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Abstract

Let G be a simple connected graph containing a perfect match-
ing. G is said to be BM-extendable (bipartite matching extendable)
if every matching M which is a perfect matching of an induced bi-
partite subgraph of G extends to a perfect matching of G. The BM-
extendable cubic graphs are known to be K4 and K3,3. In this paper,
the 4-regular BM-extendable graphs are characterized. We show that
the only 4-regular BM-extendable graphs are Kg,4 and Tyn,n > 2,
where Ty, is the graph on 4n vertices ui,vi,2:,4:i,1 < i < n, such
that {u;,vi,Zi,4:} is a clique and ziui41, ¥ivige1 € E(Tyn)(mod n).

Keywords: Matching; Bipartite matching; Bipartite matching extendable
graph

1 Introduction
Graphs considered in this paper are finite, simple and connected. Let
G = (V(G), E(G)) be a graph. For V' C V(G), we denote by G[V'] the
subgraph induced by V. For M C E(G), set

V(M) ={veV(G): thereis an x € V(G) such that vz € M}.
M C E(G) is a matching of G if V(e) N V(f) = @ for every two distinct

edges e, f € M. A matching M of G is perfect if V(M) = V(G). Matching
extendability is a significant topic in matching theory [6]. In 1980, Plummer
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[7] first proposed the notion of k-extendability: G is said to be k-extendable
if every matching M with k edges extends to a perfect matching. There has
been an extensive study on the characterizations of k-extendable graphs in
the literature [1, 7, 8]. The notions of factor-critical and bicritical graphs
play important roles in classical matching theory as well [6]. A graph
G is said to be factor-critical if G — v has a perfect matching for each
vertex v of G, and bicritical if G — u — v has a perfect matching for any
pair of vertices u,v of G. In 1996, Favaron (3] introduced the k-factor-
critical graphs: A graph G is said to be k-factor-critical if G — T has
a perfect matching for every T C V(G) with |[T| = k. Graphs which
are k-factor-critical have a close relation to k-extendable graphs — a 2k-
factor-critical graph is k-extendable [3]; every connected, non-bipartite,
k-extendable graph is k-factor-critical, where k is even (4]. Yu [12] and Lou
(5] called a k-factor-critical graph k-critical and k-matchable, respectively.
In 1998, Yuan [13] suggested a variant of k-extendability: A graph G is said
to be induced matching extendable (IM-extendable in short) if every induced
matching M extends to a perfect matching. Motivated by the study of k-
extendable graphs, k-factor-critical graphs, and IM-extendable graphs, and
by the fact that there are essential differences between matching problems of
non-bipartite graphs and those of bipartite graphs, we investigate another
variant — bipartite matching extendable graphs. We say that a matching
M of a graph G is a bipartite matching if G[V(M)] is a bipartite graph.
We further say that G is bipartite-matching extendable (BM-extendable in
short) if every bipartite matching M of G is included in a perfect matching
of G.

The BM-extendability has close relations with other matching extend-
abilities:

BM-extendable = IM-extendable => 1-extendable = elementary.

A graph G is called elementary if the set of edges each of which lies in
a perfect matching of G induce a connected subgraph. Moreover, we say
that a graph G is equilibrium decomposable if G has a perfect matching, and
there is a maximal barrier S of G with |S| > 2 such that all components
of G — S are factor-critical and the graph obtained from G by contracting
each of these components into a single vertex is a complete bipartite graph.
We showed that a BM-extendable graph is either bicritical or equilibrium
decomposable. This indicates that the idea of BM-extendability can be
traced back to those of factor-critical graphs, bicritical graphs, and Gallai-
Edmonds’s decomposable structure.

In our previous papers [10, 11], we proved that the recognition of BM-
extendable graphs is hard in a computational complexity point of view; and
we obtained the degree-type conditions for BM-extendable graphs, which
implies that BM-extendable graphs would exist extensively in the class
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of comparatively dense graphs. On the other hand, the BM-extendable
graphs are quite few in the class of low-degree graphs. We have shown that
the only BM-extendable cubic graphs are K4 and K3 3. In this paper, we
further characterize the 4-regular ones.

Let T4, be a graph with 4n vertices u;,v;, 2;,1:,1 <1 < n,n > 2, in
which {u;,v;, T, y:} is a clique of Ty, and z;u;41, yivip1 € E(Tyn)(mod n)
(see Figure 6).

Our main result is the following.

Theorem A 4-regular graph G is BM-extendable if and only if G is iso-
morphic to K44 or Tyn.

Similar work has been done for IM-extendable graphs {9): The only
4-regular claw-free connected IM-extendable graphs are Cs2, Cs?, and Tyn.

The proof of the theorem is organized as follows. In Section 2, we
present some notations and theoretic tools needed in this paper. In the
succeeding sections the structural features of a BM-extendable graph G
are exhibited. Section 3 focuses on the classification of local structures in
the neighbor set of each vertex. Section 4 is devoted to the interrelations of
two types of neighbor sets. In Section 5, we make sure of the conclusion for
triangle-free graphs. In Section 6, we finally show that the only 4-regular
BM-extendable graphs are isomorphic to K4 4 or Tyy,.

2 Preliminaries

In this paper, we follow the graph-theoretic terminology and notation of
[2, 6]. Let S be a subset of V(G). The neighbor set of S, denoted by Ng(S),
consists of those vertices which are not in S but adjacent to some ones in
S. If § = {v}, we write Ng(v) for Ng({v}). Let dg(v) denote the degree
of vertex v in G. For simplicity, we may write d(v) and N(S) for dg(v) and
Ng(S) respectively. We say that v is a pendent vertex of G if d(v) = 1.
For V! C V(G), let G — V' be the subgraph obtained from G by deleting
all vertices in V' together with their incident edges, and E(V') = E(G[V'))
for convenience. For E' C E(G), let G — E' denote the spanning subgraph
of G with edge set E(G)\ E'. If E' = {e}, we write G — e for G — {e}. Let
P,, Cn, Ky, and K, denote the path, the cycle, the complete graph and
the empty graph on n vertices respectively. Let o(G) denote the number
of odd components of graph G.

The following preliminary results are important to our work.
Lemma 2.1 (Hall’s Theorem) [6] Let G be a bipartite graph with bi-
partition (X,Y). Then G contains a matching that saturates every vertex
in X if and only if |[N(S)| > |S| for any S C X.
Lemma 2.2 (Tutte’s Theorem) [6] G has a perfect matching if and
only if o(G — S) < |8]| for any S C V(G).
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A matching M is called a forbidden matching if it is a bipartite matching
and V(M) is a vertex cut such that G — V(M) has an odd component. We
state some necessary conditions of BM-extendable graphs as follows.
Lemma 2.3 If G is BM-extendable, then:

(a) there is no forbidden matching in G;

(b) G is 2-connected;

(c) if {u, v} is a vertex cut of G and uv ¢ E(G), then G—{u,v} has ezactly
two components and both of them are odd;

(d) for a bipartite matching M of G and an independent set X in G-V (M),

INg-v(X)| 2 |1 X].

Proof (a) If M is a forbidden matching, then G — V(M) has no perfect
matchings, contradicting the BM-extendability of G.

(b) If G has a cut vertex z, then G — z has at least two components G;
and G2, and at most one is odd by Tutte’s Theorem. So we may assume
G, is an even component. Take a vertex y in G; adjacent to z. Then
M = {zy} is a forbidden matching in G, contradicting (a).

(c) Let G and G2 be two components of G — {u,v}. Take a vertex z in
G, adjacent to u and a vertex y in G adjacent to v. Then M = {uz, vy}
is a bipartite matching. If either Gy or Gz is even, then M is forbidden,
contradicting (a). Therefore all components of G — {u,v} are odd. If
G — {u,v} has at least three components, let G3 be one other than G; and
G,. Then M is also forbidden, leading to a contradiction.

(d) Suppose to the contrary that |Ng_vmy(X)| < |X|. Let $ =
Ne_vm)(X). Then o(G — V(M) - S) > |X| > |S|. By Tutte’s Theorem,
G — V(M) has no perfect matchings, contradicting the BM-extendability
of G. The proof is completed. |

3 Local structure analysis

In the following, let G be a 4-regular graph. In this section, we will show
that if G is BM-extendable, then the subgraph induced by the neighbor set
of every vertex of G is isomorphic to either K4 or KjUKj. For convenience,
at a vertex u of G, we set Ny, = N(u), e(Ny) = |E(Ny)|, N2=N(N,)\
{u}. By the 4-regularity of G, we have 0 < e(NV,) < 6 and |[N2| < 12. Let
N, = {z1,%2,23,74} and let Y; be the set of neighbors of z; in NZ, i.e.,
Y; = N;, N N2.

Lemma 3.1 If G is BM-extendable, then e(N,) < 3 for every vertez u of
G.

Proof Suppose that G is a BM-extendable graph, but the assertion fails.
Then there is a vertex u € V(G) such that 4 < e(N,) < 6. If e(N,) = 6,
then G[N,] & K4. By the 4-regularity of G, we have G = K5, and so G
has no perfect matchings, a contradiction.
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If e(Ny) = 5, then G[N,] 2 K4 — e, where e is an edge of K4. Suppose
that z,,z2 € N, are two vertices such that z;z, ¢ E(N,). The 4-regularity
of G implies 1 < |N2| < 2. If N2 = {y1}, then y, is a cut vertex of G,
contradicting Lemma 2.3 (b). If N2 = {y1,v2} and z;y; € E(G) fori = 1,2,
then {z;,y2} is a vertex cut such that z,y, ¢ E(G) and G — {z1,y.} has
an even component composed of u, 23,3 and z4, contradicting Lemma 2.3
(¢)-

If e(N,) = 4, then G|N,] is isomorphic to either Cy or K 3 + e, where
e is an edge joining two pendent vertices of K} 3. In the former case,
suppose G[Ny| = z,z2z3x4z1. Then M = {z1x,,z324} is a bipartite
matching of G such that u is an isolated vertex in G — V(M), contradicting
Lemma 2.3 (a). In the latter case, let z1zoz3 be the triangle in G[N,] and
z3z4 € E(G). The 4-regularity of G implies that each of z; and z5 has one
neighbor in N2 and z, has two neighbors in N2. Suppose Y; = {y1,¥2}.
If yiy2 € E(G), then M = {uxzs,y1y2} is a forbidden matching with z4
being an isolated vertex in G — V(M), a contradiction. In the following,
we suppose y1y2 € E(G), and consider two cases as follows.

Casel (Y1UYe)nYy#0. IfY1UYs CYy, say either z1y1, z2y2 € E(G)
or z1y1,Z2v1 € E(G), then in both cases M = {z,y;,z4y2} is a forbidden
matching with uz,z3 being an odd component of G-V (M). If YUY, € Y,
suppose that z,y1,Z2ys € E(G) but y3 ¢ Yy, Then M = {zy3, 41} is &
forbidden matching with uz)z3 being an odd component of G — V(M).
Case 2 (Y1UY2)NYy = 0. If there are two vertices z; € N(y1) \ {z4}
and z; € N(yz) \ {z4} such that z;2; ¢ E(G), then M = {uxs,y121, Y222}
is a forbidden matching with z, being an isolated vertex in G — V(M).
Otherwise, each vertex in N(y1)\ {z4} is adjacent to each vertex in N(yz2)\
{z4}. Then the 4-regularity implies that N(Y;)\ {z4} induces a K3 or K3 3.
It follows that x4 is a cut vertex of G such that y;, y2 and their neighbors
are separated from u, contradicting Lemma 2.3 (b).

To summarize, the contradiction to BM-extendability proves the lemma.
a
Lemma 3.2 If there is a verter u of G such that e(N,) = 3 and G[N,] is
isomorphic to either Py or K3, then G is not BM-extendable.

Proof Let u be the vertex of G such that e(N,) = 3. To prove the result,
we will find a forbidden matching M of G. Then by Lemma 2.3 (a), G is
not BM-extendable.

If G[N,] = Py, let Py = z12923%4, then M = {z,7, 374} is the desired
matching with u being an isolated vertex in G — V/(M).

If G[N,] & K3, let {z1,z2,23} be the independent set and z; the
center of K; 3. Then each of z;,z2,z3 has two neighbors in N2 and z4
has none. If the two neighbors y;,ys of z, are adjacent, i.e., y1y2 € E(G),
then M = {uz4,y1y2} is a forbidden matching with xz, being an isolated
vertex in G — V(M). The same result holds for z5 and z3. So we may
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assume that Y;,1 < i < 3, are independent. We assert that among Y1, Y,
and Ys there must be two, say Y; and Y,, such that yjys ¢ E(G) for
some yj € Y] and y5 € Y>. Indeed, suppose to the contrary that, for any
i,j, 1 < 1,57 < 3 and 7 # j, each vertex in Y; is adjacent to each vertex
in Y;. If any pair of ¥; and Y; do not intersect, then d(y) = 5 for any
y € Y (1 £ k < 3), a contradiction to the 4-regularity of G; if there
are two Y;'s which intersect, say Y; NY> # 0, then both Y; and Y are
not independent sets, a contradiction to the above assumption. Therefore,
M = {1y}, T2y}, uz3} is a forbidden matching with z4 being an isolated
vertex in G — V(M). The proof is completed. |

We see from this lemma that if G is BM-extendable and e(N,) = 3 for
a vertex u of G, then the only possibility is G[N,] = K3UK;. We will deal
with this case later.
Lemma 3.3 If there is a verter u of G such that e(N,) = 2, then G is
not BM-extendable.
Proof Let u be the vertex such that e(N,) = 2. We can see that G[N,] is
isomorphic to either 2K or P3 U K. If G[N,] & 2K, then M = E(N,,) is
a forbidden matching of G with u being an isolated vertex in G — V(M).

If G[N,] = P; U K, suppose P; = 732173 and K = z4. Then, in N2,
z1 has one neighbor, say y;, each of 3 and z3 has two neighbors, and z4 has
three neighbors. If y; 22,3123 € E(G), then e(N,,) = 4, and so by Lemma
3.1 G is not BM-extendable. If y; is adjacent to one of z3 and z3, then
e(Nz,) = 3and G[N,,] & P;. By Lemma 3.2, G is not BM-extendable. So,
we suppose that y; is adjacent to neither zo nor z3, and proceed to find a
forbidden matching M of G in what follows.

Let Y> = {y2,y3}. If yoys € E(G), then G[N,] = 2K, which is excluded
as before. Otherwise, Y> is independent, and so is Y3. If Y, N {yo,y3} # 0,
say 24y2 € E(G), then, noting that {z1,y2,y3} and {z2,z3,2z4} are inde-
pendent sets, we see that M = {z,z3,zys, T4y2} is a forbidden match-
ing with u being an isolated vertex in G — V(M). We now suppose that
Yon(Y2UY3) = 0. Let y4 € Ys. Then, {z9,23,y4} and {z1,24,y3} are
independent sets, and so M = {z;z3,Z2y3, T4¥a} is a forbidden matching
of G with u being an isolated vertex in G — V(M). This completes the
proof. |
Lemma 3.4 If there is a vertex u of G such that e(N,) = 1, then G is
not BM-extendable.
Proof Let u be the vertex of G such that e(N,) =1, z;z2 € E(N,) and
T3, 74 the two isolated vertices in G[N,]. Then [Y;| = |Y2| =2,|Y3| =Yy =
3. f Y1 nYs # 0 or the two vertices in Y; are adjacent, then e(Nz,) > 2
and G[N,,] # K, U K3. Thus G is not BM-extendable by Lemma 3.1 -
3.3. So we may suppose that Y; and Y> are independent and Y1 NY; = @.
There are two cases to consider, depending on whether Y3 = Y} or not.
Case 1 If Y3 # Y,;, we can choose y3 € Y3 \ Yy,y2 € Y5\ Y3. Then
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z3y1, T4y2 € E(G) and z3y2, z4y1 ¢ E(G). Since z; and 5 cannot be both
adjacent to any one of y; and y2, we may assume that z,y;, z2y2 ¢ E(G).
So {z1,y1,%4} and {z3, x3,y2} are independent. Thus M = {z123,23y1, Tay2}
is a forbidden matching with u being an isolated vertex in G — V(M).
Case 2 If Y3 = Yy, there must be two nonadjacent vertices y; and y, in
it. For, otherwise, Y3 = Y, will be a 3-clique, and so u is a cut vertex,
contradicting Lemma 2.3 (b). Therefore {z3y,,z4y2} is a bipartite match-
ing of G. If furthermore M = {z1x2, Z3y1,T4y2} is a bipartite matching,
then the proof is completed as the previous case. Otherwise, z; and z; are
adjacent to y and y, respectively, say z1y1,z2y2 € E(G) (an odd cycle
T1T2y2Z3y1 Ty occurs in G[V(M)]). We will change this matching M to
a forbidden matching M’ with z; being an isolated vertex in G — V(M")
in the sequel. Let Y3 = Yy = {y1,¥2,¥3}. Since Y NY; = @, y; is adja-
cent to at most one of z; and z;. So, we can suppose z1y3 ¢ E(G). Then
Yin{y1, 92,93} = {11} Let Y1 = {y1,94}. Observing that y4 ¢ Y2UY3UY,
and y; € Y1NY3NY}, by the 4-regularity of G, we can choose a vertex z ¢ N,
such that y4z € E(G) and y1z ¢ E(G). Then, {u,y,2} and {z2, 3,34}
are independent sets, and so M’ = {uz2,y1%3, Y4z} is a forbidden matching
as required. The proof is completed. ]
So far, all we have left to consider are two cases when G[N,] & K4
(e(Ny) = 0) and when G[N,] = K; U K3. This leads to a classification of
local structures: for a vertex u in G, the neighbor set N, is said to be of
type 1 if it is an independent set, and of type 2 if it induces a subgraph
K, U K3. From Lemmas 3.1 through 3.4, we see that for each vertex u in
BM-extendable graph G, N, is either of type 1 or of type 2.

4 Two types of neighborhoods

In this section we concentrate our attention on a vertex u with neighbor

set N, of type 1, i.e., G[Ny) = K. Recall that N, = {z,z2, 23,74} and

Y; is the set of neighbors of z; in N2 (1 < i < 4). Then [Y;| = 3 and

Y =Y1uY,uY3UY,; = N2. We apply the above classification to the

neighbor sets Y;: when N, is of type 1 (type 2 resp.), we say that Y; is of

type 1 (type 2 resp.). So Y; is of type 1 if and only if it is an independent

set (GY;] 2 K3); Y; is of type 2 if and only if it is a clique (GlYi] = K3).

Lemma 4.1 Let G be a BM-extendable graph and N, of type 1 for some

vertez u of G.

(a) If Y; and Y; are of type 2, then Y;NY; = 0.

(b) If Y; is of type 2, then there is at most one Y; of type 1 such that
Y;nY; #9 (thus [Y; Y| = 1)

(c) If Y; is of type 1 and the other three Y; are of type 2, then there is at
least one Y; (j # i) such that YiNY; = 0.
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Proof (a) Suppose Y;NY; # 0. Then the 4-regularity implies that Y; = Yj.
It follows that u is a cut vertex, contradicting Lemma 2.3 (b).

(b) Let Y7 = {¥1,y2,¥3} be the one of type 2. Suppose to the contrary
that Y,,Ys are the two of type 1 such that y2 € Y3 and y3 € Y3. Then
Toy2,23ys € E(G), and both ¥, and Y; are independent. Let z be the
only element of Ny, \ {z1,¥2,y3}. If z € Y (similarly for 2z € Y3), ie,
T2z € E(G), then take y4 as the only element of Y3 \ {y2, z}, else take yq
arbitrarily from Y2\ {y2}. In the former case, {u, z,y4} and {22, z3,¥,} are
independent; in the latter case, {u,y1,¥4} and {z2, 3, z} are independent.
Hence M = {uzs,zoys, 12} is a forbidden matching with z1y2ys being a
triangle component in G — V(M), a contradiction to Lemma 2.3 (a).

(c) Let Y1,Y2, Y3 be of type 2 and Y; of type 1. Suppose to the contrary
that ¥; Yy = {y:},i = 1,2,3, and denote by Q; the 4-clique {z;} UY;.
In addition to x; and y;, let a; and b; be the other two vertices of Q;. To
concentrate ourself, we consider Q; at the moment. Let z] be the only
element of N,, \ {z1,¥1,b1} and y} the only element of Ny, \ {z1,y1,01}.
Noting that N, is not of type 1, and then is of type 2, we have = # y|. We
further assert that z} # y; for each i = 2,3. Otherwise, say z} = y3, since
Y, is of type 2, y2 has five neighbors, a,, a3, b2, 22 and x4, a contradiction
to the 4-regularity of G.

If there is a neighbor z of zj such that y; is adjacent to at most one of
z and z}, then M = {uz4,x12,b,y}} is a forbidden matching with z,y;a,
being a triangle component of G — V(M), contradicting Lemma 2.3 (a).
Otherwise, for any neighbor 2 of z}, ¥} is adjacent to both z and zj. Then
N, is of type 2, and z and y; are in a common 4-clique, denoted by
Q) (not excluding Q] = Q2 or Q3). The same argument can be applied
on @} and a new 4-clique Qf is obtained, and so on. Furthermore, the
same argument can be applied on Q2 and Q3. In this way, three chains
of 4-cliques starting at Q;, @2, @3, respectively, are generated. Due to the
finiteness and the 4-regularity of the graph, two of chains will eventually
join together; but the extending process of the third chain can never be
stopped, and this contradicts the finiteness of G. The proof is completed.
[ |

Let X = N, = {z1,%2,%3,24}, and let X° be the set of z; with N,
being of type 2 (i.e., Y; is of type 2). We denote by Ep the set of edges
between different Y;’s in G.

Lemma 4.2 Let G be a BM-extendable graph. If there is a vertez u of G
with N, of type 1, then N, is of type 1 for every vertez x € N,,.

Proof Suppose to the contrary that there is a vertex z € Ny, such that N, is
of type 2. Since Y; is either of type 1 or of type 2, we have 1 < | X9 < 4. We
perform the following transformation: ifY; is of type 2, then it is contracted
to a single vertex (still denoted by Y;). Here, the resulting parallel edges
should be removed. Let G’ denote the resulting graph, and Y the set of N?2
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in G'. Since X is independent, we see that H = G'[X UY]— Ejy is bipartite.
Then, by Lemma 4.1 (a), M® = {2;Y; : 2; € X°} is an induced matching
of H. If we can extend M? to a matching M’ of H saturating every vertex
of X, then, coming back to graph G, by changing M° in H to a matching
in G (still denoted by M?) so that each z; € X° matches an arbitrary
vertex y; in Y;, we will get a matching M of G from M’. Furthermore, if
M is a bipartite matching, then it is a forbidden matching with u being
an odd component of G — V(M). This is a contradiction to Lemma 2.3(a),
completing the proof.

We first give the following key observation, which will help us to insure
that the M we find is forbidden: the matching M?° is also an induced
matching in G — Ep; each of those y; in V(M?) is incident to at most
one edge of Ey (due to the 4-regularity), implying that these y; cannot be
contained in any cycle invoking edges of Ej.

We now consider four cases, depending on the cardinality of X°.

Case 1 |X°| =4, ie, X° = X. We change M to M = {z;y; : 1 <
i £ 4} (yi € Yi). Then M is an induced matching in G — Ey. From the
above observation, G[V(M)] has no cycles and so is bipartite. Thus M is
a bipartite matching in G, as required.

Case 2 | X% = 3. Let X° = {r1,z2,73}. By Lemma 4.1 (¢), x4 can be
matched to a vertex y4 € Y4\ (Y1 UY>UY3). Thus H has a matching
M' = M® U {z4y,} saturating every vertex of X. Let M = {ziy:i:1<i <
4}, where y; € Y; (1 < i < 3). Also by the observation, we can see that
G[V (M) is bipartite, implying that M is bipartite in G, as required.
Case 3 |X° = 2. Let X° = {z1,72} and H® = H — V(M?P), then by
Lemma 4.1 (b), either dyo(x3) > 2 and dgo(z4) > 2 or dyo(z3) > 1 and
dpo(z4) = 3. By Hall’s theorem, H® has a matching M! = {z;y; : i = 3,4},
where y; € Y;\(Y1UY2). Thus H has a matching M’ = M°UM? saturating
every vertex of X. Let M = {z;y; : 1 < i < 4}, wherey; € Y; (i = 1,2).
For 3 < i < 4, the independence of Y; implies that if z;y; € E(G) (j # 1)
then y;y; ¢ Eo, and as mentioned before, no cycles using edges of Ey could
pass through y; or y;. So, there are no odd cycles in G[V(M)] and M is
bipartite.

Case 4 |X° =1. Let X° = {z;}. We proceed to find a bipartite matching
M = {zy; 1 1 < i < 4}. First, let z; match a vertex y; in Y; and we
ignore edge z1y; below. By Lemma 4.1 (b), Y; NY; # 0 for at most one
Y: (¢ # 1). Without loss of generality, suppose that Y; NY; # @, that
is, z is adjacent to a vertex in ¥;. Let Y] = Y2 \Y;. fYinY; =9
for all ¢ # 1, let YJ = Y5 \ {v}, where v is an arbitrary vertex of Ya.
Then |Y3| = 2. Let H’' be the bipartite subgraph consisting of the edges
between {rz,73,z4} and Y; UY3 UY,. If {z2,23,24} can be matched
into Y3 or Yy, say Y3 = {y2,43,v4} and y2 € Y,ys € Ya,ys € Y4, then
M’ = {z;y; : 2 < i < 4} is a bipartite matching, as Y; is independent in G.
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Otherwise, neither Y3 nor Y; is an SDR (system of distinct representa-
tives) of the family {Y;,Y3,Ys}. Then there will be three possibilities as
follows: (i) one of Yy, Ys,Y} is disjoint from the other two; (ii) any two of
Y},Ys,Y, intersect exactly at a common vertex z, ie., Y;NY3 =Y NY; =
YanYy = {z}; (ili) YanYs =0 and Y7 NY5 = {2}, Y;nY, = {2} (2 # 2).
Three possibilities are illustrated in Figure 1(a), (b), (c). For any possi-
bility, we claim that there are ya € Y3,y3 € Y3,ys € Y} satisfying: (1)
¥2,93,¥a # 2; (2) {y2,y3,ys} doesnot form a triangle by using edges of Eq.
In fact, (1) is easy to do. As to (2), suppose that {yo,ys,y4} forms a
triangle by using edges of Ey. Then for the other vertex yj € Y3 \ {2},
we have yay; ¢ Eo. Otherwise, by the two type classification, we see that
{2, y3, ¥4, ¥4}, the neighbor set of y, is of type 2. Thus {y3, ys,y4} induces
a K3, contradicting that Y; is independent. So we can change y4 to yj, and
{y2,y3,y4} satisfies condition (2).

Ya Y2 Y3 zZ Y Y2 Y3 z Ya
(©)

Flgure 1. Subgraph H

Using these chosen y2, y3,y4, we construct a matching M’ = {z;y;: 2 <
i < 4}. If there is no z, then the induced subgraph of V/(M’) in the bipartite
graph H', denoted by H'[V(M’)], is disconnected. Otherwise, z is a cut
vertex of H', and z ¢ V(M'). Then H'[V(M")] is also disconnected. As a
result, when edges of Ej are put into this subgraph, there are no odd ¢ycles
occurring in G[V(M')]. In fact, it is known by (2) that G[{yz,ys,¥4}] is
not a 3-cycle in G[V(M’)]. Further, the absence of other 3-cycles is due to
the independence of ¥; (2 < i < 4); the absence of 5-cycles is due to the
disconnection of H'[V (M'’)]. Therefore M’ is bipartite. Since y; is adjacent
to at most one vertex in V(M'), M = {z1y1} U M’ is bipartite, and so is
forbidden.

To summarize, we get the contradiction that G is not BM-extendable.
The proof is completed. [ |

5 Triangle-free graphs

Lemma 5.1 Let G be a triangle-free (i.e., all Ny are of type 1) BM-
extendable graph. Then G = Ky 4.

Proof Let u € V(G) begiven, X =N, = {z; : 1 <i<4},and Y = N2.
We can see that H = G[X UY] — Ej is bipartite. We first suppose that
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|Y'| > 4. The main burden of the proof is to show that |Y| > 4 is impossible.

By the fact that dy(z;) = 3 (1 < i < 4), for any subset S C X, if
|S| < 3, then [Ny(S)| > du(zs) =3 2 |S| (z; € §); if S = X, then
[N (S)| =|Y| > 4 ={S|. Thus, by Hall’s theorem, there exists & matching
M of H saturating every vertex of X. If Ey = @, M is bipartite in G, and
so is forbidden with u being an isolated vertex in G — V(M), contradicting
Lemma 2.3(a).

IfEg #0and [Y| =4,let Y = {y; : 1 <i < 4} and y3ys € Eyp.
Since G is triangle-free, dp(y3) + du(ys) < |X| = 4. This implies that
du(v1) = du(y2) = 4. Therefore, M = {y3y4} is a forbidden matching with
G[X U {u,91,y2}] being an odd component in G — V(M), a contradiction.

We next consider 5 < |Y| < 6. First, if G[E,] has two independent
edges, then we may take them as a matching M. Note that Ng_y ) (X) =
(Y \ V(M)) U{u}. We have [Ng_vm)(X)| < 3 < 4 = |X|, contradicting
Lemma 2.3 (d). Second, if G[Ey] has no independent edges, then G[Ey] is
a star K;,,1 <7 < 3 (for G is triangle-free). Let y be the center of this
star. Instead of H, we may consider the bipartite graph H' = H — y with
no edges of Ey between its vertices. By a similar discussion as the case
Ey = 0 above, G is not BM-extendable.

For |Y| > 7, we consider three cases below, according to the value of
max{dg(y) : y € Y}. Here, the following observations are needed.
Observation 1 If each Y; (1 < i < 4) contains a pendent vertex of H, then
G is not BM-extendable.

In fact, let y; € Y; be the pendent vertices of H and M = {z;y; : 1 <

i < 4}. Clearly, M is an induced matching in H. Since there is no triangle
in G, G[V(M)] is bipartite, implying that M is forbidden. Thus G is not
BM-extendable.
Observation 2 If Yy contains pendent vertices of H, Y;NYy = for some
1 € {1,2,3}, and Y; contains at most one pendent vertez of H, then G has
a forbidden matching which saturates every vertez in X (and so G is not
BM-extendable).

To show this, suppose that y’ is a pendent vertex of H in Yy, and
suppose, without loss of generality, that i = 1. Then Y; NY; =9, and Y}
contains at most one pendent vertex of H. Let Y; = {y1,y2,y3} (if Y; has
a pendent vertex, assume that it is y3). If [Ny (Y})| = 3, then Ny(Y)) =
{z1,22,23}. By Hall’s theorem, the bipartite graph G[{z1,z2,z3} U Y]
has a perfect matching M’ with [M’| = 3. Set M = M’ U {z4y'}. Since
{z1,%2,73,¥'} and {y1,y2,¥3, T4} are independent in G, M is bipartite. If
|Ng(Y1)| = 2, say Ny(Y1) = {z1,22}. Then Y1 NY3 =YoNY; = . Since
Y, contains pendent vertices, Y3 has a vertex y” which does not belong to
YUY, UY,. then {z;,z2,y',y”} and {y1,y2, 23,24} are independent, and
so M = {z1y1,T2y2, z3y”, z4y'} is bipartite. In both cases M is a forbidden
matching of G with u being an isolated vertex in G — V(M), completing
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the proof of Observation 2.

From Observation 1, there is a Y; which contains no pendent vertices of
H, and so max{dy(y) : y € Y} > 2. By symmetry, we may suppose that
Y1 = {y1,92,y3} and dg(y1) > du(y2) = du(ys) = 2.

Case 1 max{dy(y) : y € Y} = 2. By Observation 1, we have |[Y| < 9.
We will show that there is a bipartite matching M in H saturating X, and
thus G is not BM-extendable. Here, three subcases arise:

(2.1) [Y| = 7. Suppose that the degree sequence of Y in H is
(dﬂ(yl)a dH(yZ)a dH(y3)a dH(y4), dH(yS)v dH(yS)a dH(y'l)) = (2, 2,2,2,2,1, 1)
If the two pendent vertices ys, y7 are contained in a single Y;, say Y}, since
Y, has only one non-pendent vertex, Y; intersects only one of Y7,Y, and
Ys. If ys and y7 are contained in two distinct Y;’s, say ye € Y3,y7 € Y4,
since Y3 has two non-pendent vertices, Y, intersects at most two of Y3,Y>
and Y3. In both cases there is a ¥}, 1 <! < 3, such that Y;NY; = 0. Since
Y} has at most one pendent vertex, by Observation 2, we are done.

(2.2) [Y| = 8. Let (2,2,2,2,1,1,1,1) be the degree sequence of Y in
H, for which Y has four pendent vertices ys, ys, ¥7, ys in H. Among them
there must be two contained in distinct Y;’s, say y7 € Y3,ys € Y;. We make
a transformation on H by contracting y; and ys into a single vertex, and
denote the resulting graph by H’. This reduces to the case of |Y| = 7. By
Observation 2, H’' has a bipartite matching M saturating X. Clearly, M
is also bipartite with respect to H.

(2.3) When |Y| = 9, the same transformation can be made and the
proof of Case 2 is completed.

Case 2 max{dy(y) : y € Y} = 3. By Observation 1, we have |Y| < 8.
There are three subcases to consider.

(3.1) |Y| = 7 and (3,2,2,2,1,1,1) is the degree sequence of Y in H. If two
(or three) of the pendent vertices are contained in some Y;, say Yy, then
Y, is disjointed to at least one of Y7, Y5, Y3. Otherwise, each of the three
pendent vertices is contained in a distinet Y;, 2 < i < 4. Then Y} intersects
at most two of Y, Y5, Y3, i.e., YiNY, = 0 for some ! (1 <! < 3). Note that
Y; has at most one pendent vertex. In both cases the result follows from
Observation 2.

(3.2) Y} =7 and (3,3,2,1,1,1,1) is the degree sequence of Y in H. Let
Y4,Ys5, Ys, Y7 be the pendent vertices of H. Without loss of generality, there
are three cases for the distribution of these pendent vertices as follows:
(a) ya € Ya,Ys = {ys,96,37}; (b) va € Ya,ys € Y3, {ye 57} C Y4; (c)
{va,¥s} € Ya,{v6,y7} C Y4. For (a) or (b), the proof is the same as that
of (3.1) by using Observation 2. We need only consider (c) below.

Note that Y5 = Y;. Suppose, without loss of generality, that zay;, z4y2 €
E(H) (see Figure 2). Then there are no edges from y; to {y4,ys} and no
edges form y3 to {ys,y7}. Since y; has only one additional neighbor, one of
ye and y7 is not adjacent to y;, say ye. Similarly, suppose that yoys ¢ E(G).
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If yaye & Eo, let M = {x1y1,%2y2,T3Ya,Tays}. Since {z1,72,3,Z4} and
{y1,v2,¥4,ys} are independent, M is bipartite as required. We now suppose
that y4y6 € Ep.

If both y1y7 and y2ys are edges of G (see Figure 2(a)), we take M =
{v197, ¥29s5, yaye }. Since Y3 = {y1,y4,ys} and Yy = {2, e, y7} are indepen-
dent, M is bipartite. By the fact that [Ng_v(a)(X)| = 2 < 4 = | X| occurs
in Lemma 2.3(d), G is not BM-extendable. Therefore at most one of y,y7
and yoys is an edge of G. If ysy7 € E(G), let M = {z1y1, Z2¥2, Ya¥e, Ysy7}-
Since G is triangle free and there is at most one edge between G[{z1, 1, Z2,y2}]
and G[{ya,¥s,9s,y7}], M is a bipartite matching of G such that

INe-vmy ({23, z4})| = 1 < [{z3, 24},

which implies that G is not BM-extendable. So ysy7 € E(G). If y1y7, y2ys ¢
E(G), then M = {z1y1,Z2y2, T3ys, T4y} is a bipartite matching as re-
quired. Otherwise, by symmetry, suppose y1y7 € E(G) (see Figure 2(b)).
Then M = {z,u,zoy2, T3ys, T4y} is a forbidden matching of G with y;
being a component of G — V(M).

(b)
Figure 2. Avoiding odd cycles

(3.3) |Y| = 8 and (3,2,2,1,1,1,1,1) is the degree sequence of Y in H. We

make a transformation on H by contracting two pendent vertices lying in
distinct Y;’s into a vertex of degree two and reduce it to Case (3.1).
Case 3 max{dy(y):y € Y} = 4. By Observation 1, we have |Y| = 7 and
the unique degree sequence of ¥ in H is (4,2,2,1,1,1,1). So dg(y:) =1 for
4<i<7 LetY' =Y;\{y1}. then |Y/| =2 (1 <i < 4). There are two
cases for the distribution of pendent vertices: either Yy = {y4,y5}, Y/ =
{ys,yz} or y4 € Y3,y5 € Y{,Y] = {y6,y7}. Consequently, we distinguish
these two cases:

(4.1) Y3 = {ya,ys} and Y] = {ye,y7} (see Figure 3(a)). Let M =
{z192, T2y3, Taya, Taye}. If Y2ye, Y3va, Yave € Ep, then z,y3y4v6y27) is a
5-cycle in G[V(M)]. If no such cycle exists, then, by the fact that z3,z4
are pendent vertices in G[V(M)], M is a bipartite matching of G saturating
X. Otherwise, we may change z3y, to 3ys and/or change z4ys to 24y7 so
as to avoid the 5-cycles. If this is unavoidable, then the graph G is the one
shown in Figure 3(a). For this, we may take M = {yoy7, y3y4, ¥sys}, which
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is a bipartite matching with {y2,v4,ys} and {ys, ys,y7} being independent
in G[V(M)]. Noting that |No_van(X)| = 2 < 4 = | X], we see that G is
not BM-extendable by Lemma 2.3(d).

Y1 Y2 Y3 Y4 Ys Y Y7
(b)

Figure 3.

(4.2) ys € Y3,y5 € Y3,Y] = {ye,y7} (see Figure 3(b)). Let M =
{z2y2,T3y3, Taye}. Observing that {z2,z3,y6} and {y2,y3, 24} are inde-
pendent and {u,z;,y1} comprises an odd component in G — V(M), we
know that M is forbidden, and so G is not BM-extendable.

To summarize, we have |Y| = 3. Then, by the 4-regularity of G, G =
K4 4. The proof is completed. [ ]

6 Proof of the Theorem

We first show that K4 4 and Ty, are BM-extendable. In fact, every matching
of K44 extends to a perfect matching, K, 4 is BM-extendable. For T4y,
suppose that M is a bipartite matching and Q; = {u;, vi, zi, %} (1 < i < n)
are cliques of Tyn. Then |[V(M)NQ;| < 2. For any e € M, if e € E(Qy),
then let p(e) be the edge in E(Q);) independent to e; if e = z;u;41 then let
p(e) = y;vip1 or conversely. Clearly, Ueerr{e,(e)} is a matching of Ty,
containing M. The remaining vertices (if any) can be matched by pairing
z; and y; or u; and v;. In this way, we obtain a perfect matching of Ty,
containing M. Thus T}, is BM-extendable.

To complete the proof of the theorem, invoking Lemma 5.1, we need
only prove that for a BM-extendable graph G, if there is a vertez v of G
such that N, is of type 2, then G = Ty,,. We start with the following claim.
Claim Let G be a BM-extendable graph, v a vertez of G with N, of type
2, and Q the 4-cligue containing v. If |V(G)| = 8, then G = Tg; otherwise,
there are two vertices in N(Q) contained in a 4-clique Q' and the other two
vertices contained in another 4-clique Q" (Q' # Q") (see Figure 4).

To show this, let v = 7, and Q = {z;,%2,23,%4}. Clearly, all N, are
of type 2. If there are two vertices in Q, say z;,z2, having a neighbor
y ¢ Q in common, then G is Ks, a contradiction. Thus @ has four distinct
neighbors, i.e., |IN(Q)| = 4. Let N(Q) = {y: : 1 < i < 4} and z;y; € E(G).
If there is a vertex y; being of type 1, then N, is of type 1 by Lemma 4.2,
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a contradiction. Thus all N,, are of type 2. Let Q; (i = 1,2, 3,4) denote
the 4-clique of G containing y;. We assert that if Q; # Q;, then Q;NQ; =
f (¢ # 7). Otherwise, the 4-regularity of G implies that |Q; N Q;| = 3 and
M = {z;y;,z;y;} is a forbidden matching with G[Q; \ {y:}] being a triangle
component of G — V(M), contradicting Lemma 2.3. Let ¢ denote the
number of 4-cliques containing some y; (i = 1,2,3,4). Clearly, 1 < g < 4.

Q n Q y3 Q"

Q

v Y2 v Y4

(a) (b)

Figure 4. Recursive structure
If ¢ = 4, ie., Q; are pairwise disjoint, let 2; € Q; (2; # ;) and M =
{v121,¥222,y323, Taya}; if ¢ =3, let Q1 = Q3, 23 € Q3 (23 #y3) and M =
{¥1y2,y323,Z4y4}. We can see that in both cases M is a forbidden matching
with z,7223 being a triangle component of G — V(M), a contradiction. If
g=1,1ie, Q1 = Q2 = Q3 = Qg, then the 4-regularity of G gives G = Ty
(see Figure 4(a)). If ¢ = 2, then, without loss of generality, we get that
either Q) = Q2 and Q3 = Q4 or Q; = @2 = Q3. For the former case, ¥,
and y, are in a 4-clique Q’, and y3 and y4 in another 4-clique Q" (as in
Figure 4(b)). For the latter case, let z # y; (1 < ¢ < 3) be in Q3, then
M = {y3z,74y4} is a forbidden matching with G({z,, z2, 3, %1, ¥2}] being
an odd component of G~V (M), a contradiction. Thus the claim is proved.

Qo To U @1 1 U Q2 o un_lQ""lz,.,_l
o U Y1 v2 Y2 Un—-1 Yn-1
Figure 5. A chain of 4-cliques Figure 6. T4n (n = 4)

As a result, we need only consider |V(G)| > 8. Let x; be a vertex of
G with N, being of type 2. From the claim, we can suppose that Q; =
{z1, 91,1, v1} is the 4-clique of G containing z;, Q2 = {z3,y2, u2,v2} the 4-
clique containing two neighbors u3, v; of Q1, say z1uz, y1v2 € E(G), and Qo
the 4-clique containing two neighbors zo,yo of Q1, say zou1,yov1 € E(G)
(see Figure 5). For the vertex z3, by the claim again, we have a 4-clique
Q3 = {z3,y3, u3, v3} such that zous, yovz € E(G). Continuing in this way,
since G is finite, let n be the maximum integer such that there are n 4-
cliques Q; = {zi,yi,u;,v:}, 0 < i < n— 1, with z;u;41, yivis1 € E(G). For
Zn-1, by the claim we have a 4-clique Qn = {z, Yn, un,vn} containing two
neighbors un, v, of Qn_1, 58y Tn_1Un,Yn—19n € E(G). By the 4-regularity
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of G and the maximality of n, we can see that @, = Qo. Thus, G = Ty,
as shown in Figure 6. The theorem is proved. |
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