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Abstract

The harmonic index H(G) of a graph G is defined as the sum of weights
Tn)iﬁ of all edges uv of G, where d(u) denotes the degree of a vertex u in
G. In this paper, we give sharp lower and upper bounds for harmonic index

of bicyclic graphs and characterize the corresponding extremal graphs.
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1 Introduction

The Randi¢ index of an organic molecule whose molecular graph is G was

introduced by the chemist Milan Randi¢ in 1975 [4] as R(G) = 3, 7\”7:%. where
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d(u) and d(v) stand for the degrees of the vertices u and v, respectively, and the
summation goes over all edges uv of G. This topological index is one of the most
popular molecular descriptors, the mathematical properties of this descriptor have
also been studied extensively (see recent book [4]).

In this paper, we consider another variant of the Randi¢ index, named the

harmonic index. For a graph G, the harmonic index H(G) is defined (see [1]) as

2

HG) = d@u) +d)’

weE(G)

In [2], the authors considered the relation between the harmonic index and the
eigenvalues of graphs. In [6] and (7], Zhong presented the minimum and maxi-
mum values of harmonic index on simple connected graphs, trees and unicyclic
graphs respectively. In [3] and [5], the authors established some relationships
between harmonic index and several other topological indices.

Bicyclic graphs are connected graphs in which the number of edges equals the
number of vertices plus one. A pendant vertex is a vertex of degree 1. The bicyclic

graphs of order n without pendant vertex are characterized in Figure 1:
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Figure 1: Bicyclic graphs without pendant vertex with their harmonic indices.

In this paper, we will give sharp lower and upper bounds on the harmonic

index of bicyclic graphs and characterize the corresponding extremal graphs.
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2 Upper bound

Let n be a positive integer with n > 4. We denote by %(n) the set of all
bicyclic graphs on n vertices. In this section, we consider the maximum value
of the harmonic index for bicyclic graphs with n vertices, and we show that the
extremal graph is one of the type of {Bj, B;). In the proof of this result, we use the

following theorem.

Theorem 2.1. (/3]) Let w be a vertex of a nontrival connected graph G. For
nonnegative integers p and q, let G(p, q) denote the graph obtained from G by
attaching to the vertex w pendant paths P = wviv, ...vp and Q = wilt . . .ug of

length p and q, respectively. Then H(G(p, 9)) < H(G(p + 4, 0)).

Theorem 2.2. Among connected bicyclic graphs on n vertices, n > 4, the graph of

the type B, and B;, have maximum harmonic index, and H(B,) = H(B}) = 2- %

Proof. Assume that G € 9(n) with n 2 4. If G has no pendant vertex, then G is
one of the type of {By, B;, Ya, ¥y, ¥,'}. For convenient, we denote by %*(n) the set
of all bicyclic graphs on n vertices without pendant vertices. It is easy to prove
that max{H(B,), H(B,), H(Y»), H(Y,), H(Y;))} = H(B,, B;) = § — . Hence, in
the next proof, we assume that G has at least one pendant vertex. By repetitive
application of Theorem 2.1, we can conclude that the bicyclic graph with the
maximum value of harmonic index has the form as follow: there is at most one
pendant path attached to each vertex of %*(n). Assume that v € %*(n) and there
is a pendant path P = vu,u; . .. up attaching to v in the graph G. Denote dg(v) =
and N(v) = {w,uy, x,..., Xq-2), where w € 98*(n). Then3 <d £ 5,2 < dg(w) <
5,2<dg(x)<5,i€{l,2,...,d-2}. If p=1,thatis, P = vu;. Define G, =
— {wv} + {wu}, clearly, G, is also a bicyclic graph with order n, then H(G,) =
H(G) + dg(w)-l-z - WZ +t ATt e dc(x,)+d— -3 da(x;)+d > H(G).

Now we consider the length of pendant path is at least 2, let P = vuyuz . ... up_1p.



Then dg(up-1) = 2, dg(up) = 1. Define G = G — {wv} + {wup), clearly, G2 is also

a bicyclic graph with order n, and we have

2 2 2 _ 2
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Repeating this process on G, and G,, we can obtain that bicyclic graphs with

maximum harmonic index cannot possess acyclic branches. |

3 Lower bound

In this section, we consider the minimum value of the harmonic index for
bicyclic graphs of order n and characterize the extremal graph. Graph B, is the
unique bicyclic graph with 4 vertices. We define a bicyclic graph B*(n) with n
vertices as follow: B*(n) is obtained from B4 by attaching n — 4 pendant vertices
on the 3-vertex of graph Bs. Similarly, we can define B} (n) and B (n) (see Figure

2). Denote (n) = & — 8 + -4 + -2 ‘We have the following results.

Figure 2: The four graphs from left to right are: By, B*(n), B}(n), BZ(n)
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Theorem 3.1. Let G be a bicyclic graph of order n > 4. Then H(G) 2 ¢(n) with
equality if and only if G = B*(n).

Proof. We apply induction on n. For n = 4, G = By, then H(G) = ¢(4). If n = 5,
then the theorem holds clearly by the facts that there are only five graphs in 2(5)
(see Figure 3) and ¢(5) = Z8.
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Figure 3: The only five graphs in %(5) with their harmonic indices.

For n 2 6, assume that G € %(n) with n > 6. If G has no pendant vertex, then

G is one of the type of (B, B}, Y», Y,, ¥,'}. Itis easy to prove that

min{H(By), H(By), H(Yx), H(Y,), H(Y,))} = H(Y,) = g - é > ¢(n).

Hence, in the next proof, we assume that G has at least one pendant vertex. Denote
= {u € V(G)ld(u) = 1}, then V| # 0. Let u € V; and v is the neighbor of «.
Then d(v) 2 2. Set W(u) = {yly € N(v) \ {u},d(y) = 1}. Choose up € V; such that

(i) the number of the set W(up) is as large as possible;
(ii) subject to (i), d(v) is as small as possible.

Denote d(v) = d and N(v) = {y1,¥2,-.-,Ya-1,4o}. Let G’ = G — ug. Then

G’ € B(n - 1). By induction assumption, we have

, =) et 2
HG) = H(G)+l+d+Zd+d(y;)_;d+d(yi)—l
2(n)_sﬁle 2 _ 2 2
4 1 n+l n+2 1+d

Z (d+d(yl))(d+d(y,) @

i=1
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Now we consider the following two cases.
Casel.d(y;)22fori=1,2,---,d-1.

By the choice of up and G € %(n) (it has at least one pendant vertex), we
have W(u) = 0 for all u € V. By the structure of bicyclic graphs, we know that
d(v) < 5. Since, if d(v) > 6, then there is at least one vertex in {y;,y2,...,Yd-1},
say yi, such that the component H of G — v which containing y, is a tree and
|V(H)| = 2. Since W(u) = 0 for all u € Vy, there exists ' € V(H) n V; and
u'v' € E(G) such that d(v') = 2, a contradiction with the choice of up. Thus
d(v) =d < 5. By (»), we have

8 12 2 2 2 2(d-1)
HG) 2 o= v =il w2 Tvd @ 2@+
> (rt)———8 s2.2 2, :
2 ¢ o n n+l n+2 (5+2)5+1)

Denote f(n) = — -2 + 2 - 2. — 2+ L then f(n) > — ;& + & + 1, itis easy

to show that f(n) > 0 whenn > 8, forn = 6 and n = 7, clearly f(n) > 0. So, in

this case, H(G) > ¢(n).
Case 2. There exists some i (1 < i <d — 1) such that d(y;) = 1.
Without loss of generality, assume that d(y;) = d(y2) = -++ = d(yx) = 1 and
d(y) = 2fork+1<i<d-1,wherek > 1. By (+), we have
8 12 2 2 2 2k 2d-1-k)
HG) 2 o= o+ - " ne2 T+d (+dd @+DE+ D
= - 2.2 2, & (%)
= AT T Tl n+2 dd+D@+2)

Now we consider the following three subcases.

Subcase 2.1. d(v) =d = n—1,then G = B*(n) or G = B} (n). Clearly, H(B"(n)) =
¢(n), and H(B},(n)) = 3 - 12 + & > (n). This implies that H(G) = ¢(n) holds if
and only if G = B*(n).

Subcase 2.2. d(v) = d < n—2 and v is a vertex of a cycle in bicyclic graph G.
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Thenk < d -3 and d < n - 2. By the structure of bicyclic graphs, since v
is a vertex of a cycle in bicyclic graph G, when k = d -3 andd = n -2 hold
simultaneously, G = BZ(n). Clearly, H(B%(n)) — p(n) = 15 1 +a ” ~pn) > 0.

In the following proof of this subcase, by (*x), we divide into two parts:

(i) d=n-2andk<d-4;

2 +221+24  6d-4(d-4)
HG = o0 s D+ D T @+ D@+2)
= gn)+ el > ¢(n).

n-2)n-Dnn+1)(n+2)

(ii) dsn-3andk <d-3.

2+ 22n+24 2d+ 12
HG) 2 ¢ - o s Dt D) T dds Dd+ 2
> o) - 2n% +22n+24 N 2n+6
= (n-Dnn+ Dn+2) * (n=3)n-2)n-1)
96n? — 144
o(n) + > p(n),

(n-3)n=-2)n-Dnnr+ D(n+2)

where the second inequality holds since #%5 is monotonously decreas-

ingind.

Subcase 2.3. v is not a vertex of two cycles in bicyclic graph G.

Thend < n—-4. If k < d - 3, by the subcase 2.2, we have H(G) > ¢(n). If
k = d -2, there is only one vertex in N(v) we say ys_; such that d(ys-1) > 2.
The vertices in (y1,y2, - - , ya-2, 4o} are all pendant vertices. Denote d(yy-;) = d’,
NQa-1) = (v, x1,x2,-++ ,xp-1} and d(x;) = d; foralli = 1,2,.+-,d’ - 1. Let
Gy =G - (vuo, vy1,- - , vya-2} + {ya-140, ya-131, " * - , Ya-1ya-2}. Clearly, G, is also
a bicyclic graph with order n, and we have

HG) = HG) + L' 727 - TL 7o + 72 + K80 245 H(Gy),
where the last inequality holds sinced’ > 1 andd > 1.
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We consider the vertex y4_; in graph G;. Then one of the above three subcases
must be happened on y,_; in graph G,.

If subcase 2.1 and 2.2 happened, we have H(G) > H(G1) 2 ¢(n).

If subcase 2.3 happened, similarly, we can obtain another graph G, and a
vertex w; of G satisfying one of the above three subcases. Repeating this process
on G, and we can obtain a graph G, and a vertex w,, of G, satisfying subcase 2.1

or 2.2. So we have H(G) > H(G)) > -+ > H(Gp) 2 ¢(n). [ |
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