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Abstract

Denote by {J»} and {j»} the Jacobsthal number and the Jacobsthal-
Lucas number respectively. Let J, = Jn X jp and Jn = Jp + jn. In
this paper, we give some determinantal and permanental represen-
tations of J,, and J.. Also, complex factorization formulas for the
numbers are presented.
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1. Introduction

The Jacobsthal and Jacobsthal-Lucas sequences are defined by the following
recurrence relations, respectively:

Jny2 = Jny1 +2J, where Jp=0,J; =1;

Jn+2 = Jn+1+ 2jn where jo =2, j; =1.
The properties of Jacobsthal and Jacobsthal-Lucas numbers have been
considered by many mathematicians. Horadam [6, 7] gave Cassini-like for-
mulas of Jacobsthal and Jacobsthal-Lucas numbers. Cerin (2] considered

sums of squares of odd and even terms of the Jacobsthal sequence and sum-
s of their products. Djordjevic and Srivastava [4] presented a systematic
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investigation of the incomplete generalized Jacobsthal numbers and the in-
complete generalized Jacobsthal-Lucas numbers. Yilmaz and Bozkurt [15]
investigated a family of matrices such that the permanents of the matrices
are Jacobsthal and Jacobsthal-Lucas numbers. They also gave complex
factorization formulas for the Jacobsthal sequence.

Let J, = Ja X jn and Jn = J + jn. Then we can get the following
recurrence relations:

Tn+2 = 5Tns1 —4Tn where Jo =0,71 = 1;

In+2 =Jn+1+23, where Jo=2, J1=2.

Let A = [a; ;] be an n X n matrix with row vectors r1,72,++,7m. The

permanent of A is defined by

n
perd = Z Haia(i)1

o€S, i=1

where the summation extends over all permutations o of the symmetric
group S, [11]. We call A is contractible on column k, if column k contains
exactly two nonzero elements. Suppose that A is contractible on column &
with a;x # 0 # ajx and ¢ # j. Then the (m — 1) x (n — 1) matrix A;;
obtained from A replacing row i with a;x7; + air; and deleting row j and

col k is called contraction of A on column k relative ows i and
7 2 s contract'l; e on row £ w?th QL 7£ i) ax; and ¢ _7{ then %e

matrix Ag:i; = [AT,]T is called the contraction of A on row k relative to
colurnns ¢ and j. If A is a nonnegative matrix and B is a contraction of A,
then perA = perB (9].

Matrix method is used frequently in the proof of the property of some
numbers. By the determinant of tridiagonal matrix, an identity of Fibonac-
ci number is proved [5). They also constructed a type of determinants to
give new proof of the Fibonacci identities. Following them, Yagar and
Bozkurt [14] gave another proof of Pell identities by using the determi-
nant of tridiagonal matrix. By defining some new matrices, Dasdemir (3]
presented some elementary identities between modified Pell and Pell-Lucas
numbers. Yilmaz and Bozkurt [16] considered relationships between Hes-
senberg matrices and the Pell and Perrin numbers.
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A directed pseudo graph G = (V, E), with set of vertices V(G) =
{1,2,---,n} and set of edges E(G) = {e1,ez, - yem}, is a graph in which
loops and multiple edges are allowed. A directed graph represented with
arrows on its edges, each arrow pointing towards the head of the corre-
sponding arc. The adjacency matrix A(G) = [a; ;] is n X n matrix, defined
by the rows and the columns of A(G) are indexed by V(G), in which a; ;
is the number of edges joinning v; and v; [8].

There are many relations between well-known number sequences and
the properties of graphs. Bogdanowicz [1] derived an explicit formula which
corresponds to the Fibonacci numbers for the number of spanning trees for a
type of graph. Startek et al. [12] described the number of independent sets
in graphs with two elementary cycles using Fibonacci and Lucas numbers.
Lee (10] considered k-Lucas and k-Fibonacci sequences and investigated the
relationships between these sequences and 1-factors of a bipartite graph.
Tesler [13] got the number of perfect matchings for a type of lattice on a
Mobius strip involving g-analogue of the Fibonacci numbers.

In this paper, we investigate relationships between adjacency matrices of
graphs and the J,, and the J,, sequences. We also give complex factorization

formulas for the numbers.

2. Determinantal representations of J, and

Jn

In this section, we consider a class of pseudo graph given in Figure 1 and
Figure 2, respectively. Then we investigate relationships between perma-
nents of the adjacency matrices of the graphs and 7, and J».

Figure 1.

Let A, = [aij]nxn be the adjacency matrix of the graph given by Figure
1, in which ay; = @41 = 1,84 = 5,101 = =4 for t = 1,2,.+-,n =1,
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$s=2,3,---,nand [l = 3,4, -.,n and otherwise 0. That is

11 0 -~ 0 0
05 1 0 - 0
004 5 1 0 -
A= . ,
. 0
0 - 0 4 5 1
000 .- 0 4 5 |

1 1 1 1
-1 1 1 1
S = 1 -1 1 1
1 ... 1 =11

Denote the matrices A, 0S by H,,, where A, 0S denotes Hadamard product
of A, and S. That is

1 1 0 0 0 ]
0 5 1 O 0
H 0 -4 5 1 0 .
" T @
0 --- 0 -4 5 1
(0 0 - 0 -4 5

Theorem 1. Let H,, be the matriz as in (1). Then perH, = perHS ™ =
Tn-

Proof. By definition of the matrix H,, it can be contracted on column 1.

Let HS" be the rth contraction of Hy. If r = 1, then

(5 1 0 0 0]
-4 5 1 0 0
go_| ¢ 45 10
n ... 0
0 0 -4 5 1
| 0 0 . 0 -4 5
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Note that H{" also can be contracted by the first column, then

[21 5 0 ... 0 0]
-4 5 1 0 ... 0
.. 0
0 -+ 0 -4 5 1
| 0 0 - 0 -4 5 |

Going with this process, we have H{" ™2 = [ "7_'_‘21 ‘7"5'2 ] , SO

perH, = perH,(,""z) =Jn. B

Figure 2.

Let K, = [kij]lnxn be the adjacency matrix of the pseudo graph given
in Figure 2, with ku = k12 = kg,t_.l = 2, k“ = l,kl,H—l =1fort= 2, cee,m,
8=2,3,---,nand l =2,3,--.,n and otherwise 0. That is

(2 2 0 - 0 0
2 1. 1 0 -~ 0
K 02 1 1 0 - .
n ST (2)
0o --- 0 2 1 1
|0 0 - 0 2 1 |

Theorem 2. Let K, be the matriz as in (2). Then perKy, = pertK{* ™2 =
Jn-

Proof. By definition of the matrix K, it can be contracted on colum-
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n 1. Let K7 be the rth contraction of K. If r = 1, then

[6 2 0 - 0 0]
2 1 1 0 .- 0
02 1 1 0
KO=|. |
n . .. LR .. 0
0 .- 0 2 1 1
000 - 0 2 1]

Note that K" also can be contracted by the first column, then

10 6 0 --- 0 O
2 1 1 0 ..- O
0 .
o --- 0 2 1 1
0o 0 - 0 2 1|
Going with this process, we have KD = [ 3"2'1 3"1—2 ], so

perK, = perK,(,"’z) =3,. B

Denote the matrices K, o S by B,,. That is

2 2 0 0 O
-2 1 1 0 0
0 -2 1 1 0 -
B, =
: : oo e 0
o .- 0 -2 1 1
| 0 o -~ 0 -2 1 |

Then we have detA,, = perH,, = J, and detB,, = perK, = J..
Let Cp41 be an (n + 1) x (n + 1) matrix defined as

- -

2 0 0 .- 0 O
o1 1 0 - O
c 60 -21 1 0O ..
n+1l . 0
0 60 -2 1 1
[0 0 0 -2 1 |
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Similar to Theorem 2, it can be proved that per(Cy410Sn4+1) = detCpy; =
In.

3. Complex factorization formulas

In this section, we give complex factorization formulas for J;, and J,,.

Theorem 3. 7, = [[pC1(5 + 2 cos &%),
Proof. The characteristic equation of A, is
1-A 1 0 e 0 0
0 5-x 1 o .. 0
0 4 5-2 1 0 p
0 =det(A, — M) = . . . . . 0
0 0 4 5-2A 1
0 0 0 4 5-A
5-2 1
4 5-x 1
=(1_)‘) ’
4 5-A 1
4 5-)
here I is the identity matrix. By [17], the eigenvalues of the matrix
5-2 1
4 5-2 1
4 5-) 1

4 5—A
are 5+ 2cos &% (k = 1,2,--+,n —1). So the result follows. I

Theorem 4. J, = 2[;_,(1 + vZicos n"—L)
Proof. The characteristic equation of Cpry; is

2-2 0 0 ... 0 0
0 1-A 1 0 0
0 -2 1-x 1 0 .-
0=det(Capr = M) =| . C .
0 - 0 -2 1-x 1
0 0 - 0 =2 1-—A
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1-A 1

-2 1-x 1
=(2-X) .. .
-2 1= 1
-2 1=
By [17], the eigenvalues of the matrix
1-A 1
-2 1-Xx 1
-2 1-A 1

-2 1=
are 1 + v/2icos n"—_l’_'l-(k =1,2,---,n). So the result follows. @
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