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Abstract

For a graph G, its Hosoya index is defined as the total number
of matchings in it, including the empty set. The Hosoya index is
one of the oldest and well-studied molecular topological descriptors.
Almost all results concerning Hosoya index in the existing literatures
deal with its extremal properties, and there exists no results revealing
the relations between this index and other topological indices so far.
In this note, we establish some sharp lower bounds for Hosoya index

in terms of some other topological indices.

1 Introduction

Let G be a simple connected graph with vertex set V(G) and edge set
V(G). For a graph G, we let dg(v) be the degree of a vertex v in G and
let dg(u, v) denote the distance between vertices u and v in G. Denote by

ecc(v) the eccentricity of a vertex v in G.
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A graph invariant is a function defined on a graph which is independent
of the labeling of its vertices. Till now, hundreds of different graph invari-
ants have been employed in QSAR/QSPR studies, some of which have been
proved to be successful (see [27]). Among those successful invariants, there
are some invariants worth noting. We mention here some of them relevant
to the topics of our paper. There are the Hosoya indez (see [10-17,25,26,30]
and [31] for a survey), the first Zagreb index and the second Zagreb index
(see [4,9,23,24,32-34]).

The Hosoya index of a graph G is defined as

Z(G) =) m(G;k),
k>0
where m(G; k) is the number of k-matchings in G for k > 1, and m(G;0) =
1.

The first Zagreb index and second Zagreb index are defined, respec-

tively, as
Mi(G)= Y (do(w)® and MyG)= ) do(w)da(v).
ueV(G) weE(G)

Evidently, one can rewrite the first Zagreb index as

Mi(G)= ) (do(w)+dg(v)) (1)
uwve€E(G)

Noticing that the contribution of nonadjacent vertex pairs should be
taken into account when computing the weighted Wiener polynomials of
certain composite graphs (see [6]). Ashrafi et al. [1,2] introduced the first
Zagreb coindez (corresponding to the form in the equation (1)) and second
Zagreb coindez, which are defined as

Mi(G)= Y. (do(u)+de(v)) and Ma(G)= ) dg(u)da(v),
wgE(G) ww@E(G)
respectively.

The eccentric connectivity indez (see [3,21,22]) of a connected graph
G, denoted by £°(G), is defined as

£€G)= ) eco(u)de(w). (2)

ueV(G)
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The degree distance or schultz indez of a connected graph G is defined
(8] as
D'(G)= ) d(z)Do(z), (3

z€V(G)
where Dg(z) is the sum of distances between x and all other vertices in G.
For recent results on degree distance, see (7,18, 20, 28,29).
The reverse degree distance of a connected graph G with n vertices, m

edges and diameter d is defined [35] as
"D'(G) = 2(n — 1)md — D'(G). (4)

In this note, we establish some sharp lower bounds for Hosoya index in
terms of some other topological indices including the first Zagreb index, the
first Zagreb coindex, the eccentric connectivity index, the degree distance
and the reverse degree distance.

Since the contribution of each vertex u in G to M;(G) is exactly (n —

dg(u) — 1)dg(u), we rewrite (as in [19])

Mi(@)= ) (n-do(u)—1)dg(v). (5)
uEV(G)

2 Bounds for Hosoya index

In this section, we establish relationships between Hosoya index and other
topological indices. More precisely, we provide some lower bounds for
Hosoya index in terms of some other topological indices.

A matching M of the graph G is a subset of E(G) such that no two
edges in M share a common vertex. A matching M of G is said to be a
mazimum matching, if for any other matching M of G, |M| < |M|. The
matching number of G is the number of edges of a maximum matching in
G.

Lemma 2.1 Let G be a non-trivial and non-complete graph of size m.

Then ! )
m(G;2) = Em(m +1) - §M1(G). (6)

89



Proof. By the definition of m(G; k),

mG =5 3 Im-(do(w)+do(v) ~2) 1]
uwvEE(G)
=gmm+1) -3 3 (do(w) +do(v)
uvEE(G)
= smm+1) -2 3 (delw)?
ueV(G)
= sm{m+1) - 2M(G),
as claimed. [ |

Proposition 2.1 Let G be a non-trivial and non-complete graph of order

n and size m. Then
2(6) 2 ~ 3 My(G) + 5(m+1)(m +2)
with equality if and only if the matching number of G is 2.
Proof. Note that for any non-trivial and non-complete graph G of size m,
Z(G) 21+ m+m(G;2) (7

with equality if and only if the matching number of G is 2.
By Eq.(6) and Ineq. (7), we have

%m(m +1) - %MI(G) < 2(G)-1-m,

that is, ) )
Z(G) 2 --2-M1(G) + §(m +1)(m +2),

with equality if and only if the matching number of G is 2.
This completes the proof. [ |

Proposition 2.2 Let G be a non-trivial and non-complete graph of order

n and size m. Then
1—
Z(G) 2 §M1(G) + %(m + 1)(m +2) — m(n - 1),

with equality if and only if the matching number of G is 2.



Proof. In view of Eq.(5), we have

MG = ¥ (n-dofu) - Dde(w)
ueV(G)

=2m(n-1)— Y (dg(u))?

ueV(G)

=2m(n - 1) — M,(G).
Combining this fact with Proposition 2.1, we obtain
2(6) 2 ~3[2m(n ~ 1) = y(G)] + 3 (m + 1)(m + 2),

that is,
2(6) > %Hl(G) + -;—(m +1)(m+2) — m(n — 1),

with equality if and only if the matching number of G is 2.
This proves our desired result. [ |
We summarize here a result of [19] as the following lemma.

Lemma 2.2 Let G be a non-trivial connected graph of order n. For each
vertezr v; in G, it holds

ecg(v;) < n —dg(v;).

Fori=1, ..., n, all equalities hold together if and only if G = P, or K,,—
iKy (0 <i< |5)), where K,, —iK, denotes the graph obtained by removing
i independent edges from G.

Proposition 2.3 Let G be a non-trivial and non-complete connected graph
of order n and size m. Then
1
Z(G) 2 %&“(G) + §m2 —-mn+ ;m+ 1,
with equality if and only if G = P; or K, —iK,(0<i < [3]), n=4,5.

Proof. For each vertex v in G, we clearly have ecg(v) < n — dg(v).
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According to Eq.(2), we have

€@ = Y eca(v)da(v)

vEV(G)

< 3 (n-do(v))do(v)
veV(G)

= 2mn — M;(G),

with equality if and only if ecg(v) = n — dg(v) holds for each vertex v in
G, thatis, G2 Py or K, —iK3 (0 <1< [%]) by Lemma 2.2.
Hence,

—M,(G) 2 £°(G) — 2mn, (8)

with equality if and only if G 2 Py or K, —iK2 (0<i < [3]).

Note that if n > 6, then for 0 < ¢ < |], the matching number of
K, —iKj is at least 3. v

By Eq. (6), Inegs. (7) and (8), we have

Z(G) 21+ m+m(G;2)
> 14+ m+ zm(m +1) + 5(6(G) — 2mn)

_ 1. 1 5 3
=3¢ (G)+2m —mn+om+1,

with equality if and only if G = Py or K, —iK2(0<i < [§]), n =4, 5.
This completes the proof. [ |

Proposition 2.4 Let G be a non-trivial and non-complete connected graph

of order n, size m and diameter d. Then

d 3
——12—m+l 24 Sm+1,

Z©6)z -1 2 2

> 52 (O -

with equality if and only if both the diameter and the matching number of
G are equal to 2.



Proof. Note that G # K,. Thus, d > 2. By means of Eq. (3),
D(G)= Y dg(z)De(z)

z€V(G)
= > (de@)?+ )Y de(z) > do(=,y)
zeV(G) zeV(G) eV(G)\No[xl

< Y (de(@)?+ ) d-dg(z)(n - dg(z) — 1)
zeV(G) zeV(G)

= 2(n— 1)dm — (d — 1)M;(G),

with equality if and only if for each x in G and any y € V(G) \ Ng|z],
dg(z, y) = d, that is, d < 2.

So,
2(n—1)dm

71 9)

1 ’
—M(G) 2 d_—TD (G) -

with equality if and only if d = 2.
By Eq. (6), Inegs. (7) and (9), we have

Z(G)21+m+m(G;2)

1 2(n —1)dm
-2 © - T5@-n
1 / (n—-1dm 1 3
—mD (G)—W+§m2+§m+1,

with equality if and only if both the diameter and the matching number of

Zl+m+%m(m+1)+

G are equal to 2. [ |

Proposition 2.5 Let G be a non-trivial and non-complete connected graph

of order n, size m and diameter d. Then

1 . 1 , 3
5@=1) D(G)+2m +2m+1,

with equality if and only if both the diameter and the matching number of

2(6) 2 -

G are equal to 2.

Proof. According to Eq. (4) and Proposition 2.4, we immediately have

the following consequence. |
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