Signed edge k-subdomination numbers in graphs

Abdollah Khodkar
Department of Mathematics
University of West Georgia
Carrollton, GA 30118
akhodkar@westga.edu

R. Saei and S.M. Sheikholeslami^{†*}
Department of Mathematics
Azarbaijan University of Tarbiat Moallem
Tabriz, I.R. Iran
[†]s.m.sheikholeslami@azaruniv.edu

Abstract

The closed neighborhood $N_G[e]$ of an edge e in a graph G is the set consisting of e and of all edges having a common end-vertex with e. Let f be a function on E(G), the edge set of G, into the set $\{-1,1\}$. If $\sum_{x\in N[e]} f(x) \geq 1$ for at least k edges e of G, then f is called a signed edge k-subdominating function of G. The minimum of the values $\sum_{e\in E(G)} f(e)$, taken over all signed edge k-subdominating function f of G, is called the signed edge k-subdomination number of G and is denoted by $\gamma'_{ks}(G)$. In this note we initiate the study of the signed edge k-subdomination in graphs and present some (sharp) bounds for this parameter.

Keywords: signed edge k-subdominating function; signed edge k-subdomination number; signed edge dominating function; signed domination number

^{*}Corresponding author

1 Introduction

Let G be a simple graph with the vertex set V(G) and the edge set E(G). We use [8] for terminology and notation which are not defined here. The minimum and maximum vertex degrees in G are respectively denoted by $\delta(G)$ and $\Delta(G)$. The line graph of a graph G, written L(G), is the graph whose vertices are the edges of G, with $ef \in E(L(G))$ when e = uv and f = vw in G. It is easy to see that $L(C_n) = C_n$ and $L(P_n) = P_{n-1}$.

Two edges e_1, e_2 of G are called adjacent if they are distinct and have a common end-vertex. The open neighborhood $N_G(e)$ of an edge $e \in E(G)$ is the set of all edges adjacent to e. Its closed neighborhood is $N_G[e] = N_G(e) \cup \{e\}$. For a function $f: E(G) \longrightarrow \{-1,1\}$ and a subset S of E(G) we define $f(S) = \sum_{e \in S} f(e)$. If $S = N_G[e]$ for some $e \in E$, then we denote f(S) by f[e]. For each vertex $v \in V(G)$ we also define $f(v) = \sum_{e \in E(v)} f(e)$, where E(v) is the set of all edges incident to vertex v. A function $f: E(G) \longrightarrow \{-1,1\}$ is called a signed edge k-subdominating function (SEkSDF) of G, if $f[e] \ge 1$ for at least k edges e of G. The minimum of the values f(E(G)), taken over all signed edge k-subdominating functions f of G, is called the signed edge k-subdominating function f of G with $f(E(G)) = \gamma'_{ks}(G)$. The signed edge g-subdominating function g for g with g-subdominating function g-subdominating g-

If k = m, where m is the size of a graph, then the signed edge k-subdomination number is called the *signed edge domination number*. The signed edge domination number was introduced by Xu in [9] and denoted by $\gamma'_s(G)$. This parameter has been studied by several authors [4, 5, 6, 9, 10, 12, 13, 14].

If $k = \lceil m/2 \rceil$, then the signed edge k-subdomination number is called the signed edge majority domination number. This parameter was introduced by Karami et al. in [7] and denoted by $\gamma'_{sm}(G)$.

An opinion function on a graph G is a function $f:V(G)\longrightarrow \{-1,1\}$. By the vote of a vertex v we mean $\sum_{w\in N[v]}f(w)$. A k-subdominating function (see [1]) of a graph G is an opinion function for which the votes of at least k vertices are positive. The k-subdomination number of G, denoted by $\gamma_{ks}(G)$, is the minimum of the values of $\sum_{v\in V(G)}f(v)$, taken over all k-subdominating functions f of G. The k-subdominating function f of G with $f(V(G))=\gamma_{ks}(G)$ is called $\gamma_{ks}(G)$ -function.

The following table shows the notation introduced above.

For $e \in E(G)$, $N_G[e] = N_G(e) \cup \{e\}$
For $S \subseteq E(G)$, $f(S) = \sum_{e \in S} f(e)$
For $e \in E(G)$, $f[e] = \sum_{e' \in N[e]} f(e')$
For $S = N_G[e]$, $f(S) = f[e]$
For $v \in V(G)$, $E(v)$ = the set of all edges incident to vertex v
For $v \in V(G)$, $f(v) = \sum_{e \in E(v)} f(e)$
$P = \{e \in E(G) \mid f(e) = 1\}$
$M = \{e \in E(G) \mid f(e) = -1\}$
$X = \{e \in E(G) \mid f[e] \ge 1\}$
$\gamma_s'(G)$ = the signed edge domination number of G
$\gamma'_{sm}(G)$ = the signed edge majority domination number of G
$\gamma'_{ks}(G)$ = the signed edge k-subdomination number of G
$\gamma_{ks}(G)$ = the k-subdomination number of G

Table of notation

In this note, we initiate the study of the signed edge k-subdomination in graphs and present some (sharp) bounds for this parameter. Note that the signed edge k-subdomination number is a generalization of the signed edge domination number introduced by Xu in [9] and the signed edge majority domination number introduced by Karami et al. in [5]. Here are some well-known results on $\gamma'_s(G)$, $\gamma'_{sm}(G)$ and $\gamma_{ks}(G)$.

Theorem A. [4]) For any tree T of order $n \geq 2$, $\gamma'_s(T) \geq 1$ with equality if and only if T has no vertex of even degree and $\ell(v) \geq \lfloor (\deg(v) - 1)/2 \rfloor$ for every vertex v, where $\ell(v)$ denotes the number of pendant edges at vertex v. In addition, if $\gamma'_s(T) = 1$ and f is a $\gamma'_s(T)$ -function, then f(v) = 1 for every vertex of degree greater than one.

Theorem B. ([11]) Let G be a graph with $\delta(G) \geq 1$. Then $\gamma'_s(G) \geq |V(G)| - |E(G)|$ and this bound is sharp.

Define \mathcal{G}_0 to be the collection of all simple connected graphs of order $n \geq 2$ in which the degree of each vertex is odd and $\ell(v) \geq (\deg(v) - 1)/2$ for every vertex v.

Theorem C. ([5]) Let G be a simple connected graph of order $n \geq 2$ and size m. Then $\gamma'_s(G) = n - m$ if and only if $G \in \mathcal{G}_0$. Furthermore, if $\gamma'_s(G) = n - m$ and f is a $\gamma'_s(G)$ -function, then

- 1. f(e) = 1 for each non-pendant edge $e \in E(G)$;
- 2. f(v) = 1 for each vertex v of degree greater than 1;

3. f[e] = 1 for each edge $e \in E(G)$.

Theorem D. ([10]) For any positive integer m, define

$$\Psi(m) = \min\{\gamma'_s(G) \mid G \text{ is a graph of size } m\}.$$

Then

$$\Psi(m) = 2\lceil \frac{1}{3} \lceil \frac{\sqrt{24m+25}+6m+5}{6} \rceil \rceil - m.$$

Theorem E. ([7]) Let Ψ be as in Theorem D. Then

- 1. $m \geq \Psi(m)$ for every positive integer m, and
- 2. $\Psi(a) + \Psi(b) \ge \Psi(a+b)$ for each pair of positive integers a and b.

Theorem F. ([7]) Let G be a simple graph of order $n \geq 3$ and size m. Then

$$\gamma'_{em}(G) \geq \Psi(t) - (m-t)$$

for some integer $\lceil \frac{m}{2} \rceil \le t \le m$. Furthermore, this bound is sharp for $t = \lceil \frac{m}{2} \rceil$.

Theorem G. ([1]) For $n \geq 2$ and $1 \leq k \leq n$, $\gamma_{ks}(P_n) = 2\lfloor (2k+4)/3 \rfloor - n$.

Theorem H. ([2]) If $n \ge 3$ and $1 \le k \le n-1$, then

$$\gamma_{ks}(C_n) = \begin{cases} \frac{n-2}{3} & \text{if } k = n-1 \text{ and } k \equiv 1 \pmod{3} \\ \\ 2\lfloor \frac{2k+4}{3} \rfloor - n & \text{otherwise.} \end{cases}$$

Theorem I. ([1]) For any connected graph G of order n and any positive integer $k \leq \lceil \frac{n}{2} \rceil$,

$$\gamma_{ks}(G) \leq \begin{cases}
1 & \text{if } n \text{ is odd} \\
2 & \text{if } n \text{ is even.}
\end{cases}$$

Theorem J. ([3]) For any connected graph G of order n and any positive integer k with $\frac{n}{2} < k \le n$,

$$\gamma_{ks}(G) \le 2\lceil \frac{k}{n-k+1} \rceil (n-k+1) - n.$$

The proof of the following theorem is straightforward and therefore omitted.

Theorem 1. For any graph G of order $n \ge 2$ which has no isolates,

$$\gamma'_{ks}(G) = \gamma_{ks}(L(G)).$$

Theorems 1, G, H, I and J lead to:

Corollary 2. For $n \ge 3$ and $1 \le k \le n-1$,

$$\gamma'_{ks}(P_n) = 2\lfloor (2k+4)/3 \rfloor - n + 1.$$

Corollary 3. For $n \ge 3$ and $1 \le k \le n-1$,

$$\gamma_{ks}'(C_n) = \begin{cases} \frac{n-2}{3} & \text{if } k = n-1 \text{ and } k \equiv 1 \pmod{3} \\ 2\lfloor \frac{2k+4}{3} \rfloor - n & \text{otherwise.} \end{cases}$$

Corollary 4. For any connected graph G of size m and positive integer $k \leq \lceil \frac{m}{2} \rceil$,

$$\gamma'_{ks}(G) \le \begin{cases} 1 & \text{if } m \text{ is odd} \\ 2 & \text{if } m \text{ is even.} \end{cases}$$

These bounds are sharp for stars.

Corollary 5. For any connected graph G of size m and any positive integer k with $\frac{m}{2} < k \le m$,

$$\gamma'_{ks}(G) \le 2\lceil \frac{k}{m-k+1} \rceil (m-k+1) - m.$$

2 Lower bounds on the SEkSDNs of graphs

In this section we generalize Theorem F to the signed edge k-subdomination number. Then we present a lower bound for $\gamma'_{ks}(G)$ in terms of the size, the minimum degree and the maximum degree of G. We find a sharp lower bound for $\gamma'_{ks}(T)$ in terms of k, the order and the size of tree T. This generalizes the lower bound given in Theorem A to the SEkSDNs of trees. Finally, we find a lower bound for $\gamma'_{ks}(G)$ in terms of k, the order and the size of G, generalizing Theorem B. We show that this bound is sharp for $k \geq 7$ and odd.

Theorem 6. For any simple graph G of order $n \geq 3$, size m and integer $1 \leq k \leq m$,

$$\gamma'_{ks}(G) \ge \Psi(t) - (m-t),$$

for some integer $k \leq t \leq m$. Furthermore, this bound is sharp when t = k.

Proof. The statement holds for all simple graphs of size m=1,2,3. Now assume $m\geq 4$. Let, to the contrary, G be a simple graph of size $m\geq 4$ such that $\gamma'_{ks}(G)<\Psi(t)-(m-t)$ for every integer $k\leq t\leq m$. Choose such a graph G with as few edges as possible for which $\omega(G)+|T(G)|$ is

maximum, where $\omega(G)$ denotes the number of components of G and $T(G) = \{u \in V(G) \mid \deg(u) \leq 2\}$. Without loss of generality we may assume G has no isolated vertices. Let f be a $\gamma'_{ks}(G)$ -function. Let $G_1, \ldots, G_{\omega(G)}$ be the connected components of G. If $G_i \simeq K_2$ for each $1 \leq i \leq \omega(G)$, then obviously

$$\gamma'_{ks}(G) = k - (m-k) \ge \Psi(k) - (m-k).$$

Let G have a connected component H of size at least 2. First we prove that $E(H) \subseteq X$. Hence, $f|_H$ is actually a γ'_s -function on H for every connected component H with $|E(H)| \ge 3$ of G. Then we use a simple counting argument and Lemma E to complete the proof.

Claim 1. $E(H) \cap M \subseteq X$.

Let $e \in E(H) \cap M$. Suppose that, to the contrary, $e \notin X$. Assume G' is obtained from G-e by adding a new component u_0v_0 . Define $g: E(G') \longrightarrow \{-1,1\}$ by $g(u_0v_0) = -1$ and g(x) = f(x) if $x \in E(G') \setminus \{u_0v_0\}$. Obviously, g is an SEkSDF of G' with g(E(G')) = f(E(G)) and $\omega(G') + |T(G')| > \omega(G) + |T(G)|$. This contradicts the assumptions on G. Thus $e \in X$.

Claim 2. For every non-pendant edge $e = uv \in E(H) \cap M$ we have deg(u) = deg(v) = 2.

If $f(u) \geq 1$ (the case $f(v) \geq 1$ is similar) and G' is obtained from G-e by adding a pendant edge uv', then obviously $g: E(G') \longrightarrow \{-1,1\}$, which is defined by g(uv') = -1 and g(x) = f(x) if $x \in E(G) \setminus \{e\}$, is an SEkSDF of G' with g(E(G')) = f(E(G)) and $\omega(G') + |T(G')| > \omega(G) + |T(G)|$. This contradicts the assumptions on G. Hence, f(u) = f(v) = 0. Therefore deg(u) and deg(v) are even. Let deg(v) ≥ 4 (the case deg(v) ≥ 4 is similar). Then there is a +1 edge e' = uw at v. Assume v is obtained from v for v by adding a new vertex v and two new edges v and v and v deg(v) by adding a new vertex v and two new edges v and v and v deg(v) for v for v for v for v and v deg(v) and v for v

Claim 3. Let $e = uv \in E(H) \cap M$ be a non-pendant edge and $uu', vv' \in E(G)$. Then $uu', vv' \in X$.

Let, to the contrary, $uu' \notin X$ (the case $vv' \notin X$ is similar). Since $e \in X$, f(uu') = f(vv') = 1. Suppose that $\deg(u') = 1$ and G' is obtained from $G - \{e, uu'\}$ by adding a pendant edge vv_1 and a new component u_0v_0 . Define $g: E(G') \longrightarrow \{-1, 1\}$ by $g(vv_1) = -1$, $g(u_0v_0) = 1$ and g(x) = f(x) if $x \in E(G) \setminus \{e, uu'\}$. Then g is an SEkSDF of G' with g(E(G')) = f(E(G)) and $\omega(G') + |T(G')| > \omega(G) + |T(G)|$, a contradiction. Therefore $\deg(u') \geq 2$. Similarly, we can see that $\deg(v') \geq 2$.

First let u' = v'. Since $uu' \notin X$, we have $vv' \notin X$. Suppose that there exists a -1 pendant edge u'z at u'. By Claim 1, $u'z \in X$, which implies that $f(u') \geq 1$. Let G' be the graph obtained from $G - \{e\}$ by adding

a new component u_0v_0 . Define $g: E(G') \longrightarrow \{-1,1\}$ by $g(u_0v_0) = -1$ and g(x) = f(x) if $x \in E(G) \setminus \{e\}$. Obviously, g is an SEkSDF of G' with g(E(G')) = f(E(G)) and $\omega(G') + |T(G')| > \omega(G) + |T(G)|$, a contradiction. Therefore, there is no -1 pendant edge at u' = v'. If there exists a -1 nonpendant edge at u', then an argument similar to that described in Claim 2 shows that $\deg(u') = 2$, a contradiction. Thus every edge at u' is a +1 edge. This forces $uu' \in X$, a contradiction.

Now let $u' \neq v'$. Since we have assumed $uu' \notin X$, it follows that $f(u') \leq 1$. If there is a -1 pendant edge u'w at u', then by Claim 1 we have $u'w \in X$ and hence, $f(u') = f[u'w] \geq 1$. If there is a -1 non-pendant edge at u', then $\deg(u') = 2$ by Claim 2 and hence, f(u') = 0. It follows that f(u') = 0, 1.

When f(u')=1, define G' to be the graph obtained from $G-\{e\}$ by adding a new component u_0v_0 . Then $g:E(G')\longrightarrow \{-1,1\}$ defined by $g(u_0v_0)=-1$ and g(x)=f(x) if $x\in E(G)\setminus \{e\}$ is an SEkSDF of G' with g(E(G'))=f(E(G)) and $\omega(G')+|T(G')|>\omega(G)+|T(G)|$, a contradiction. Therefore f(u')=0 and hence, there exists a -1 edge u'u'' at u'. If $\deg(u'')=1$, define G' to be the graph obtained from $G-\{u'u''\}$ by adding a new component u_0v_0 . Then $g:E(G')\longrightarrow \{-1,1\}$ defined by $g(u_0v_0)=-1$ and g(x)=f(x) if $x\in E(G)\setminus \{u'u''\}$ is an SEkSDF of G' with g(E(G'))=f(E(G)) and $\omega(G')+|T(G')|>\omega(G)+|T(G)|$, a contradiction. Hence, $\deg(u'')=2$ (see Claim 2). Let G' be obtained from $G-\{e,uu',u'u''\}$ by adding a new component u_0v_0 and two new edges u''z,zv. Then $g:E(G')\longrightarrow \{-1,1\}$ defined by $g(u_0v_0)=-1$, g(u''z)=-1, g(zv)=1 and g(x)=f(x) if $x\in E(G)\setminus \{e,uu',u'u''\}$ is an SEkSDF of G' with g(E(G'))=f(E(G)) and $\omega(G')+|T(G')|>\omega(G)+|T(G)|$, a contradiction. Therefore $uu'\in X$, a contradiction.

Claim 4. $E(H) \cap P \subseteq X$.

Let $e = uv \in E(H) \cap P$. If there is a -1 non-pendant edge at u or at v, then by Claim 3 we have $e \in X$. If there exists a -1 pendant edge e' at u, then $e' \in X$ by Claim 1 and hence, $f(u) = f[e'] \ge 1$. If all the edges at u are +1 edges, then $f(u) \ge 1$. Similarly, if there is no -1 non-pendant edge at v, we see that $f(v) \ge 1$. Hence, $e \in X$.

Let G_1, G_2, \ldots, G_s be the connected components of G for which $E(G_i) \subseteq X$. Thus, $f|_{G_i}$ is a γ'_s -function on G_i for each $1 \le i \le s$. Now by Claims 1 and 3, $X \cap [\cup_{i=s+1}^{w(G)} E(G_i)] = \emptyset$.

Let $|E(G_i)| = m_i$ for each $1 \le i \le w(G)$. Then $|X| = \sum_{i=1}^s m_i \ge k$ and

 $\sum_{i=s+1}^{w(G)} m_i \leq m-k$. Then by Lemma E,

$$\gamma'_{ks}(G) = \sum_{i=1}^{s} \gamma'_{s}(G_{i}) - \sum_{i=s+1}^{w(G)} m_{i} \\
\geq \sum_{i=1}^{s} \Psi(m_{i}) - \sum_{i=s+1}^{w(G)} m_{i} \\
\geq \Psi(\sum_{i=1}^{s} m_{i}) - \sum_{i=s+1}^{w(G)} m_{i} \\
\geq \Psi(t) - (m-t)$$

where $t = \sum_{i=1}^{s} m_i \ge k$.

In order to prove that the lower bound is sharp when t=k, let H_1 be a graph of size k with $\gamma_s'(H)=\Psi(k)$ (see [10]) and let H_2 be a graph of size m-k such that $V(H_1)\cap V(H_2)=\emptyset$. Suppose $G=H_1\cup H_2$ and f is a $\gamma_s'(H_1)$ -function. Then $g:E(G)\longrightarrow \{-1,1\}$ defined by g(e)=f(e) if $e\in E(H_1)$ and g(e)=-1 if $e\in E(H_2)$, is an SEkSDF of G with $g(E(G))=\Psi(k)-(m-k)$. This completes the proof.

Theorem 7. Let G be a simple graph of size m, minimum degree δ , maximum degree Δ and no isolates. Then

$$\gamma'_{ks}(G) \geq \frac{2k\delta}{2\Delta - 1} - m.$$

Proof. Let (d_1,\ldots,d_n) be the degree sequence of G where $d_1\leq d_2\leq\ldots\leq d_n$. Assume g is a $\gamma'_{ks}(G)$ -function of G and let $g(e)\geq 1$ for k distinct edges e in $\{e_{j_1}=u_{j_1}v_{j_1},\ldots,e_{j_k}=u_{j_k}v_{j_k}\}$. Define $f:E(G)\longrightarrow\{0,1\}$ by f(e)=(g(e)+1)/2 for each $e\in E(G)$. We have

$$\sum_{i=1}^{k} f(N_G[e_{j_i}]) = \sum_{i=1}^{k} \frac{g(N_G[e_{j_i}]) + \deg(u_{j_i}) + \deg(v_{j_i}) - 1}{2}$$

$$\geq \sum_{i=1}^{k} \frac{\deg(u_{j_i}) + \deg(v_{j_i})}{2}$$

$$> k\delta.$$
(1)

On the other hand,

$$\sum_{i=1}^{k} f(N_G[e_{j_i}]) \leq \sum_{e \in E} f(N_G[e])$$

$$= \sum_{e=uv \in E} (\deg(u) + \deg(v) - 1) f(e)$$

$$\leq \sum_{e \in E} (2\Delta - 1) f(e)$$

$$= (2\Delta - 1) f(E(G)).$$
(2)

By (1) and (2),
$$f(E(G)) \ge \frac{k\delta}{2\Delta - 1}$$
. Since $g(E(G)) = 2f(E(G)) - m$,

$$\gamma_{ks}'(G) = g(E(G)) \ge \frac{2k\delta}{2\Delta - 1} - m,$$

as desired.

As an immediate consequence of Theorem 7 we have:

Corollary 8. Let G be an r-regular graph of size m and $r \ge 1$. Then $\gamma'_{ks}(G) \ge \frac{2rk}{2r-1} - m$. Furthermore, this bound is sharp when r = 1.

Now we prove that for any tree of size $m \ge 2$ and any integer $1 \le k \le m-1$, $\gamma'_{ks}(T) \ge k-m+2$. This generalizes the lower bound for signed edge domination numbers for trees given in Theorem A to the signed edge k-subdomination numbers for trees.

Theorem 9. If T is a tree of size $m \ge 2$ and k is an integer, $1 \le k \le m-1$, then $\gamma'_{ks}(T) \ge 2\lceil k/2 \rceil - m + 2$. Furthermore, these bounds are sharp for each value of k.

Proof. First, by induction on m, we prove that $\gamma'_{ks}(T) \geq k - m + 2$, where $1 \leq k \leq m-1$. The statement holds for all trees of size m=2,3,4. Assume T is an arbitrary tree of size $m \geq 5$ and that the statement holds for all trees of smaller sizes. Let f be a γ'_{ks} -function for T. If $M=\{e\in E(T)\mid f(e)=-1\}=\emptyset$, then obviously the theorem is true. Let $M\neq\emptyset$.

Case 1. There is a non-pendant edge $e = uv \in E(T)$ for which f(e) = -1. Let T_1 and T_2 be the connected components of T - e with $u \in T_1$. Then, $\gamma'_{ks}(T) = f(E(T_1)) - 1 + f(E(T_2))$. We consider two subcases.

Subcase 1.1 For $i=1,2, X\cap E(T_i)\neq\emptyset$, where $X=\{e\in E(T)\mid f[e]\geq 1\}$. Let $|X\cap E(T_1)|=k_1$ and $|X\cap E(T_2)|=k_2$. Then for i=1,2, the function f, restricted to T_i is an SE k_i SDF for T_i . Hence, $\gamma'_{k_is}(T_i)\leq f(E(T_i))$ for i=1,2. First let $E(T_i)\subseteq X$ for i=1,2. Then since $k\leq m-1$, it follows that $e\not\in X$ and by Theorem A,

$$\gamma'_{ks}(T) = f(E(T)) = f(E(T_1)) - 1 + f(E(T_2)) \ge 1 - 1 + 1 \ge k - m + 2.$$

Now without loss of generality we assume $E(T_1) \nsubseteq X$. If $E(T_2) \subseteq X$, then by the inductive hypothesis and Theorem A, $\gamma'_{k_1s}(T_1) \ge k_1 - |E(T_1)| + 2$ and $\gamma'_{k_2s}(T_2) \ge 1$. If $e \notin X$, then obviously $\gamma'_{ks}(T) \ge k - m + 3$. If $e \in X$, then

$$\gamma'_{ks}(T) = f(E(T)) = f(E(T_1)) - 1 + f(E(T_2))$$

 $\geq k_1 - |E(T_1)| + 2 - 1 + 1 \geq k - m + 2.$

The case $E(T_2) \not\subseteq X$ is similar.

Subcase 1.2 $X \cap E(T_1) = \emptyset$ (the case $X \cap E(T_2) = \emptyset$ is similar). First let $e \notin X$. Then $|X \cap E(T_2)| = k_2 \ge k$. We claim that f assigns -1 to all edges of T_1 . If $E(T_1) \cap P \ne \emptyset$, where $P = \{e \in E(T) \mid f(e) = 1\}$, then we define $g: E(T) \longrightarrow \{-1, +1\}$ by g(e) = -1 if $e \in E(T_1)$ and g(e) = f(e) if $e \in E(T) \setminus E(T_1)$. Then g is a SEkSDF of T of weight less than f, a

contradiction. This proves our claim. Now by the inductive hypothesis on $T^\prime = T_2 + uv$ we have

$$\begin{array}{lcl} \gamma'_{ks}(T) & = & f(E(T_1)) + f(E(T')) \\ & \geq & -|E(T_1)| + k_2 - |E(T')| + 2 \geq k - m + 2. \end{array}$$

Now assume $e \in X$. First let $f(v) \ge 2$. Then f, restricted to T', is an SEkSDF for T'. If k = |E(T')|, since $f(v) \ge 2$, by Theorem A,

$$\gamma'_{ks}(T) \ge f(E(T')) - |E(T_1)| \ge (k - |E(T')|) + 2 - |E(T_1)| = k - m + 2.$$

If k < |E(T')|, by the inductive hypothesis,

$$\gamma'_{ks}(T) \ge f(E(T')) - |E(T_1)| \ge k - |E(T')| + 2 - (|E(T_1)|) \ge k - m + 2.$$

Now suppose that f(v) = 1. Then f, restricted to T', is an SEkSDF for T' and there exists at least one +1 edge at u in T_1 (note that $e \in X$). By Theorem A or the inductive hypothesis

$$\begin{array}{lcl} \gamma'_{ks}(T) & \geq & f(E(T')) - |E(T_1)| + 2 \\ & \geq & (k - |E(T')| + 1) - |E(T_1)| + 2 = k - m + 3. \end{array}$$

Finally, let $f(v) \leq 0$. Then either there exists an edge at v not in X or there exists a vertex $w \in V(T_2)$ other than v for which $f(w) \geq 2$. Since $e \in X$, $f(u) \geq -f(v)$, hence in T_1 there are at least -f(v)+1, +1 edges at u. Assume $E(v) \cap M = \{uv, vv_1, \ldots, vv_s\}$ and $E(u) \cap P = \{uu_1, uu_2, \ldots, uu_r\}$, where $r \geq s+1$. Define $g: E(T) \longrightarrow \{-1, +1\}$ by $g(uv) = g(vv_i) = 1$, $g(uu_{s+1}) = g(uu_i) = -1$, for $i = 1, \ldots, s$ and g(e) = f(e) if $e \in E(T) \setminus \{uu_{s+1}, uv, vv_i, uu_i \mid 1 \leq i \leq s\}$. Obviously, g is a $\gamma'_{ks}(T)$ -function and $g(v) \geq 1$. Now by an argument similar to that described above (for the cases $f(v) \geq 2$ or f(v) = 1) we have $\gamma'_{ks}(T) = g(E(T)) \geq k - m + 2$.

Case 2. The only edges e for which f(e) = -1 are pendant edges. First suppose that there exists a pendant edge $e = uv \in M \cap X^c$ with $\deg(u) = 1$. Then f, restricted to T - u, is an SEkSDF for T - u. If $k \leq m - 2$, then by the inductive hypothesis

$$\gamma'_{ks}(T) = f(E(T-u)) - 1 \ge k - (m-1) + 2 - 1 = k - m + 2.$$

If k = m - 1, then obviously there exists a vertex $w \in V(T - \{u, v\})$ such that $f(w) \geq 2$. Now the result follows by Theorem A. Thus we may assume $M \subseteq X$. This implies that for each non leaf vertex $v \in V(T)$, $f(v) \geq 1$. Thus f is an SEDF for T and the result follows by Theorem A. This proves the first statement.

If k is odd, then $2|P| \neq k+2$ and so $\gamma'_{ks}(G)=2|P|-m \neq k-m+2$. Hence, $\gamma'_{ks}(T) \geq k-m+3$.

To prove sharpness, let T be the tree obtained from the star $K_{1,k+1}$, with vertex set $\{v, v_1, \ldots, v_{k+1}\}$ and edge set $\{vv_i \mid 1 \leq i \leq k+1\}$, by adding m-k-1 pendant edges $v_1u_1, \ldots, v_1u_{m-k-1}$. Obviously, $\gamma'_{ks}(T) = k-m+2$ for k even and $\gamma'_{ks}(T) = k-m+3$ for k odd. This completes the proof. \square

Now we find a lower bound for the SEkSDNs of simple connected graphs. This is a generalization of Theorem B.

Theorem 10. Let G be a simple connected graph of order $n \geq 3$, size m and $1 \leq k \leq m-1$. Then

$$\gamma'_{ks}(G) \ge n + k + 1 - 2m.$$

Furthermore, the bound is sharp for each odd $k \geq 7$.

Proof. The proof is by induction on m. Obviously, the statement is true for m=2,3. Assume the statement is true for all simple connected graphs of size less than m, where $m \geq 4$. Let G be a simple connected graph of size m and let f be a $\gamma'_{ks}(G)$ -function. we distinguish two cases.

Case 1 There is a non-pendant edge $e = uv \in E(G)$ for which f(e) = -1. First let e not be a bridge. If $e \notin X = \{e \in E(T) \mid f[e] \ge 1\}$, then f is an SEkSDF of G - e. If $k \le m - 2$, then by the inductive hypothesis

$$\begin{array}{lcl} \gamma'_{ks}(G) & = & f(E(G)) = f(E(G-e)) - 1 \\ & \geq & n+k+1-2(m-1)-1 = n+k+2-2m. \end{array}$$

If k = m - 1, then f is an SEDF of G - e and by Theorem B we have

$$\gamma'_{ks}(G) = f(E(G)) = f(E(G-e)) - 1$$

 $\geq n - (m-1) - 1 = n - m = n + k + 1 - 2m.$

Let $e \in X$. If f, restricted to G - e, is an SEDF of G - e, then the result follows as above. Otherwise f, restricted to G - e, is an SE(k-1)SDF of G - e and the result follows by the inductive hypothesis.

Assume e is a bridge and G_1 and G_2 are the connected components of G - e. An argument similar to that described in the proof of Case 1 of Theorem 9 shows that $\gamma'_{ks}(G) \ge n + k + 1 - 2m$. Note that for this case we apply Theorem C instead of Theorem A.

Case 2 The only edges e for which f(e) = -1 are pendant edges.

First suppose that there exists a pendant edge $e = uv \in M \cap X^c$ with $\deg(u) = 1$. Then the result follows by an argument similar to that described in Case 2 of the proof of Theorem 9 and Theorem C. Now assume $M \subseteq X$. If G is a tree, then the statement is true by Theorem 9. Now let G have a cycle C. By assumption f(e) = 1 for every $e \in E(C)$. First assume

f(e') = 1 for every edge e' with an end-vertex in V(C). Then $f|_{G-e}$ is an SE(k-1)SDF of G - e for every $e \in E(C)$. So we have

$$f(E(G)) = f|_{G-e}(E(G-e)) + 1$$

$$\geq n + (k-1) + 1 - 2(m-1) + 1$$

$$= n + k - 2m + 3.$$

Now assume there is an edge e' = uu' with f(e') = -1 and $u \in V(C)$. Hence e' is a pendant edge by assumption. Let $e = uv \in E(C)$. If for every edge e'' at v, f(e'') = 1, then f restricted to $G_1 = G - \{e, e'\}$ is an SE(k-2)SDF of G_1 . So we have

$$f(E(G)) = f|_{G_1}(E(G_1))$$

$$\geq (n-1) + (k-2) + 1 - 2(m-2)$$

$$\geq n + k + 2 - 2m.$$

Finally, let there be an edge e'' at v with f(e'') = -1. Note that by assumption e'' is a pendant edge. Hence, f restricted to $G_2 = G - \{e, e', e''\}$ is an SE(k-3)SDF of G_2 . So we have

$$f(E(G)) = f|_{G_2}(E(G_2)) - 1$$

$$\geq (n-2) + (k-3) + 1 - 2(m-3) - 1$$

$$\geq n+k+1-2m.$$

To prove sharpness, we consider two cases.

- $k \geq 7$ is odd and k = m 1. Let G be obtained from star $K_{1,k-3}$ with vertex set $\{v, v_1, \ldots, v_{k-3}\}$ and edge set $\{vv_i \mid 1 \leq i \leq k-3\}$ by adding three pendant edges $v_1v_1', v_2v_2', v_3v_3'$ and an edge v_1v_2 . Define $f: V(G) \longrightarrow \{-1, 1\}$ by $f(v_1v_2) = 1$, $f(vv_i) = 1$ if $1 \leq i \leq \frac{k-1}{2}$ and f(e) = -1 otherwise. Then f is an SEkSDF of G with f(E(G)) = n + k + 1 2m.
- $k \geq 7$ is odd and $k \leq m-2$. Let G be obtained from star $K_{1,k-2}$ with vertex set $\{v, v_1, \ldots, v_{k-2}\}$ and edge set $\{vv_i \mid 1 \leq i \leq k-2\}$ by adding pendant edges v_1v_1' , v_2v_2' , $v_3v_3^j$ for $j=1,2,\ldots,m-k-1$ and v_1v_2 . Define $f:V(G) \longrightarrow \{-1,1\}$ by $f(v_1v_2)=1$, $f(vv_i)=1$ if $1 \leq i \leq \frac{k-1}{2}$ and f(e)=-1 otherwise. Then f is an SEkSDF of G with f(E(G))=n+k+1-2m.

This completes the proof.

Acknowledgement. The authors would like to thank the referee whose suggestions were most helpful in writing the final version of this paper.

References

- [1] E.J. Cockayne and C. Mynhardt, On a generalization of signed dominating functions of graphs, Ars Combin. 43 (1996), 235-245.
- [2] J.H. Hattingh, M.A. Henning and E. Ungerer, Partial signed domination in graphs, Ars Combin. 48 (1998), 33-42.
- [3] L. Kang, C. Dang, M. Cai and E. Shan, Upper bounds for the k-subdomination number of graphs, Discrete Math. 247 (2002), 229-234.
- [4] H. Karami, A. Khodkar and S.M. Sheikholeslami, Signed edge domination numbers in trees, Ars Combin. (to appear).
- [5] H. Karami, A. Khodkar and S.M. Sheikholeslami, Some notes on signed edge domination in graphs, Graphs and Combin. (to appear).
- [6] H. Karami, A. Khodkar, and S.M. Sheikholeslami, An improved upper bound for signed edge domination numbers in graphs, Utilitas Mathematica (to appear).
- [7] H. Karami, A. Khodkar and S.M. Sheikholeslami, Signed edge majority domination numbers in graphs, Australas. J. Combin. (to appear).
- [8] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.
- [9] B. Xu, On signed edge domination numbers of graphs, Discrete Math. 239 (2001), 179–189.
- [10] B. Xu, On lower bounds of signed edge domination numbers in graphs,
 J. East China Jiaotong Univ. 1 (2004), 110-114 (In Chinese).
- [11] B. Xu, On edge domination numbers of graphs, Discrete Math. 294, (2005) 311-316.
- [12] B. Xu, Two classes of edge domination in graphs, Discrete Applied Math. 154 (2006), 1541-1546.
- [13] F. Xueliang, Y. Yuansheng and J. Baoqi, A note on the signed edge domination number in graphs, Discrete Math. (to appear).
- [14] B. Zelinca, On signed edge domination numbers of trees, Mathematica Bohemica 127 (2002), 49-55.