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Abstract

Let G be a finite permutation group acting primitively on sets
Q) and Q2. We describe a construction of a 1-design with the block
set 1 and the point set Q3, having G as an automorphism group.
Applying this method, we construct a unital 2—(¢>+1,g+1,1), and a
semi-symmetric design (¢*—¢*+42, ¢*>~q, (1)) from the unitary group
U(3,q), ¢ =3,4,5,7. From the unital and the semi-symmetric design
we build a projective plane PG(2,4°?). Further, we describe other
combinatorial structures constructed from these unitary groups.

1 Introduction

An incidence structure is an ordered triple D = (P,B,Z) where P and
B are non-empty disjoint sets and Z C P x B. The elements of the set
P are called points, the elements of the set B are called blocks and T is
called an incidence relation. If |P| = |B| then the incidence structure is
called symmetric. The incidence matrix of an incidence structure is a b x v
matrix [m;;] where b and v are the number of blocks and points respectively,
such that m;; = 1 if the point P; and block z; are incident, and m;; = 0
otherwise. An isomorphism from one incidence structure to another is a
bijective mapping of points to points and blocks to blocks which preserves
incidence. An isomorphism from an incidence structure D onto itself is
called an automorphism of D. The set of all automorphisms forms a group
called the full automorphism group of D and is denoted by Aut(D).

At — (v, k, ) design is a finite incidence structure (P, B,Z) satisfying
the following requirements:

L |P|=wv,

2. every element of B is incident with exactly k elements of P,
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3. every t elements of P are incident with exactly A elements of B.

A 2 — (v,k,)) design is called a block design. A 2 — (v,k,)) design is
called quasi-symmetric if the number of points in the intersection of any
two blocks takes only two values. A symmetric 2 — (v, k, 1) design is called
a projective plane.

A semi-symmetric (v, k,())) design is a finite incidence structure with
v points and v blocks satisfying:

1. every point (block) is incident with exactly k blocks (points),
2. every pair of points (blocks) are incident with 0 or A blocks (points).

Let G = (V,€,T) be a finite incidence structure. G is a graph if each
element of £ is incident with exactly two elements of V. The elements of V
are called vertices and the elements of £ are called edges. Two vertices u and
v are called adjacent or neighbors if they are incident with the same edge.
The number of neighbors of a vertex v is called the degree of v. If all the
vertices of the graph G have the same degree k, then G is called k-regular.
Define a square {0,1}~matrix A = (ay,) labelled with the vertices of G in
such a way that a,, = 1 if and only if the vertices v and v are adjacent. The
matrix A is called the adjacency matrix of the graph G. An automorphism
of & graph is any permutation of the vertices preserving adjacency. The set
of all automorphisms forms the full automorphism group of the graph.

A graph G is called a strongly regular graph with parameters (n, k, A, ),
and denoted by SRG(n, k, A, i), if G is k—regular graph with n vertices and
if any two adjacent vertices have A common neighbors and any two non-
adjacent vertices have 1 common neighbors.

Let z and y (z < y) be the two cardinalities of block intersections in a
quasi-symmetric design D. The block graph of D has as vertices the blocks
of D and two vertices are adjacent if and only if they intersect in y points.
The block graph of a quasi-symmetric 2— (v, k, A) design is strongly regular.
In a 2— (v, k, 1) design which is not a projective plane two blocks intersect
in 0 or 1 points, therefore the block graph of this design is strongly regular
(see [2])-

Let G be a simple group and H be a maximal subgroup of G. The con-
jugacy class of H in G is denoted by eclg(H). Obviously Ng(H) = H, so
|ecle(H)| = |G : H]. Denote the elements of cclg(H) by H,H%,...,H%,
j=[G:H),gi€eGfori=1,..

In this paper we consider combmatorial structures constructed from the
unitary group U(3,q), g = 3,4,5,7. We define incidence structures on the
elements of conjugacy classes of maximal subgroups, i.e. points and blocks
are labelled by elements of conjugacy classes of maximal subgroups of sim-
ple groups U(3, ¢). The construction used in this paper is a generalization
of the construction described in [9).



The paper is arranged as follows: in Section 2 we explain the method of
construction. In the sections 3, 4, 5, and 6 we describe the construction of
designs and strongly regular graphs from the groups U(3,4q), ¢ = 3,4,5,7.
In particular, from the unitary group U(3,q), q = 3,4, 5, 7, we construct a
unital 2 — (¢ +1,¢+1,1) and a semi-symmetric design (g% — ¢® + ¢2,¢2 —
g, (1)), which we use to build a projective plane PG(2,¢?). In Section 7 we
summarize the results.

Generators of the groups U(3,q), ¢ = 3,4, 5,7, and their maximal sub-
groups are available on the Internet:

http://brauer.maths.qmul.ac.uk/Atlas/clas/.

For basic definitions and group theoretical notation used in this paper and
we refer the reader to [3] and [12].

2 The construction

The following construction of symmetric 1-designs and regular graphs is
presented in [9]:

Theorem 1 Let G be a finite primitive permutation group acting on the
set Q of sizen. Let o € 2, and let A # {a} be an orbit of the stabilizer G,
ofa. IfB={Ag:g € G} and, givené € A, £ = {{a,6}g: g € G}, then
D = (Q,B) forms a symmetric 1 — (n,|A|,|A|) design. Further, if A is a
self-paired orbit of G, then I'(Q, &) is a regular connected graph of valency
|A|, D is self-dual, and G acts as an automorphism group on each of these
structures, primitive on vertices of the graph, and on points and blocks of
the design.

The construction described in Theorem 1 produces symmetric 1-designs
admitting a primitive action of a group G, such that a stabilizer of a point
and a stabilizer of a block are conjugate in G. The following generalization
of the above construction allows us to construct primitive 1-designs which
are not necessarily symmetric, and stabilizers of a point and a block are
not necessarily conjugate:

Theorem 2 Let G be ¢ finite permutation group acting primitively on the
sets 0 and Q2 of size m and n, respectively. Let a € 1, § € 0y, and
let Ay = 6G, be the Go-orbit of § € Q2 and A = oGy be the Gs-orbit of
a€. If Ay # Qs and

B={Az9:9€G},

then D(G,a,6) = (Q2,B) is a 1 — (n,|Az|,|A1]) design with m blocks, and
G acts as an automorphism group, primitive on points and blocks of the
design.



Proof It is clear that the number of points v = n, since the point set is
P =, and also that each element of B consists of k = |Az| elements of
Qs.

Since A is a G-orbit, we have G, C Ga,, where Ga, is the setwise
stabilizer of A,. Since G is primitive on §;, G, is a maximal subgroup of
G, and therefore Ga, = Go. The number of blocks is

Since G acts transitively on §; and Q2 the constructed structure is
a 1-design, hence bk = vr, where each point is incident with r blocks.
Therefore
Q| |Az| = Q0] T,

and consequently
|G| |Gal _ 1G]

= T.
|Gal [(Ga)sl |Gl

It follows that

|G| |G|
r= = = laG;s| = |Ay].
Calal ~ Ga)a] ~ 1€l = 1441

o
We can interpret the construction of a design from Theorem 2 in the
following way:

e the point set is 2 = 6G, and the block set is ) = aG,
e the block ag’ is incident with the set of points {dg : g € Gag'}.

Let a point dg € 2 be incident with a block ag’ € ;. Then g € Go¢’,
hence there exists § € G4 such that g = §g’. Therefore,

Gy NGisy = Gag NGrgy = G NGl = (Ga NGe5)? =

(Ca NG = (GT ' NGs)% = (GaNGs)T = (GaNGs).

If a point g € £ is incident with the block a € 1, then G N G5g =
(Ga N Gs)9. If the set {Ga NG5y | g € G} contains Ord(Ga, l2) Ga-
conjugacy classes, where Orb(Gq,Q2) is the number of G4-orbits on €23,
then each conjugacy class corresponds to one G,-orbit, and the incidence
relation in the design D(G, e, d) can be defined as follows:

e the block ag’ is incident with the point dg if and only if Gagr N Gsg
is conjugate to G, N Gs.



Similarly, if the set {Ga NGsqg | g € G} contains Orb(G,, Q2) isomorphism
classes, then the incidence in the design D(G, a, §) can be defined as follows:

e the block ag’ is incident with the point dg if and only if Gag N Gy
& G, N Gs,

In the construction of the design D(G, e, 8) described in Theorem 2,
instead of taking a single G,-orbit, we can take Ay to be any union of G-
orbits. In fact, this construction gives us all designs on which the group G
acts primitively on points and blocks:

Corollary 1 If the group G acts primitively on the points and the blocks
of a 1-design D, then D can be obtained as described in Theorem £, where
Ay is a union of Gy-orbits. The set Ay of blocks incident with the point &
is a union of Gs-orbits.

Proof Let o be any block of the design D. G acts transitively on the
block set B of the design D, hence B = aG. Since G acts primitively on
B, the stabilizer G, is a maximal subgroup of G. G, fixes a, s0 « is a
union of G,-orbits. In a similar way one concludes that A; is a union of
Gs-orbits. O

Let G be a simple group, and let H and K be maximal subgroups of
G. Then |cclg(H)| = [G : H], |ccle(K)| = [G : K], and G acts primitively
on cclg(H) and cclg(K) by conjugation. The stabilizers of H® and KV,
z,y € G, are H* and KV, respectively. We can construct a 1-design as
follows:

e the point set is cclg(K), and the block set is cclg(H),
e the block H? is incident with K% if and only if H* N K* = HNK.

In this article we use the above described construction of designs from
conjugacy classes of maximal subgroups of a simple group to obtain designs
from the unitary groups U(3,¢), ¢ = 3,4,5,7.

3 Constructions from U(3,5)

We consider structures constructed from the unitary group U(3,5), the
classical simple group of order 126000. The group U(3, 5) has eight distinct
conjugacy classes of maximal subgroups: Hy & Z5.A5.Z,, Hy = H3 & Hy &
As.Zg, Hs =] (E25 . Z5) H Zs, and Hs = H7 =3 Hs = A7.



3.1 The projective plane PG(2,25) constructed from
the group U(3,5)

Let G be a group isomorphic to the unitary group U(3,5), and H; =
Z3.As.Z9, Hg = (Eas : Z5) : Zs be maximal subgroups of G. The cardi-
nality of the conjugacy class cclg(H)) is 525, and the cardinality of the
conjugacy class cclg(Hs) is 126. Using GAP ([11]), one can check that
HfNHY 22 Z5 : Zg or Z, for all z,y, € G. Further, for every HY,

I{HY |y € G, H* N HY = Zs : Zg}| = 6.

Let us define sets S; = {HY € celg(H1) | HYf NHYN > Z5: Zg}, 1 <
i < 126. For every 1 <14,j < 126, ¢ # j, the set S; N S; has exactly one
element. That proves that the incidence structure Dy = (Py, By, I;) where
Pl = {Pls one yPIZG}) Bl = {xla oo ,13525}, and

(P,z;) €Ty & (HY NHY = Z5 : Zg)

is a block design 2 — (126, 6,1). Let us denote the design obtained in this
way by D(U(8,5), Hs, H1; Zs : Zg). The full automorphism group of D, is
isomorphic to the group Aut(U(3,5)) = U(3,5) : Ss, of order 756000.

The intersection of two distinct elements of cclg(H,) is isomorphic to
Za, Zs, or Z3 : E4. One can check that S = D(U(8,5), H1,H1;Z3 : Ey)
is a semi-symmetric design (525,20, (1)), and Aut(S) = Aut(U(3,5)) =
U (3, 5) : Sg.

Let M; and M be the incidence matrices of D; and S, respectively, and
I196 be the identity matrix of order 126. Then the matrix

_ [ has MT
P_[Ml M

is the incidence matrix of the Desarguesian projective plane PG(2,25), i.e.,
a symmetric 2 — (651, 26, 1) design. Aut(PG(2,25)) = PI'L(3, 25), of order
304668000000. P is a symmetric matrix, and therefore the projective plane
admits a unitary polarity (for the definition see e.g. [7]). The absolute
points and blocks are the conjugates of Hs, and the non-absolute points and
blocks are the conjugates on H;. D is the Hermitian unital in PG(2, 25).

D, is a block design with blocks intersection sizes 1 and 0, and its block
graph is a strongly regular graph with parameters (525,144,48,36). Denote
this graph by G;. It can be obtained directly from the conjugates of H;.
The adjacency matrix of the graph G is the matrix 4; = (ag)) defined as

follows: . _
a _ [ 1, ifH¥NnHY = Z,
iW T | 0, otherwise.

Let us denote this graph by G(U(3,5), H1; As). The group Aut(G,) is
isomorphic to U(3,5) : Ss3.

(43



3.2 Construction of block designs 2-(50,14,13) and 2-
(126,36,14)

The cardinality of cclg(Hz) is 175, the cardinality of cclg(Hsg) is 50, and
Hf NHY = Zs : Z4, As, or Ag for all z,y,€ G. The design Dy =
D(U(8,5), Hg, H3; As or Ag) is a 2-design with parameters (50,14,13), and
Aut(D;) = U(3,5) : Z2. D, is a derived design of the Higman design
2 — (176,50, 14) (see [10]). The designs D(U(3,5), He, Hz; As or Ag) and
D(U(8,5), H7, Hy; As or Ag) are isomorphic to Ds.

The cardinality of cclg(Hs) is 126, the cardinality of cclg(Hy) is 175,
and HfNHY = Zg or Z5 : Z, for all z,y,€ G. D3 = D(U(3,5), Hs, Hy; Zs :
Z4) is a 2-(126,36,14) design, and Aut(D3) = U(3,5) : Z,. Dj is a resid-
ual design of the Higman design 2 — (176, 50, 14) (see [10]). The designs
D(U(3,5), Hs, H3; Z5 : Z4) and D(U(3,5), Hs, Ho; Zs : Z4) are isomorphic
to Ds.

3.3 Construction of strongly regular graphs (50,7,0,1)
and (175,72, 20, 36)

The cardinality of the conjugacy class cclg(Hg) is 50. For Hf # HY, HE n
Hg = Asor Ag. Go = G(U(3,5), Hg; Ag) is a SRG(50,7,0,1). Aut(Go) =
U(3,5) : Za, of order 252000. G, is the unique strongly regular graph with
these parameters, i.e., the Hoffman-Singleton graph (see [1]). The graphs
G(U(8,5), Hs; Ag) and G(U(3,5), Hs; Ag) are isomorphic to Gs.

The cardinality of the conjugacy class cclg(Hj) is 175. The intersec-
tion of two distinct elements of cclg(H?) is isomorphic to Qg, Dig, or As.
Gs = g(U(3, 5), Hz;Dlo) isa SRG(175, 72,20, 36). A‘ut(ga) = U(3, 5) : Za,
of order 252000. G3 is the graph whose vertices are edges of the Hoffman-
Singleton graph G,, two vertices being adjacent if their distance is two (see
(10])). The graphs G(U(3,5), H3; D10) and G(U(3,5), Hy; D1o) are isomor-
phic to G3.

The graph Gz can be constructed from the designs D; and D3. Any
two blocks of D, intersect in 3, 4, or 8 points. The graph which has as
its vertices the blocks of Dy, two vertices being adjacent if and only if the
corresponding blocks intersect in three points, is isomorphic to Ga. Denote
this graph by G(D;, {3,4,8};3). The graph G(Ds, {6,10,11};11) is also
isomorphic to Gs.



4 The projective plane PG(2,9) constructed
from the group U(3,3)

The unitary group U(3,3) is the simple group of order 6048, and it has
four distinct conjugacy classes of maximal subgroups: K 2 L(2,7), K, &
Z4.54, K3 = (Z4 x Z4) : S3, and K4 = ((Z3 x Z3) : Z3) : Zs.

D(U(8,3), K4, K2; Z3 : Zg) is a block design 2 — (28,4, 1), with the full
automorphism group isomorphic to Aut(U(3,3)) & U(3,3) : Z; (see [4]).

The cardinality of ccly s 3)(K2) is 63, since [U(3,3) : K] = 63. The
intersection of two distinct elements from ccly (s 3)(K?2) is isomorphic to
Z3, Z4 or Z4 x Z4. D(U(83,3), K2,K2; Z4 x Z4) is a semi-symmetric design
(63,6, (1)) with the full automorphism group isomorphic to Aut(U(3, 3)) &
U(3,3): Z,.

Let M; and M be the incidence matrices of the constructed block design
2 —(28,4,1) and the semi-symmetric design (63,6, (1)), respectively, and
Is be the identity matrix of order 28. Then the matrix

_[ s MT
P"[Ml M

is the incidence matrix of the Desarguesian projective plane PG(2,9), and
Aut(PG(2,9)) = PT'L(3,9). P is a symmetric matrix, hence the design
2 — (28,4,1) is the Hermitian unital in PG(2,9). For other structures
constructed from U(3, 3) see [4] and {5].

5 The projective plane PG(2,16) constructed
from the group U(3,4)

In [6] we have constructed, from the group U(3,4), a 2-design with pa-
rameters (65,5,1) and a semi-symmetric design (208,12, (1)), both hav-
ing Aut(U(3,4)) = U(3,4) : Z4 as the full automorphism group. From
these structures we have constructed the Desarguesian projective plane
PG(2,16), Aut(PG(2,16)) = PT'L(3,16), in the same way as PG(2,25)
is constructed from U(3,5) in Section 3, and PG(2,9) is constructed from
U(3, 3) in Section 4. The block design 2 — (65,5, 1) is the Hermitian unital
in PG(2,16). For construction of PG(2,16) and the other structures from
the group U(3,4) see [6].
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6 The projective plane PG(2,49) constructed
from the group U(3,7)

The unitary group U(3,7) is the simple group of order 5663616. L, &
(Eag : Z7) : Z4s and Lp = Z5.(L(2,7) X Z4).Z, are maximal subgroups of
U(3,7), [U(3,7) : L1] = 344 and [U(3,7) : Lo] = 2107. One can check that
LENLY = Zy: Z4g or Zg for all z,y,€ U(3,7), and D(U(3,7), L1, La; Zy :
Z4s) is a block design 2 — (344, 8,1) with the full automorphism group
isomorphic to the group AutU(3,7) = U(3,7) : Z,. The intersection of
two distinct elements of ccly(s 7)(L2) is isomorphic to Z7, Zs, or Zg x
Zg. D(U(3,7), Ly, Ly; Z4 x Z4) is a semi-symmetric design with parameters
(2107,42,(1)).

Let My and M be the incidence matrices of the block design 2 —
(344,8,1) and the semi-symmetric design (2107, 42, (1)), respectively, and
I344 be the identity matrix of order 344. Then the matrix

_ | Tssa MT
P_[Ml M

is the incidence matrix of the Desarguesian projective plane PG(2, 49) with
Aut(PG(2,49)) = PT'L(3,49). The matrix P is a symmetric matrix, so the
design 2 — (344, 8, 1) is the Hermitian unital in PG(2, 49).

7 Conclusions

In Table 1 and Table 2 we give the list of the constructed structures and
describe their full automorphism groups. For other combinatorial struc-
tures constructed from U(3,3) and U(83,4) we refer the reader to [4], [5],
and [6].

Table 1: The structures constructed from U(3, 5)

Combinatorial Order of the full | Structure of the full
structure automorphism group automorphism group
2-(126,6,1) design 756000 | U(3,5): S3
(525,20,(1)) design 756000 | U(3,5): S5
PG(2,25) 304663000000 | PT'L(3, 25)
SRG(525,144, 48, 36) 756000 | U(3,5): 53
2-(50,14,13) design 252000 | U(3,5) : Z,
2-(126,36,14)design 252000 | U(3,5): Z,
SRG(50,7,0,1) 252000 | U(3,5) : Z,
SRG(175,72, 20, 36) 252000 | U(3,5) : Z»
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Table 2: The structures constructed from U(3,3), U(3,4), and U(3,7)

Combinatorial Order of the full | Structure of the full
structure automorphism group | automorphism group
2-(28,4,1) design 12096 | U(3,3) : Z2
(63,6,(1)) design 12096 | U(3,3) : Z,
PG(2,9) 84913920 | PT'L(3,9)

2-(65,5,1) design 249600 | U(3,4) : Z4
(208,12,(1)) design 249600 | U(3,4) : Z4
PG(2,16) 34217164800 | PT'L(3,16)
2-(344,8,1) design 11327232 | U(3,7) : Z»
(2107,42,(1)) design 11327232 | U(3,7) : Z»
PG(2,49) 66437613849600 | PT'L(3,49)

The results obtained in this article lead us to the conjecture that from
any group U(3,q), defining incidence structures on conjugacy classes of
maximal subgroups, one can construct a Hermitian unital 2—(g3+1,¢+1,1)
and a semi-symmetric design (g% — ¢% + ¢%, 4% — g, (1)) having Aut(U(3, q))
as an automorphism group, which can be used to build a Desarguesian
projective plane PG(2, ¢%) (in the way presented in this article).

References

(1) A. E. Brouwer, "Strongly Regular Graphs”, Handbook of Combina-
torial Designs, 2"¢ ed., C. J. Colbourn and J. H. Dinitz (Editors),
Chapman & Hall/CRC, Boca Raton, 2007, pp. 852-868.

[2] P. J. Cameron, and J. H. van Lint, Designs, Graphs, Codes and Their
Links, London Mathematical Society Studnet Texts, Cambridge Uni-
versity Press, Cambridge, 1991.

[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson,
and J. G. Thackray, Atlas of Finite Groups, Clarendon Press, Oxford,
1985.

[4] D. Crnkovié, V. Mikuli¢, and S. Rukavina, Block designes constructed
from the group U(3,3), J. Appl. Algebra Discrete Struct. 2 (2004),
69-81.

{5] D. Crnkovi¢, V. Mikuli¢, and S. Rukavina, "Block Designs and
Strongly Regular Graphs Constructed form Some Linear and Unitary
Groups”, Pragmatic Algebra, Ki-Bong Nam et al. (Editors), SAS In-
ternational Publications, Delhi, 2006, pp. 93~-108.

12



[6] D. Crnkovié¢, and V. Mikulié, Block designs and strongly regular graphs
constructed from the group U(3,4), Glas. Mat. Ser. III 41(61), (2006),
189-194.

[7] P. Dembowski, Finite Geometries, Springer-Verlag, Berlin Heidelberg
New York, 1968.

(8] B. D. McKay, Nauty Users Guide (version 1.5) Technical Report TR~
CS-90-02, Department of Computer Science, Australian National Uni-
versity, 1990.

[9] J. D. Key, J. Moori, Codes, Designs and Graphs from the Janko
Groups J; and Jz, J. Combin. Math. Combin. Comput. 40 (2002),
143-159.

[10] C. Parker, and V. D. Tonchev, Linear Codes and Double Transitive
Symmetric Design, Linear Algebra Appl. 226-228 (1995), 237-246.

(11] The GAP Group, GAP - Groups, Algorithms, and Programming, Ver-
sion 4.4.9; 2006. (http://www.gap-system.org)

(12] D. Robinson, A Course in the Theory of groups, Springer-Verlag, New
York, Berlin, Heidelberg, 1996.

(13] L. H. Soicher, DESIGN - a GAP package, Version 1.3, 2006.
(http://designtheory.org/software/gap design/)

13



