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A rainbow coloring of the edges of a graph is a coloring
such that no two edges of the graph have the same color. The anti-
Ramsey number f(G, H) is the maximum number of colors such that
there is an H-anti-Ramsey edge coloring of G, that is, there exists no
rainbow copy of the subgraph H of G in some coloring of the edges of
the host graph G with f(G, H) colors. In this note we exactly determine
f(@s,Q2) and f(Qs,Q3) where Qn is the n-dimensional hypercube.

1. Introduction

Given a host graph G and a subgraph H C G, a coloring of the edges of
G is called H-anti-Ramsey iff every copy of H in G has at least two edges
of the same color. A rainbow coloring of the edges of a graph is a coloring
such that no two edges of the graph have the same color. The anti-Ramsey
number f(G, H) is the maximum number of colors such that there is an
H-anti-Ramsey edge coloring of G, that is, there exists no rainbow copy of
H in some coloring of the edges of G with f(G, H) colors.

The function f(G, H) was introduced by Erdds, Simonovits and Sés
[4]. In most of the papers on this function complete host graphs G & K,
are considered [5,8,9]. Just recently, Montellano-Ballesteros and Neumann-
Lara solved the case f(Kn,Ci) where Cy is a cycle on k vertices [6]. There
are some results for bipartite graphs G (2,3,7] and hypercubes G = Q,, [1].

A hypercube @, consists of the 2™ vertices (ay,...,a,), a; € {0,1},i =
1,...,n, such that two vertices are adjacent iff the corresponding sequences
differ in exactly one position (see Figure 1 for Q,...,Qs).

In Figure 1 the hypercubes are drawn such that all vertices with the
same number i of 1s, ¢ = 0,...,n, in the corresponding sequence are in
layer V;. In between vertex layers V;_; and V; there is the edge layer E;,
i=1,...,n. Such drawings are called Hasse diagrams of Q..

In [1] the following general bounds for f(Q,,Q@x) are proved:

s [%(2"-1 —k+ 1)J < f(Qn, Qk) < n2n! (1 " = 1;k§k-2> M

For k = n — 1 the exact value of f(Qn,Qx) is determined in [1]:

ARS COMBINATORIA 110(2013), pp. 105-111



Figure 1. The hypercubes @3,...,Qs.

n2"~1 -4 forn=3,4,5,
n2"-1 -3 forn > 6.

f(@n,Qn-1) = { ()
In this note we investigate f(Qs,Qk). From (2) we have f(Qs,Q4) = 76.
In the following we prove f(Qs,Qs) = 68 and f(Qs,Q2) = 43 such that
the hypercube-anti-Ramsey numbers with Qs as host graph are completely
determined. In Table 1 known values and bounds for f(Qn, @) according
to (1) and Proposition 1 are summarized.

| k=2 3 4 5 6
n=3 8
4 18 28
5 43 68 76
6 99...102 132...172 149...187 189

Table 1. f(Qn,Qx).

2. f(Qn,Q2)
Choosing k = 2 in (1) we obtain
n2"2 4 [2] < £(Qn,Q2) < (n+1)272 (3)

If n = 3 then lower and upper bound of (3) coincide: f(Qs,Q2) = 8. It
is proved in [1] that also for n = 4 the lower bound of (3) is achieved:
f(Q4,Q2) = 18. If n = 5 then 43 < f(Qs5,Q2) < 48 by (3). We show in
the following that also in this case the lower bound is attained. We use the
following observations in the proof:

(A) Each edge of Q is contained in (}}) distinct subgraphs Q.
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(B) Each pair of edges of Q, is contained in at most (}~2) distinct sub-

graphs Q.
(C) A hypercube Q, contains 2"~*(}) copies of Q.

(D) A hypercube @, contains n pairs of vertex disjoint copies of @n—1.

Theorem 1. f(Q5,Q2) = 43.

Proof. The edge coloring that yields the lower bound of (3) is shown in
Figure 2 for n = 5. In this coloring equally bold marked edges of Qg have
the same color and different colors are assigned to different bold marks. All
other edges are colored pairwise different and also different to the colors of
the bold marked edges. All subgraphs Q2 are nonrainbow since each Q5
has its edges in 2 successive edge layers.

Figure 2. f(Qs5,Q2) > 43.

In order to prove f(Qs,Q2) < 43 we assume the existence of an Q,-anti-
Ramsey edge coloring ¢ of Qs with at least 44 colors, that is [c(E(Qs))| >
44.

At first we show that there exists a pair of vertex disjoint copies of Q4 in
Qs such that their edges are colored with at least 36 colors. Otherwise, the
edges of all 5 pairs (see (D)) of vertex disjoint copies of Q4 are colored with
at most 35 colors and therefore the edges of Qs with at most [35-5/4] =
43 < 44 colors since each edge of Qs is counted 4 times by (A) and all 10
distinct copies of Q4 in Qs (see (C)) are covered by the 5 pairs, which is a
contradiction to the above assumption.

Therefore, there is a pair Q, Q' of vertex disjoint Q4s in Qs whose
edges are colored with a least 36 colors. Since f(Q4,Q2) = 18 we have
[c(B(Q))] = |e(E(Q"))| = 18 with disjoint colors in @ and Q’.

Let E = {uu' : u € V(Q),v' € V(Q')} the set of edges between Q and
Q' and let By C F a set which contains exactly one edge of all of the at least
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8 colors that are distinct from the colors of Q and Q' and let E» = E \ E;.
Moreover, let V; and V, be the sets of end-vertices of the edges of E; and
E5 in Q, respectively.

Because of ¢(e) # c(¢’) for all e € E(Q), e’ € E(Q’) there exist no adja-
cent vertices in V; since otherwise a rainbow Q2 would exist. If we consider
a spanning cycle Cjg in Q then we have at most 8 mutually nonadjacent
vertices in Cjg and therefore also in Q which implies that E; has at most
8 edges and therefore |Ey| = |E2| = 8. Therefore, also the vertices of V;
have pairwise even distance in Cj¢ and thus also in Q since Q is bipartite.

Consider the subgraph of Qs of Figure 3 where e; € E(Q), e € E(Q’),
h € Ej, h; € E;. Since the cycles (e;, h1,e}, k) and (ez, ha,e5, h) are
nonrainbow and |c({e1, h1,€1})| = |c({e2, ha, €5})] = 3 with c(hy) # c(h2)
we obtain c(h) = c(e;) = c(e2) or ¢(h) = c(e}) = c(ey) and therefore
c(e1) = c(ez) = c(es) = c(ea) or c(e]) = c(ep) = c(e3) = c(ey), that is, a
monochromatic 4-star in Q or in Q’. Using this argument for each edge
of E2 we get 8 monochromatic 4-stars in Q and Q' together which are
edge disjoint since the vertices of V2 are mutually nonadjacent. In Q and
Q’ there are at most 4 monochromatic 4-stars each since otherwise there
would be less than 18 colors in E(Q) or E(Q’). This implies that there are
exactly 4 monochromatic 4-stars in @ and Q' each.

hy
(3] ell
ho \
€2 h €g
€3 e;’;
h3
€4 ef,
hy

Figure 3. Subgraph of Qs.

The centers of the 4-stars in Q = Q4 are in Vo and have mutually
distance 2 or 4. There are (3) = 6 pairs of these stars. Since the center of
a 4-star has distance 4 to at most one center of another 4-star in Q there
exist at least 4 pairs of 4-stars whose centers have distance 2.

Each monochromatic 4-star in Q contains (g) = 6 monochromatic pairs
of edges which yields 6 nonrainbow Qss. Since every pair of 4-stars whose
centers have distance 2 have one nonrainbow Q2 in common there are at
most 4-6 —4 = 20 nonrainbow Q2s with two edges in one of the monochro-
matic 4-stars each.
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Since @ has 32 edges there are 16 edges not contained in one of the 4-
stars which must be colored with at least 18 — 4 = 14 colors. Thus, among
these 16 edges there is at most one monochromatic triple or there are at
most three monochromatic pairs which yields at most 3 monochromatic
Q28 in Q. Edges having a color of one of the monochromatic 4-stars do not
yield additional nonrainbow Qqs since every Q. with one edge of a 4-star
contains two edges of this star.

Therefore, the number of nonrainbow Qs in Q is at most 23. Since
Q contains 24 subgraphs @2 (see (C)) there is at least one rainbow Q2 in
Q and thus also in Q5 which contradicts the assumption that there is a
Q2-anti-Ramsey edge coloring of Q5 with at least 44 colors. o

Choosing n = 6 in (3) we obtain f(Qs, Q2) > 99. Using the same idea as
in the proof of Theorem 1 it is an easy task to prove f(Qs, Q2) < 102.

Proposition 1. 99 < f(Qs, Q2) < 102.

3. f(Q5,Qs)

In this chapter we determine f(Qs,Q@3) by improving both the lower and
upper bound of (1).

Theorem 2. f(Qs,Q3) = 68.

Proof of f(Qj5,Q;) = 68. The edge coloring of Figure 4 shows the lower
bound f(Qs,Q3) = 68: The bold marked edges are colored with 4 distinct
colors and all other 64 edges with pairwise different new colors. All 40
subgraphs Q3 contain 2 equally colored edges each. o

Figure 4. f(Qs,Q3) > 68.

To prove the upper bound we use the following notation and lemmas.

We consider an arbitrary set of i + 1 edges of Qs and count the Qs that
contain at least two of these edges. The maximum number of Q3s among
all such sets is denoted by g;.
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Lemma 1. g; < 3(i +1).

Proof. According to (A) each edge of Q5 is contained in 6 Q3s. Therefore,
these are at most 6(i + 1)/2 Q3s that contain at least two of the ¢ + 1

edges. o

In the following we improve the upper bound for g; of Lemma 1 for ¢ =
1,...,4.

By (B) each pair of edges of Qs is contained in at most 3 distinct
subgraphs Q3 proving g1 < 3 with equality if the edges are adjacent.

Lemma 2. g; = 3.

We determined the exact values of g; for i = 2, 3, 4 by computer.
Lemma 3. go =7, g3 = 10, g4 = 13.

These values can also be determined by hand by a reasonable case analysis.

Proof of f(Qs,Q;) < 68. We assume the existence of a Q3-anti-Ramsey
edge coloring of Q5 using the colors 1,...,69.

Since the number of edges of Qs is 80 there are p < 80 — 69 = 11 colors,
say 1,...,p, with at least 2 edges of these colors each. If i;+1,5=1,...,p,
denotes the number of edges of color j then i; + ...+ i, = 11. According
to the definition of g;, the sum g;, + ... + gi, is an upper bound for the
number of nonrainbow Q3s in Q. For all 56 partitions 4; +...4+4p, =11 in
positive integers i1,...,4p, 1 < p < 11, the sum g;, +...+g;, is at most 39
which can be checked easily. To reduce the number of cases that must be
considered one can use observations as the following: Since g, +g3 < g2+92
partitions containing 1 and 3 must not be checked. Moreover, the upper
bounds for g;+1 and gy + g;, ¢ = 5, are 3(¢ + 2) each, thus it is enough to
check partitions containing ¢ and 1.

Since the number of Q3s in Qs is 40 there is at least one rainbow Q3
contradicting the assumption above. o

4. Concluding Remarks

It is conjectured in [1] that the lower bound f(Qn,Q2) = n2"~2+ [n/2] of
(3) is attained for n > 3. We proved this conjecture for n = 5.

Using the idea of the proof of Theorem 1 for n = 6 results in an up-
per bound that exceeds the lower bound 99 of (3) by 3. Thus additional
methods are necessary to prove the conjecture also for n = 6.
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