DUAL HELLY-TYPE THEOREMS FOR UNIONS OF SETS
STARSHAPED VIA STAIRCASE PATHS

MARILYN BREEN

ABSTRACT. Let d be a fixed integer, 0 < d < 2, and let X be a
family of sets in the plane having simply connected union. For every
countable subfamily {Kn : n > 1} of X, assume that U{K, : n > 1}
is starshaped via staircase paths and that its staircase kernel contains
a convex set of dimension at least d. Then U{K : K inX} has these
properties as well.

In the finite case, define function g on {0, 1, 2} by g(0) = 2, g(1) =
9(2) = 4. Let X be a finite family of nonempty compact sets in the
plane such that U{K : K'in X} has a connected complement. For d
fixed, de {0, 1,2}, and for every g(d) members of X, assume that the
corresponding union is starshaped via staircase paths and that its
staircase kernel contains a convex set of dimension at least d. Then
U{K : Kin X} has these properties, also.

Most of these results are dual versions of theorems that hold for
intersections of sets starshaped via staircase paths. The exception is
the finite case above when d = 2. Surprisingly, although the result
for d = 2 holds for unions of sets, no analogue for intersections of
sets is possible.

1. INTRODUCTION

We begin with some definitions from [3]. Let S be a nonempty set in the
plane. Set S is called an orthogonal polygon if and only if S is a connected
union of finitely many convex polygons (possibly degenerate) whose edges
are parallel to the coordinate axes. Set S is horizontally convez if and only
if for each pair z,y in S with [z,y] horizontal, it follows that [z,y] € S.
Vertically convez is defined analogously. Set S is orthogonally convez if and
only if S is both horizontally and vertically convex.

Let A be a simple polygonal path in the plane whose edges [vi—1,v;],1 <
i < n, are paralle] to the coordinate axes. Path ) is a staircase path if
and only if the associated vectors alternate in direction. That is, for an
appropriate labeling, for ¢ odd the vectors v;_;v; have the same horizontal
direction, and for ¢ even the vectors v;_1v; have the same vertical direction.
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Edge [vi—1,v;] will be called north, south, east, or west according to the
direction of vector v;_1v;. Similarly, we use the terms north, south, east,
west, northeast, northwest, southeast, southwest to describe the relative
position of points. For n > 1, if the staircase path A is a union of at most
n edges, then A is called a staircase n-path. For convenience, here we will
assume that a staircase n-path is a union of exactly n edges.

Let S C R2. For points = and y in set S, we say rseesy(zx is visible
from y) via staircase paths if and only if there is a staircase path in S that
contains both x and y. Set S is called convez vie staircase paths (staircase
convez) if and only if for every z,y in S,z sees y via staircase paths. Sim-
ilarly, set S is starshaped via staircase paths (staircase starshaped) if and
only if for some point p in S, p sees each point of S via staircase paths. The
set of all such points p is the staircase kernel of S, denoted KerS. Observe
that a staircase starshaped set cannot be empty.

Many theorems in convexity that involve the usual concept of visibility
via straight line segments have analogues that employ the notion of visi-
bility via staircase paths. For example, the following staircase results for
intersections of sets appear in [3]. The first theorem is a staircase analogue
of [1, Theorem 1]. The second is a staircase variation of (6, Theorem 2],
with a different result when d = 2.

Theorem A ([3, Theorem 1]). Let d be a fixed integer, 0 < d < 2, and
let X be a family of simply connected sets in the plane. For every countable
subfamily {K, : n > 1} of X, assume that N{K, : n > 1} is starshaped
via staircase paths and that its staircase kernel contains a convex set of
dimension at least d. The N{K : K in X} has these properties as well.

Theorem B ([3, Theorem 2]). Define function f on {0,1} by f(0) =
3,f(1) =4. Let X = {K; : 1 £ i < n} be a finite family of compact sets in
the plane, each having connected complement. For d fixed, de {0,1}, and
for every f(d) members of X, assume that the corresponding intersection
is starshaped via staircase paths and that its staircase kernel contains a
convex set of dimension at least d. Then N{K; : 1 < i < n} has these
properties, also. There is no analogous Helly number for the case in which
d=2.

Each of the numbers f(d) above is best possible.

Because theorems which hold for intersections of sets sometimes have
dual versions for unions of sets (see [9] or [1, Theorem 2], for example), it is
reasonable to ask if such duals hold here. Indeed, with one exception, dual
versions do exist. However, an interesting aberration occurs in the finite
case when d = 2. Although the result fails for intersections of sets and,
in fact, no analogue is possible by {3, Example 4], the corresponding result
does hold for unions of sets.
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Throughout the paper, we will use the following terminology and no-
tation. We say that a planar set S is simply connected if and only if for
every simple closed curve § C S, the bounded region determined by & lies
in S. For points = and y, dist (z,y) will be the distance from z to y. If
A is a simple path containing points x and y, then A(z,y) will denote the
subpath of A from z to y (ordered from z to y). When z and y are distinct,
L(z,y) will represent their corresponding line. For any line L in R?, we
let Ly and Ly denote the associated open halfplanes, ¢l L; and cl L, the
corresponding closed halfplanes. Readers may refer to Valentine [11], to
Lay [10], to Danzer, Griinbaum, Klee [7], and to Eckhoff [8] for discussions
concerning Helly-type theorems, visibility via straight line segments, and
starshaped sets.

2. THE RESULTS.

We begin with an analogue of [1, Theorem 2] for sets starshaped via
staircase paths. Note that this result provides a dual version of Theorem
A, with intersections of sets replaced by unions of sets.

Theorem 1. Let d be a fixed integer, 0 < d < 2, and let X be a family
of sets in the plane having simply connected union. For every countable
subfamily {K, : n > 1} of X, assume that U{K,, : n > 1} is starshaped
via staircase paths and that its staircase kernel contains a convex set of
dimension at least d. Then U{K : K inX} also is starshaped via staircase
paths, and its staircase kernel contains a convex set of dimension d.

Proof. As in the proof of [1, Theorem 2], let T = U{K : K inX} and, for
each K, in X, define N, = {z : zinT, z sees each point of K, via staircase
paths in T'}. Clearly Ker K, C N, so N, # ¢. Using [4, Lemma 2] and
an argument like one in the proof of (3, Theorem 1, Part 2|, it is easy to
show that each set N, is simply connected.

Let N denote the family of all the N, sets. We will follow the proof
of [1, Theorem 2] to show that N satisfies the hypotheses of Theorem A.
That is, we will show that for every countable subfamily {N,, : m > 1} of
N,N{Ny, : m > 1} is starshaped via staircase paths and its staircase kernel
contains a convex set of dimension at least d. It suffices to show that, for the
associated subfamily {Ky, : m > 1} of X, Ker U {Km : m > 1} C Ker N
{Nm :m > 1}. Choose zeKer U{Km:m > 1} and ye N {Npn : m > 1}
to show that = sees y via staircase paths in N{N,, : m > 1}. Certainly
e U{Kn:m > 1} and z sees each point of U{K,, : m > 1} via staircase
paths in U{Kp : m > 1}. Also, y sees each point of U{K,, : m > 1} via
staircase paths in T, so y sees z via a staircase A(y,z) C T. We assert that
My, z) SN{Np : m > 1}. For pe U {Km : m > 1},z sees p via a staircase
path 6(z,p) in U{K,, : m > 1} C T. Similarly, y sees p via a staircase
path u(y,p) € T. By [4, Lemma 2| the region A bounded by AUS U u
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is an orthogonally convex (and staircase convex) polygon, and, since T is
simply connected, A C T. Thus p sees each point of A via staircase paths
in T. Since this is true for every pe U{Km : m 21}, A CN{Npn : m > 1},
establishing the assertion. It follows that z sees y via staircase paths in
N{Nm : m > 1} and hence zeKer N {Ny, : m > 1}, the desired result.

We conclude that N is a family of sets satisfying the hypotheses of
Theorem A. By that theorem, N{N, : N, in N} is starshaped via staircase
paths and its staircase kernel contains a convex set of dimension at least
d. It is easy to see that N{N, : NoinN} = KerT, so KerT contains a
d-dimensional convex set, finishing the proof of Theorem 1.

Example 1 demonstrates that we cannot replace countable with finite in
the hypothesis of Theorem 1. (See Example 2 and Example 3 as well.)

Example 1. For every integer n > 1, let Ay, = {(z,y) : 0 < z £
2n +1,—-1 < y < 0} and let Ap, denote the staircase 2-path from (2n,0)
north to (2n, 1), then west to (2n —1,1). Define K3, = Az, U A2,. (Figure
1 illustrates K, U Kg.) Every finite subfamily of {Kan : » > 1} has a
union that is starshaped via staircase paths, and the corresponding staircase
kernel contains a convex set of dimension two. However, the closed set
U{K3, : n > 0} is not staircase starshaped.

As A

0,0

A2 — KCI'(KZ UK

6)

Figure 1

To obtain a dual version of Theorem B, we use a different approach.
The following preliminary lemma will be useful.

Technical Lemma. Let § be a fixed positive number. Let S be a com-
pact subset of R2, with R?\S connected. Assume that S is starshaped via
staircase paths and that Ker S contains distinct points a and b, with a, b]
horizontal and a west of b. Let L = L(a,b), with L, the corresponding
open halfplane north of L. Assume that Ker S contains no point strictly
west or strictly north of e and contains no point strictly east or strictly
north of b. If every two points of S see via staircase paths a common &
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by & square region in ¢l Ly, then Ker S contains a (nondegenerate) square
region in ¢l L.

Proof. By [5, Theorem 1], Ker S is orthogonally convex (and staircase
convex). Hence [a,b] C Ker S. There are two cases to consider.

Case 1. First consider the case in which SNe¢l L, contains a nondegener-
ate square region (say -g- by % or smaller) north of [a, b]. That is, each point
of the square region is north of some point of [a,b]. Then such a square C
exists on [a, b]. We will show that each point of S sees via staircase paths
each point of C. Since [a,b] C Ker S, it is easy to show that each point of
S in L U L, sees via staircase paths each point of C. Select z in SN L, to
show that = sees via staircase paths each point of C. Let u be any point
on the north edge of C. By hypothesis, z and u see via staircase paths a
common § by § square region D in ¢l L;. Certainly there are either points
of D northeast of u or points of D northwest of » (or both). Without loss
of generality, assume that there are points of D northeast of u, and hence
there is a northeast u — D staircase in S. Of course, each point of [a, 5]
sees via staircase paths each point of D, and clearly C, D, and [a, }] lie in
a common staircase convex subset T' of S. (See Figure 2.)

Ly

|

_ [T T

a b

Figure 2

Considering possible locations for z in L; and using the fact that [a, 5] C
Ker S, it is not hard to show that T may be extended to include z, and
hence z sees C via staircase paths. We conclude that C C Ker S, finishing
Case 1.

Case 2. Now consider the case in which SN cl L; contains no square
region north of [a,b]. By hypothesis, there must be a & by § square region
in ¢l Ly, so such a region must be either northwest of a or northeast of b.
Notice that we cannot have both situations, since points from the north
edges of the two squares could not see via staircase paths a common &
by & square region in ¢l L; without introducing a square region north of
[a,b], contradicting our hypothesis for Case 2. Without loss of generality,
assume that SNcl L, contains a § by § square region northeast of b but no
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such region northwest of a. Since points of this region see b via staircase
paths, there is at b either a north segment or an east segment [b,c},b # c.
By hypothesis, no point of (b,c] can lie in Ker S. Thus there is on (b,c)
a sequence {b,} converging to b and a corresponding sequence {wn} in
S such that w, cannot see b, via staircase paths. It follows by an easy
argument that w, sees via staircase paths no point of (b, c]. Without loss
of generality, assume that dist (bn,b) < § for each n.

By hypothesis, for each n,w, and ¢ see (via staircase paths) a common
d by J square region D, in ¢l L;, and by comments above such a region
must be northeast of b. We assert that this forces w, to see via staircase
paths points of (b, c) near by:

First consider the case in which c is east of b. If wy, is west of (or on)
the vertical line at b,, it is clear that w, sees via staircase paths each point
of [bn,¢]. If wy, is east of this vertical line and if there is a point p of (b, c]
strictly south of Dy, then using the facts that w, and c see via staircase
paths each point of D, and [a,b] C KerS, it is easy to show that wy, sees
p and hence each point of [b,, p] via staircase paths. (See Figure 3a.) If w,
is east of the vertical line at b,, and there are no points of (bn,¢] strictly
south of Dy, a similar argument shows that w, sees each point of [bn, ¢] via
staircase paths.

c

Wn
q Da

Dn
b, I
r__J — Wa
a b by P ¢ a b
Figure 3a Figure 3b

Figure 3

Now consider the case in which ¢ is north of b. If w, is south of (or
on) the horizontal line at b,, then w, sees via staircase paths each point
of [bn,c]. If wy, is north of this horizontal line and if there is a point g of
(bn, ] strictly west of Dy, then w, sees each point of [by,q] via staircase
paths. (See Figure 3b.) If w, is north of this horizontal line and there are
no points of (b, c] strictly west of D,, again wy, sees each point of [bn,c]
via staircase paths.

In each case, w, sees via staircase paths points of (b,,c) near b,,. How-
ever, this contradicts our choice of w, and b,. Our hypothesis for Case 2
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must be false, and this situation cannot occur. Case 1 is the only possibility,
finishing the proof of the lemma.

We will establish the following “dual” to Theorem B. Note that the
associated Helly numbers f(d) and g(d) agree only when d = 1.

Theorem 2. Define function g on {0, 1,2} by g(0) = 2,9(1) = ¢(2) = 4.
Let X be a finite family of compact sets in the plane such that U{K :
K in X} has a connected complement. For d fixed, d € {0, 1, 2}, and for every
g(d) members of X, assume that the corresponding union is starshaped
via staircase paths and that its staircase kernel contains a convex set of
dimension at least d. Then U{K : KinX} has these properties, also.

Proof. Let X = {K; : 1 <1 < n}, and define S = U{K; : 1 <i < n}.
We begin with some preliminary observations. First notice that set S is a
nonempty compact set in the plane, with R?\'S connected. Moreover, for
each d value, every two points of S are visible via staircase paths from a
common point of S. Hence by [5, Theorem 1], S is starshaped via staircase
paths and Ker S is orthogonally convex (and staircase convex). Further,
by [5, Proposition 1], for every point s in S, the associated visibility set
V; = {y : sseesy via staircase paths in S} is closed. Thus Ker § =n{V, :
sin S} is closed as well. Finally, for s in S and z,y in V,, if S contains an
T —y staircase path A, then by the proof of [2, Lemma 1] or the proof of [5,
Theorem 1], A C V;. Of course, an analogous result holds when z,y e Ker S.

Choose pe Ker S. If d = 0, there is nothing more to prove. If d = 1,
we use an argument like one in Theorem 1: For each set K; in X, define
N; = {z : zin S, z sees each point of K; via staircase paths in S}. We will
show that the family {N; : 1 < ¢ < n} satisfies the hypothesis of Theorem
B: Fix i,1 < i < n. For each s in Kj, the corresponding visibility set V; is
closed, so N; = N{V;, : sin K;} is closed as well, hence compact.

To see that set N; has a connected complement, observe that R2\N;
has exactly one unbounded component, and this component contains the
connected set R?\S. Hence if RZ\N; is not connected, it must have a
bounded component B C S\N,. Let be B, with L the vertical line at b.
Since NV; is compact, there is a first point a of N; north of b on L. Similarly,
there is a first point ¢ of N; south of b on L. For each point p in K;,a,ce V.
Since [a, ] is (trivially) a staircase path in S, it follows from our preliminary
observations that [a,c] C V,. Thus b sees p via staircase paths in S. Since
this is true for all p in Kj;,be N;, impossible. We conclude that no such B
exists, and R?\N; is connected, the desired result.

We have shown that {N; : 1 < i < n} is a finite family of compact
sets in the plane, each having connected complement. Moreover, using our
hypothesis, for every g(1) = 4 of these sets, the corresponding intersection is
starshaped via staircase paths, and the associated staircase kernel contains
a convex set of dimension at least one. We may apply Theorem B to
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conclude that N{NV; : 1 < i < n} = Ker S is starshaped via staircase paths
and that its staircase kernel contains a convex set of dimension at least one.
This finished the proof when d = 1.

Since Theorem B has no analogue when d = 2, the argument for d =
2 will require a different approach. For every four of the K; sets, say
Ky, K3, K3, K4, the associated union is starshaped via staircase paths, and
its kernel contains a full two-dimensional convex set, hence a square region
U(1,2,3,4) in S. Selecting one square region for every four of the K;
sets, we obtain a finite family of square regions. Assume that the smallest
of these is & by 6,6 > 0. Then certainly every four points of S see via
staircase paths a common é by d square in S.

By the earlier argument for d = 1, Ker S contains at least a nondegen-
erate segment. Suppose that Ker S contains no two-dimensional convex
set, to reach a contradiction. There are several cases to consider.

Case 1. Suppose that Ker S contains three or more noncollinear seg-
ments. Recall that Ker S is staircase convex and hence any two of its points
are joined by a staircase path in KerS. For such a staircase with edges
[vi-1,vi),1 < i < 7n,3 < n, and for any horizontal edge e = [vi—1,v;],1 #
1,i # n,S contains no point strictly north or strictly south of e. (Using
our preliminary observations, it is easy to show that such a point would
introduce new staircase 2-paths in Ker S to produce a rectangular region
in Ker S.) An analogous statement holds for a vertical edge and points
strictly east or strictly west of it.

Similarly, if {v1, v2] U v, v3) is any east-north staircase in Ker S, S can
contain no point strictly northeast of vq, for such a point also would intro-
duce a rectangular region in Ker S. Analogous statements hold for east-
south, west-north, and west-south staircase 2-paths in Ker S. It is not hard
to see that Ker S contains a staircase 3-path and that, for an appropriate
pair of opposing directions, say southwest and northeast, all staircase 3-
paths in Ker S rise from southwest to northeast (fall from northeast to
southwest).

From the points of Ker.S which lie as far south as possible, select the
point af as far west as possible. Similarly, from the points of Ker S as far
west as possible, select ap as far south as possible. By earlier comments,
either ag = a)) or ag sees a}) via a staircase 2-path in Ker S. Similarly, from
points of Ker S as far north as possible, select b’ as far east as possible, and
from points of Ker S as far east as possible, select b as far north as possible.
Either b = b’ or b sees I’ via a staircase 2-path in Ker S (See Figure 4a.) It
is not hard to see that either ap = agy or b = b’ (or both): Otherwise, any
interior point of S would introduce interior points in Ker S, violating our
hypothesis. Thus without loss of generality we assume that b = b'. (See
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Figure 4b.)

b
ap.g
b b=b
3
a, a,
2 ag
Figure 4a Figure 4b

Figure 4

Clearly each point ag, ag sees b via a staircase path in Ker S, and for at
least one of ay, ay, say ag,ag sees b via a staircase n-path A in Ker S with
n > 3. Moreover, A is the only ap — b staircase path in S.

Let A; = [a;—1,4ai},1 < i < n, denote the edges of A, where a, = b (and
n > 3). Without loss of generality, assume that a,_1a, is east. Observe
that any point in S\ lies either southwest of a; or northeast of a,,_;. Thus
any square region in S has its location either southwest of a; or northeast
of an—_1. Moreover, if ag # ap, such a square region must be northeast of
@n—1. Since every four points of S see a common & by & square region, for
one of these two locations, and we may assume that it is northeast of a,_1,
every two points of S see via staircase paths a § by § square region here.
We have exactly the situation in the technical lemma, letting a,,—; play the
role of a. Thus Ker S contains a square region. Of course, this violates
our assumption that Ker S contain no two-dimensional convex set, and the
situation in Case 1 cannot occur.

Case 2. Suppose that Ker S has exactly two noncollinear segments, say
s and t. For convenience, assume that s meets ¢ at the origin 8. If § were
relatively interior to both s and ¢, then there could be no interior points
of S without introducing a two-dimensional set in Ker S, impossible. If 8
were relatively interior to ¢ but not s, assume that ¢ = [a, ] lies on the z
axis, with s south of §. There can be no interior points of S below the z
axis (without introducing interior points in Ker S), so any § by § square in
S necessarily lies north of the z axis. Again we have the situation in the
technical lemma, forcing Ker S to contain a square region, impossible.

137



The only remaining possibility is the one in which # is not relatively
interior to s or to t. Assume that ¢ is west of 8, s south of 8. Let L and M
denote the z and y axes, respectively, with corresponding open halfplanes
labeled so that sN Ly =t N M, = ¢. Clearly Lo N My NS = ¢, since any
point of S in Lz N M, would introduce a two-dimensional set in Ker S. If
some two points of S could see no £ by  square region in L, and some
two points of S could see no % by -g- square region in M;, then these (not
necessarily distinct) four points of S would see a % by % square region only
in Ly N My, impossible. Thus for at least one of Ly or M, say Li, every
two points of S see via staircase paths a % by % square region in L;. Using
-g- in place of d, again we have the situation in the technical lemma, and
Ker S contains a square region, impossible. Thus the situation in Case 2

cannot occur either.

Case 3. Assume that Ker S is just a segment [a, b], with @ west of b. Let
L be the associated line, with L; and L; the corresponding open halfplanes.
Using our hypothesis, for at least one of Ly or Lg, say L;, every two points
of S see a % by % square region in ¢! L;. Again using % in place of J, the
technical lemma, yields interior points in Ker S, so Case 3 cannot occur.

‘We conclude that our supposition must be false, and Ker S does contain
a full two-dimensional convex set. This finishes the argument when d = 2
and completes the proof of Theorem 2.

It is interesting to observe that no finite analogues of the Helly num-
bers g(d) exist if we replace finite by infinite in Theorem 2, as Example 2
illustrates.

Example 2. Let T denote the triangular region having vertices (0, 0), (1,0),
(1, —%) For n > 1, let S, denote the northeast 2-staircase having vertices
(5%,0))('217: 2_1;?)9(2—5?!-1'7'2'1?) For j > 1, let Kj = U{TU Spn:1<n< .7}
(See Figure 5.) Every four and indeed every finite family of sets K; have a
union whose staircase kernel contains a full two-dimensional set. However,
the compact set U{Kj : j > 1} has kernel {(0,0)}.

138



(0.0) (1.0)

ml -
~

(.-

Figure 5

By adapting the example, allowing U{K; : j > 1} to be bounded but
not closed, the union need not even be starshaped.

Example 3. Forn > 1, let T, = {(z,9) : 337 <2< 1,—-4 <y <0},
and let S, denote the northeast 2-staircase with vertices (z,0), (2, 1),
(21, 3)- Define K; = U{T, USn : 1 < n < j}. (See Figure 6 for K3.)
Then every finite family of sets K; has a union whose kernel contains a
convex set of dimension two, yet U{K; : j > 1} is not starshaped via
staircase paths.

S3 Sy S

0,0 (1,0

e

(a,-4

Figure 6

Of course, Example 1 provides a similar example, with U{K>, : n > 0}
closed, unbounded, and not starshaped via staircase paths.
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To see that g(1) = 4 is best, consider the following easy example.

Example 4. Let S) denote the set in Figure 7a, and let S3, S5, S; repre-
sent rotations of S; clockwise about point p through 3,w, and %’5, respec-
tively. (See Figure 7b.) Every three (not necessarily distinct) S; sets have
a union whose staircase kernel contains a one-dimensional convex set, yet

Ker(U{S;:1<i<4})={p}.

Sz
A S
p Sa P
S4
Figure 7a Figure 7b

Figure 7

The following example concerns the situation for g(2).

Example 5. Let A;, Az, A3, A4 denote the four rectangular regions along
segment [z,y] in Figure 8. Let B; = A; U [z,y],1 < i < 4, and let C =
B; U B;. Every two (not necessarily distinct) sets from {B;, B3,C} have
a union whose staircase kernel contains a two-dimensional convex set, yet
Ker (B, U By UC) = [z,y]. Thus the associated Helly number for d = 2 is
at least three.

Similarly, every three (although not every two) distinct B; sets have a
union whose staircase kernel contains a two-dimensional convex set. Again,
Ker (U{B; : 1 < i < 4}) = [z,y]. Because the kernels of By U B; and
B, U B4 have no interior points, this example does not prove that the
associated Helly number is four. However, perhaps it would be sufficient
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that every four distinct sets in the finite family satisfy the hypothesis in
Theorem 2. If so, then this example would show that g(2) = 4 is best.

Ay Aj

Al Ay

Figure 8
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