimum of the values f(E(G)),
taken over all signed edge k-subdominating functions f of G, is called the
signed edge k-subdomination number of G and is denoted by v;,(G). The
signed edge k-subdominating function f of G with f(E(G)) = 7;,(G) is
called 7}, (G)-function. For any signed edge k-subdominating function f of
G we define P = {e € E(G) | f(e) =1}, M = {e € E(G) | f(e) = —1} and
X ={e€ E(G)| fle 21}

If K = m, where m is the size of a graph, then the signed edge k-
subdomination number is called the signed edge domination number. The
signed edge domination number was introduced by Xu in [9] and denoted
by 7.(G). This parameter has been studied by several authors [4, 5, 6, 9,
10, 12, 13, 14].

If k = [m/2], then the signed edge k-subdomination number is called
the signed edge majority domination number. This parameter was intro-
duced by Karami et al. in [7] and denoted by 7}, (G).

An opinion function on a graph G is a function f : V(G) — {-1,1}.
By the vote of a vertex v we mean > . N F(w). A k-subdominating
function (see [1]) of a graph G is an opinion function for which the votes of
at least k vertices are positive. The k-subdomination number of G, denoted
by ks(G), is the minimum of the values of },cy (s f(v), teken over all
k-subdominating functions f of G. The k-subdominating function f of G
with f(V(G)) = 1ks(G) is called ks (G)-function.

The following table shows the notation introduced above.
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For e € E(G), Ngle] = Ng(e) U {e}

For § G E(G), f(S) =3 .csf(e)

For e € E(G), fle] = X enie f(€')

For § = Ngle], f(S) = fle]

For v € V(G), E(v) = the set of all edges incident to vertex v
For v € V(G), f(v) =} cep(v) f(€)

P={ec BO) [ {(e) = 1}

M= (c € BC) | () = 1)
X={ec E@ /15 1]
7:(G) = the signed edge domination number of G
7im(G) = the signed edge majority domination number of G
s(G) = the signed edge k-subdomination number of G
ks (G) = the k-subdomination number of G

Table of notation

In this note, we initiate the study of the signed edge k-subdomination in
graphs and present some (sharp) bounds for this parameter. Note that the
signed edge k-subdomination number is a generalization of the signed edge
domination number introduced by Xu in [9] and the signed edge majority
domination number introduced by Karami et al. in [5). Here are some
well-known results on v} (G), v.,,(G) and 7ks(G).

Theorem A. [4]) For any tree T of order n > 2, v4(T) > 1 with equality if
and only if T has no vertex of even degree and ¢(v) > | (deg(v) — 1)/2] for
every vertex v, where £(v) denotes the number of pendant edges at vertex
v. In addition, if v,(T) = 1 and f is a +,(T)-function, then f(v) = 1 for
every vertex of degree greater than one.

Theorem B. ([11]) Let G be a graph with §(G) > 1. Then 7/(G) >
[V(G)| — |E(G)| and this bound is sharp.

Define Go to be the collection of all simple connected graphs of order
n 2 2 in which the degree of each vertex is odd and £(v) > (deg(v) — 1)/2
for every vertex v.

Theorem C. ([5]) Let G be a simple connected graph of order n > 2
and size m. Then 7/(G) = n — m if and only if G € Gy. Furthermore, if
74(G) = n — m and f is a v,(G)-function, then

1. f(e) =1 for each non-pendant edge e € E(G);

2. f(v) =1 for each vertex v of degree greater than 1;
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3. fle] =1 for each edge e € E(G).
Theorem D. ([10]) For any positive integer m, define
¥(m) = min{v,(G) | G is a graph of size m}.

Then

(m) =2I.%I.\/24m—+2_:+6m+5n m

Theorem E. ([7]) Let ¥ be as in Theorem D. Then
1. m > ¥(m) for every positive integer m, and
2. ¥(a) + ¥(b) > ¥(a + b) for each pair of positive integers a and b.

Theorem F. ([7]) Let G be a simple graph of order n > 3 and size m.
Then
Yo (G) 2 ¥(t) — (m — 1)

for some integer [3] < ¢t < m. Furthermore, this bound is sharp for
t= 3.
Theorem G. ([1]) Forn > 2and 1 <k < n, 1is(Pn) = 2[(2k+4)/3] —n.

Theorem H. ([2]) If n >3 and 1 <k <n—1, then

22 ifk=n—1and k=1 (mod 3)
Yks(Cn) =

2|2 | —n  otherwise.

Theorem 1. ([1]) For any connected graph G of order n and any positive
integer k < [3],
1 ifnisodd
Tes(G) < { 2 if n is even.

Theorem J. ([3]) For any connected graph G of order n and any positive
integer k£ with § <k <mn,

k

1s(G) S 277

n—k+1)—n.

The proof of the following theorem is straightforward and therefore
omitted.

Theorem 1. For any graph G of order n > 2 which has no isolates,

Vs(G) = s (L(G)).
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Theorems 1, G, H, I and J lead to:
Corollary 2. Forn>83and 1<k <n-1,
Yo (Pn) = 2|(2k + 4)/3] —n+1.
Corollary 3.___ For n>23and1<k<n-1,

n=2 ifk=n-1and k=1 (mod 3)
Tks(Cn) =

2|25H ] —n  otherwise.

Corollary 4. For any connected graph G of size m and positive integer
k<21

, 1 ifmisodd
Ms(G) < { 2 if m is even.

These bounds are sharp for stars.

Corollary 5. For any connected graph G of size m and any positive integer
k with 3 <k <m,

__k
m-k+1

2 Lower bounds on the SEkSDNs of graphs

In this section we generalize Theorem F to the signed edge k-subdomination
number. Then we present a lower bound for +;,(G) in terms of the size,
the minimum degree and the maximum degree of G. We find a sharp lower
bound for 7;,(T’) in terms of k, the order and the size of tree 7. This
generalizes the lower bound given in Theorem A to the SEKSDNs of trees.
Finally, we find a lower bound for ;,(G) in terms of k, the order and the
size of G, generalizing Theorem B. We show that this bound is sharp for
k > 7 and odd.

Yes(G) < 2] 1m—k+1)—m.

Theorem 6. For any simple graph G of order n > 3, size m and integer
1<k<m,
Ms(G) 2 U(t) — (m — 1),

for some integer k£ < ¢t < m. Furthermore, this bound is sharp when ¢t = k.

Proof. The statement holds for all simple graphs of size m = 1,2,3. Now
assume m > 4. Let, to the contrary, G be a simple graph of size m > 4
such that v;,(G) < ¥(t) — (m —t) for every integer k < t < m. Choose
such a graph G' with as few edges as possible for which w(G) + |T(G)| is
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maximum, where w(G) denotes the number of components of G and T'(G) =
{u € V(G) | deg(u) < 2}. Without loss of generality we may assume G
has no isolated vertices. Let f be a v;,(G)-function. Let Gy, ...,G.q) be
the connected components of G. If G; ~ K for each 1 < ¢ < w(G), then

obviously
Yks(G) =k — (m — k) 2 ¥(k) - (m — k).

Let G have a connected component H of size at least 2. First we prove
that E(H) C X. Hence, f|g is actually a 4;-function on H for every
connected component H with |E(H)| > 3 of G. Then we use a simple
counting argument and Lemma E to complete the proof.
Claim 1. E(H)n M C X.
Let e € E(H)N M. Suppose that, to the contrary, e ¢ X. Assume G’ is
obtained from G —e by adding a new component ugup. Define g : E(G’) —
{—1,1} by g(uove) = -1 and g(z) = f(z) if z € E(G’)\ {uovo}. Obviously,
g is an SEKSDF of G’ with g(E(G")) = f(E(G)) and w(G') + |T(G")| >
w(G) + |T(G)|. This contradicts the assumptions on G. Thus e € X.
Claim 2. For every non-pendant edge e = uv € E(H) N M we have
deg(u) = deg(v) = 2.
If f(u) > 1 (the case f(v) > 1 is similar) and G’ is obtained from G — e by
adding a pendant edge uv’, then obviously g : E(G') — {—1,1}, which is
defined by g(uv’) = —1 and g(z) = f(z) if z € E(G)\{e}, is an SEkSDF of
G’ with g(E(G")) = f(E(G)) and w(G’) + |T(G")| > w(G) + |T(G)}. This
contradicts the assumptions on G. Hence, f(u) = f(v) = 0. Therefore
deg(u) and deg(v) are even. Let deg(u) > 4 (the case deg(v) > 4 is
similar). Then there is a +1 edge ¢’ = uw at u. Assume G’ is obtained
from G — {e, €'} by adding a new vertex z and two new edges vz and wz.
Define g : E(G') — {-1,1} by g(v2) = -1, g(wz) =1 and g(z) = f(=z) if
z € E(G) \ {e,€'}. Then g is an SEKSDF of G’ with g(E(G")) = f(E(G))
and w(G’) + |T(G')| > w(G) + |T(G)|, a contradiction. Hence, deg(u) =
deg(v) = 2.
Claim 3. Let e = uv € E(H) N M be a non-pendant edge and uv’,vv’ €
E(G). Then uv/, v € X.
Let, to the contrary, uu’ & X (the case vv’ € X is similar). Since e € X,
f(uv') = f(vv') = 1. Suppose that deg(z’) = 1 and G’ is obtained from
G — {e,uu'} by adding a pendant edge vv; and a new component ugv.
Define g : E(G’) — {—1,1} by g(vv1) = —1, g(uovo) = 1 and g(z) = f(z)
if £ € E(G) \ {e,uv'}. Then g is an SEKSDF of G’ with g(E(G’)) =
f(E(G)) and w(G") + |T(G")| > w(G) + |T(G)|, a contradiction. Therefore
deg(u') > 2. Similarly, we can see that deg(v') > 2.

First let v’ = v’. Since uu’ € X, we have vv’ ¢ X. Suppose that there
exists a —1 pendant edge «'z at «’. By Claim 1, v’z € X, which implies
that f(u') > 1. Let G’ be the graph obtained from G — {e} by adding
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a new component ugvg. Define g : E(G') — {-1,1} by g(uovg) = -1
and g(z) = f(z) if z € E(G) \ {e}. Obviously, g is an SEkSDF of G’ with
9(E(G")) = F(E(G)) and w(G")+|T(G")| > w(G)+|T(G)|, a contradiction.
Therefore, there is no —1 pendant edge at v’ = ¢'. If there exists a —1 non-
pendant edge at v/, then an argument similar to that described in Claim
2 shows that deg(u') = 2, a contradiction. Thus every edge at u’ is a +1
edge. This forces uu’ € X, a contradiction.

Now let 4’ # /. Since we have assumed wu’ ¢ X, it follows that
f(v') < 1. If there is a —1 pendant edge uw'w at «/, then by Claim 1 we
have u'w € X and hence, f(u’) = f[u'w] > 1. If there is a —1 non-pendant
edge at «/, then deg(u') = 2 by Claim 2 and hence, f(u') = 0. It follows
that f(u') =0,1.

When f(u') = 1, define G’ to be the graph obtained from G — {e}
by adding a new component upvg. Then g : E(G') — {—1,1} defined
by g(uow) = -1 and g(z) = f(z) if z € E(G) \ {e} is an SEkKSDF of
G' with g(E(G")) = f(E(G)) and w(G') + |T(G")] > w(G) + |T(G)|, &
contradiction. Therefore f(u') = 0 and hence, there exists a —1 edge u'u”
at u'. If deg(u"”) = 1, define G’ to be the graph obtained from G — {v'u"}
by adding a new component ugvg. Then g : E(G') — {—1,1} defined
by g(uow) = ~1 and g(z) = f(z) if z € E(G) \ {v/v"} is an SEKSDF
of G' with g(E(G")) = f(E(G)) and w(G') + |T(G")| > w(G) + |T(G)], a
contradiction. Hence, deg(u”) = 2 (see Claim 2). Let G’ be obtained from
G - {e,uv/,u'v"} by adding a new component uguy and two new edges
u”2,zv. Then g : E(G') — {~1,1} defined by g(uovp) = -1, g(u"z) =
-1, g(zv) = 1 and g(z) = f(z) if z € E(G) \ {e, wt/,u'u"} is an SEKSDF
of G’ with g(E(G")) = f(E(G)) and w(G’) + |T(G")| > w(G) + |T(G)], a
contradiction. Therefore uu’ € X, a contradiction.

Claim 4. E(H)NnP C X.

Let e = wv € E(H) N P. If there is a —1 non-pendant edge at u or at v,
then by Claim 3 we have e € X. If there exists a —1 pendant edge €’ at u,
then e’ € X by Claim 1 and hence, f(u) = fle] = 1. If all the edges at u
are +1 edges, then f(u) > 1. Similarly, if there is no —1 non-pendant edge
at v, we see that f(v) > 1. Hence, e € X.

Let G1,Ga,. .., G, be the connected components of G for which E(G;) C
X. Thus, f|g, is a v.-function on G; for each 1 < i < 5. Now by Claims 1

and 3, X N [UXS) E(G)] = 0.
Let |E(G;)| = m; for each 1 < i < w(G). Then |X|=Y{_, m; > k and
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E:”_(f_zl m; < m— k. Then by Lemma E,

Yo (G - zrﬁfglm
21—1 ‘I’(ml) Et—a lm'

\I’(Zz=1 m;) — Za=e+l mi
¥ty = (m—1)

 Yks(B)

VIV IV I

where t =3 ;_,m; > k.

In order to prove that the lower bound is sharp when t = k, let H; be
a graph of size k with +,(H) = ¥(k) (see [10]) and let H, be a graph of
size m — k such that V(H,) N V(Hy) = @. Suppose G = H, U Hj and f
is a v, (H,)-function. Then g : E(G) — {-1,1} defined by g(e) = f(e)
if e € E(H,) and g(e) = -1 if e € E(H2), is an SEKSDF of G with
g(E(G)) = ¥(k) — (m — k). This completes the proof. O

Theorem 7. Let G be a simple graph of size m, minimum degree 4, max-
imum degree A and no isolates. Then

, 2%k
Yks (G) Z '2'A_ 1

Proof. Let (d;,...,d,) be the degree sequence of G where d; < dp <... <
d,. Assume g is a 7;,(G)-function of G and let g(e) > 1 for k distinct
edges e in {ej, = u;,vj,,...,¢€; = u;;}. Define f: E(G) — {0,1} by
f(e) = (g(e) +1)/2 for each e € E(G). We have

zk g(NG[eji]) + deg(uje) + deg(vji) -1

Y5 f(Nelei])

i=1
o o dog(uy) + deg(u;) @
= Ei: 1 2
> k.

On the other hand,
Tia fNeleil) S Teer fWNle)

= 25=uueE(deg(u) + deg(v) - l)f(e) (2)

< 5.ep(CA-1)f(e)

= (2A-1)f(E(G)).

By (1) and (2), f(B(G)) 2 5. Since g(E(G)) = 2f(E(G)) ~m,
7,(G) = 9(B(G)) > 520 ~m,
as desired. 0
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As an immediate consequence of Theorem 7 we have:

Corollary 8. Let G be an r-regular graph of size m and r > 1. Then
Ts(G) = % — m. Furthermore, this bound is sharp when r = 1.

Now we prove that for any tree of size m > 2 and any integer 1 < k <
m =1, 1,(T) = k —m + 2. This generalizes the lower bound for signed
edge domination numbers for trees given in Theorem A to the signed edge
k-subdomination numbers for trees.

Theorem 9. If T is a tree of size m > 2 and k is an integer, 1 < k < m—1,
then 7;,(T) > 2[k/2] — m + 2. Furthermore, these bounds are sharp for
each value of Ic

Proof. First, by induction on m, we prove that 4 (T) > k—m + 2 where
1 < k < m—1. The statement holds for all trees of size m = 2, 3, 4. Assume
T is an arbitrary tree of size m > 5 and that the statement holds for all
trees of smaller sizes. Let f be a v;,-function for T'. If M = {e € E(T) |
f(e) = =1} = 0, then obviously the theorem is true. Let M # 0.

Case 1. There is a non-pendant edge e = uv € E(T') for which f(e) = —
Let T; and T be the connected components of T’ — e with u € T3. Then,
Y%s(T) = f(E(T1)) — 1+ f(E(T2)). We consider two subcases.

Subcase 1.1 Fori = 1,2, XNE(T;) # 0, where X = {e € E(T) | fle] > 1}.
Let | X N E(T1)| = ky and | X N E(T3)| = ko. Then for i = 1,2, the function
[, restricted to T; is an SEK;SDF for T;. Hence, 7, ,(Ti) < f(E(T3)) for
i =1,2. First let E(T;) C X for i =1,2. Then since k < m — 1, it follows
that e ¢ X and by Theorem A,

Ms(T) = F(E(T)) = F(E(TM)) -1+ f(ED) 21-1+1>k—m+2.

Now without loss of generality we assume E(T}) € X. If E(T3) € X, then
by the inductive hypothesis and Theorem A, v; (T1) > k1 — |E(T1)| + 2
and 7;,,(T2) > 1. If e ¢ X, then obviously 7, (T) > k~m+3. Ife € X,

th
T @ = FED) = FETD) -1+ f(ET)
> kb~ |E(T)|+2-14+1>k-m+2.

The case E(T) € X is similar.

Subcase 1.2 X N E(T}) = § (the case X N E(T,) = 0 is similar). First let
e ¢ X. Then | X N E(T,)| = k2 > k. We claim that f assigns —1 to all
edges of T1. If E(T1) N P # @, where P = {e € E(T) | f(e) = 1}, then we
define g : E(T) — {-1,+1} by g(e) = -1 if e € E(T}) and g(e) = f(e)
if e € E(T)\ E(T1). Then g is a SEKSDF of T of weight less than f, a
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contradiction. This proves our claim. Now by the inductive hypothesis on
T' =T, + uv we have

Ts(T) = fET)) + F(E(T))
> —|E(Ty)| +ks— |ET)|+22 k—m+2.

Now assume ¢ € X. First let f(v) > 2. Then f, restricted to T", is an
SEKSDF for T'. If k = |E(T")|, since f(v) > 2, by Theorem A,

Yeo(T) 2 F(E(T")) — |E(T1)| 2 (k= |E(T)) +2 - |[E(T)| =k —m +2.
If k < |E(T")|, by the inductive hypothesis,
Yeo(T) 2 [(E(T")) — |E(T)| 2 k= |E(T)| +2 - (IE(T)]) 2 k—m +2.

Now suppose that f(v) = 1. Then f, restricted to 7", is an SEKSDF for
T’ and there exists at least one +1 edge at u in T} (note that e € X). By
Theorem A or the inductive hypothesis

%s(T) 2 fET)) - |ET)|+2
> (k- |E(T)|+1) - |E(T)|+2=k-m+3.

Finally, let f(v) < 0. Then either there exists an edge at v not in X or
there exists a vertex w € V(T2) other than v for which f(w) > 2. Since
e € X, f(u) = —f(v), hencein T} there are at least — f(v)+1, +1 edges at .
Assume E(v)NM = {uv,vvy,...,v0:} and E(u)NP = {vuy, vug,...,vu, },
where 7 > s+ 1. Define g : E(T) — {-1,+1} by g(uvv) = g(vv;) = 1,
gluussr) = gluw;) = —1, for i = 1,...,3 and g(e) = f(e) if e € E(T) \
{uugsr,uv,vv5,uy; | 1 < i < s}. Obviously, g is a 4, (T")-function and
g(v) > 1. Now by an argument similar to that described above (for the
cases f(v) > 2 or f(v) =1) we have v (T) =g(E(T)) 2 k—m+2.

Case 2. The only edges e for which f(e) = —1 are pendant edges.

First suppose that there exists a pendant edge e = uv € M N X°¢ with
deg(u) = 1. Then f, restricted to T — u, is an SEkSDF for T — . If
k < m — 2, then by the inductive hypothesis

o T) = F(E(T—w)—1>k—(m—-1)+2-1=k-—m+2.

If k = m — 1, then obviously there exists a vertex w € V(T — {u,v}) such
that f(w) > 2. Now the result follows by Theorem A. Thus we may assume
M C X. This implies that for each non leaf vertex v € V(T), f(v) > 1.
Thus f is an SEDF for T and the result follows by Theorem A. This proves
the first statement.

If k is odd; then 2|P| # k + 2 and s0 7,,(G) =2|P| - m # k—m+ 2.
Hence, 7;,,(T) 2 k —m +3.
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To prove sharpness, let T' be the tree obtained from the star K 441, with
vertex set {v,v1,...,v41} and edge set {vv; | 1 < i < k + 1}, by adding
m—k—1 pendant edges v1uy, ..., ¥1Um—k—1. Obviously, 74, (T) = k—m+2
for k even and 7;,,(T') = k—m+3 for k odd. This completes the proof. [

Now we find a lower bound for the SEKSDNs of simple connected graphs.
This is a generalization of Theorem B.

Theorem 10. Let G be a simple connected graph of order n > 3, size m
and 1 <k <m-—1. Then

Ys(G) 2 n+k+1—2m.

Furthermore, the bound is sharp for each odd & > 7.

Proof. The proof is by induction on m. Obviously, the statement is true
for m = 2,3. Assume the statement is true for all simple connected graphs
of size less than m, where m > 4. Let G be a simple connected graph of
size m and let f be a v;,(G)-function. we distinguish two cases.

Case 1 There is a non-pendant edge e = wv € E(G) for which f(e) = —1.
First let e not be a bridge. If e ¢ X = {e € E(T") | fle] = 1}, then f is an
SEKSDF of G — e. If k < m — 2, then by the inductive hypothesis

%s(G) = f(E(G))=f(E(G—-¢€)) -1
2 nt+k+1-2m—-1)=-1=n+k+2-2m.

If k=m —1, then f is an SEDF of G — e and by Theorem B we have
%s(G) = Ff(E(G))=f(E(G—e€))-1

2 n—(m-1)-l=n-m=n+k+1-2m.

Let e € X. If f, restricted to G — e, is an SEDF of G — e, then the result
follows as above. Otherwise f, restricted to G — e, is an SE(k-1)SDF of
G — e and the result follows by the inductive hypothesis.

Assume e is a bridge and G; and G, are the connected components of
G — e. An argument similar to that described in the proof of Case 1 of
Theorem 9 shows that v, (G) > n+k+ 1 — 2m. Note that for this case we
apply Theorem C instead of Theorem A.

Case 2 The only edges e for which f(e) = —1 are pendant edges.

First suppose that there exists a pendant edge e = wv € M N X° with
deg(u) = 1. Then the result follows by an argument similar to that de-
scribed in Case 2 of the proof of Theorem 9 and Theorem C. Now assume
M C X. If G is a tree, then the statement is true by Theorem 9. Now let G
have a cycle C. By assumption f(e) =1 for every e € E(C). First assume
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f(e') =1 for every edge e’ with an end-vertex in V(C). Then f|g-. is an
SE(k-1)SDF of G — e for every e € E(C). So we have

f(EG) = fle-<(E(G-e))+1
> n+(k-1)+1-2m-1)+1
= n+k-2m+3.
Now assume there is an edge e/ = wu’ with f(¢') = -1 and u € V(C).

Hence ¢’ is a pendant edge by assumption. Let e = uv € E(C). If for
every edge e’ at v, f(e”) = 1, then f restricted to G; = G — {e,e'} is an
SE(k-2)SDF of G;. So we have

f(E(G)) fle, (E(G1))
m-1)+k-2)+1-2(m—-2)
n+k+2-2m.

VIV I

Finally, let there be an edge e¢” at v with f(e”) = —1. Note that by
assumption e” is a pendant edge. Hence, f restricted to Go = G—{e, ¢’,e"}
is an SE(k-3)SDF of G3. So we have

F(E(G)) fle.(E(Gg)) - 1
n-2)+(k-3)+1-2(m—3)-1
n+k+1-2m.

VIV I

To prove sharpness, we consider two cases.

e k> T7isodd and ¥k = m — 1. Let G be obtained from star K x_3
with vertex set{v,v;,...,vk—3} and edge set {vv; |1 <i < k—3} by
adding three pendant edges vy v}, v2vj, vav3 and an edge v vo. Define
F:V(G) — {-1,1} by f(nivz) =1, flvn;) =1if 1 <i < %51 and
f(e) = —1 otherwise. Then f is an SEKSDF of G with f(E(G)) =
n+k+1-—2m.

e k> T7isodd and k < m — 2. Let G be obtained from star K x—2
with vertex set {v,v),...,vr_2} and edge set {vv; | 1 <i < k—2}
by adding pendant edges vyv}, vovj, vavd for j =1,2,...,.m—k -1
and v1vg. Define f: V(G) — {-1,1} by f(viv2) =1, f(vv;) =1 if
1<i< %51 and f(e) = —1 otherwise. Then f is an SEkSDF of G
with f(E(G))=n+k+1-2m.

This completes the proof. a
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