ON RIGHT DERIVATIONS OF WEAK BCC-ALGEBRAS

NURCAN ALP AND ALEV FIRAT

Abstract. In this paper, the notion of right derivation of a weak BCC-algebra is introduced and some related properties are investigated. Also, we consider regular right derivation and d-invariant on weak BCC-ideals in weak BCC-algebras.

1. Introduction

In the theory of rings and near rings, the properties of derivations are important .Several authors [16], [15], [11], [10], [5], [4] have studied BCI-algebras, BCK-algebras, BCC-algebras and weak BCC-algebras. In [12], Jun and Xin applied the notion of derivations in rings and near-rings theory to BCI-algebras introduced a regular derivation in BCI-algebras and in [8], [18], [21]. In [17], Prabpayak and Leerawat applied the notion of a regular derivation in BCI-algebras to BCC-algebras and also investigated some of its related properties. In [20], Thomys describes derivations of weak BCC-algebras which the condition (xy)z = (xz)y is satisfied only in the case when elements x, ybelong to the same branch. In [8], [18], [21], Szasz, Ferrari and Xin, Li and Lu applied the notion of derivations to lattices. They investigated some of its properties, defined a d-invariant ideal and gave conditions for an ideal to be d-invaryant. In [5], Dudek and Zhang introduced the notion of f-derivations of BCI-algebras and they gave a characterizations of a p-semisimple BCI-algebra using regular f-derivations. In [9], [19], First and Thomys applied the notion of f-derivation in BCI-algebras to BCC-algebras and weak BCC-algebras and also investigated some of its related properties.

In [13], Lee and Kim introduced the notion of derivation in lattice implication algebra, and considered the properties of derivations in lattice implication algebras. In [1], Abujabal and Al-Shehri introduced the notion of left derivation and gave a condition for left derivation to be regular, and they gave a characterization of a left derivation of a semisimple BCI-algebra.

In this paper , we introduced the notion of right derivation of a weak BCC-algebra, and investigated some related properties.

2000 Mathematics Subject Classification: 03G25,06F35

Keywords: right derivation, weak BCC-algebra, BCC-algebra, regular, d-invariant.

2. PRELIMINARIES

The BCC-operation will be denoted by juxtaposition. Dots will be only used to avoid repetitions of brackets. For example, the formula ((xy)(zy))(xz) = 0 will be written in the abbreviated form as (xy.zy).xz = 0.

Definition 2.1. A weak BCC-algebra is a system (G; ., 0) of type (2,0) satisfying the following axioms:

- (i) (xy.zy).xz = 0,
- (ii) xx = 0,
- (iii) x0 = x ,
- (iv) $xy = yx = 0 \Longrightarrow x = y$.

Weak BCC-algebras are called *BZ-algebras* by many mathematicians, especially from China and Korea, (cf.[6], [22], [23]), but we save the first name because it coincides with the general concept of names presented in the book [14] for algebras of logic.

A weak BCC- algebra satisfying the identity

(v) 0x = 0

is called a BCC- algebra. A BCC-algebra with the condition

$$(vi) (x.xy)y = 0$$

is called a BCK-algebra.

One can prove (see [2] or [3]) that a BCC-algebra is BCK-algebra if and only if it satisfies the identity

$$(vii) xy.z = xz.y.$$

In any weak BCC-algebra we can define a natural partial order \leq by putting $x \leq y \iff xy = 0$.

Directly from the axioms of weak BCC-algebras we can see that the following two implications

$$(viii) \ x \leq y \Longrightarrow xz \leq yz \ ,$$

$$(ix) \ x \le y \Longrightarrow zy \le zx$$

are valid for all $x, y, z \in G$.

The set of all minimal (with respect to \leq) elements of G is denoted by I(G). Elements belonging to I(G) are called *initial*.

In the investigation of algebras connected with various types of logics an important role plays the so-called *Dudek's map* φ defined as $\varphi(x) = 0x$. The main properties of this map in the case of weak BCC-algebras are collected in the following theorem proved in [6].

Theorem 2.2. Let G be a weak BCC-algebra. Then

- $(1)\varphi^2(x) \le x,$
- $(2)x \le y \Longrightarrow \varphi(x) = \varphi(y),$
- $(3)\varphi^3(x)=\varphi(x),$
- $(4)\varphi^2(xy) = \varphi^2(x)\varphi^2(y),$

for all $x, y \in G$.

Theorem 2.3. $I(G) = \{a \in G : \varphi^2(a) = a\}.$

Comparing this result with Theorem 2.2 (4) we obtain

Corollary 2.4. I(G) is a subalgebra of G.

Corollary 2.5. $I(G) = \varphi(G)$ for any weak BCC-algebra G.

The set $B(a) = \{x \in G : a \le x\}$, where $a \in I(G)$, is called a branch of G

initiated by a. The branch initiated by 0 is the greatest BCC-algebra contained in G.

Definition 2.6. For any weak BCC-algebra G we consider three subsets

```
Ker\varphi = \{x \in G : \varphi(x) = 0\},\
G(G) = \{x \in G : \varphi^{2}(x) = x\},\
T(G) = \{x \in G : \varphi(x) \le x\},\
```

which are called the BCC-part ([3]), the group-like part and T-part of G, respectively.

Theorem 2.7. [6]In a weak BCC-algebra G the following conditions are equivalent:

- (a) a is an atom,
- $(b)a = \varphi(x),$
- $(c)\varphi^2(a)=a,$
- $(d)\varphi(xa)=ax,$
- $(e)\varphi^2(ax)=ax,$
- (f) ax is an atom,
- $(g)y \le z \text{ implies } ay = az,$

where x, y, z are arbitrary elements of G.

Definition 2.8. [6] A non-empty subset I of a weak BCC-algebra(or BCK/BCI-algebra) G is called an ideal of G if

- $(i) \ 0 \in I$
- (ii) $xy \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in G$

Definition 2.9. [6] A non-empty subset I of a weak BCC-algebra G is called an a weak BCC-ideal of G if

- $(i) \ 0 \in I$
- (ii) $xy.z \in I$ and $y \in I$ imply $xz \in I$ for all $x, y, z \in G$.

Putting z = 0 in (ii) we see that a weak BCC-ideal is an ideal and the following lemma is true.

Lemma 2.10. If I is a weak BCC-ideal of a weak BCC-algebra G, then $xy \in I$ and $y \in I$ imply $x \in I$. In particular, $x \leq y$, $y \in I$ imply $x \in I$.

Using definition (2.1) (viii) and (ix), it is not difficult to see that $B(0) = Ker\varphi$ is a weak BCC-ideal of each weak BCC-algebra. The relation \sim defined by

$$x \sim y \iff xy, yx \in B(0)$$

is congruence on G. Its equivalence classes coincide with branches of G, i.e, $B(a)=C_a$ for any $a\in I(G)$ (cf. [7]). So, B(a)B(b)=B(ab) and $xy\in B(ab)$ for $x\in B(a)$, $y\in B(b)$.

In the following part, we will need two propositions proved in [7].

Proposition 2.11. Elements $x, y \in G$ are in the same branch if and only if $xy \in B(0)$.

Proposition 2.12. If $x, y \in B(a)$, then also x.xy and y.yx are in B(a).

One of important classes of weak BCC-algebras is the class of group-like weak BCC-algebras called also *anti-grouped BZ-algebras* [23] ,i.e, weak BCC-algebras containing only one-element branches.

The conditions under which a weak BCC-algebra is group-like are found in [7] and [23]. Below we present some of these conditions.

Theorem 2.13.A weak BCC-algebra G is group-like if and only if at least one

of the following conditions is satisfied:

- $(1)\varphi^2(x) = x$ for all $x \in G$,
- $(2)\varphi(xy) = yx$ for all $x, y \in G$,
- $(3)Ker\varphi = \{0\}.$

Definition 2.14.[20] Let G be a weak BCC-algebra. A map $d: G \longrightarrow G$ is called a *left-right derivation (briefly, (l,r)-derivation)* of G, if it satisfies the identity $d(xy) = d(x)y \wedge xd(y)$, where $x \wedge y$ means y.yx.

If d satisfies the identity $d(xy) = xd(y) \wedge d(x)y$, then it is called a right-left derivation (briefly, (r,l)-derivation) of G. A map d which is both a (l,r) and a (r,l)-derivation is called a derivation. Any d with the property d(0) = 0 is called regular.

3. On Right Derivations of Weak BCC-algebras

Definition 3.1. Let G be a weak BCC-algebra and a map $d:G\longrightarrow G$ is said to be right derivation of G, if it satisfies the identity $d(xy)=d(x)y\wedge d(y)x$ for all $x,y\in G$.

Example 3.2. Let G be a proper weak BCC-algebra with table as follows.

	0	1	2	3
0	0	0	2	2
1	1	0	2	2
0 1 2 3	2	2	0	0
3	1 2 3	3	1	0

Table 3.1

Define a map $d_1: G \longrightarrow G$ for all in G by

$$d_1(x) = \begin{cases} 0, & x = 0, 1 \\ 2, & x = 2, 3 \end{cases}$$

Then d_1 is a right derivation of G.

Define a map $d_2: G \longrightarrow G$ for all in G by

$$d_2(x) = \begin{cases} 2, & x = 0, 1 \\ 0, & x = 2, 3 \end{cases}$$

Then d_2 is a right derivation of G.

Define a map $d_3: G \longrightarrow G$ for all in G by $d_3(x) = 0$

Then d_3 is not a right derivation of G since $d(32) = 0 \neq 2 = d(3)2 \wedge d(2)3$

Definition 3.3. Let G be a weak BCC-algebra and a map $d: G \longrightarrow G$ is a right derivation of G. If d(0) = 0, then d is called *regular*.

Example 3.4. Let G and d_1,d_2 be as in Example (3.2). Then obviously d_1 is regular, but d_2 is not regular.

Proposition 3.5. A right derivation d of a weak BCC-algebra G is regular if and only if for every x in G, $d(x) \le x$.

Proof. Let d be a regular right derivation of a weak BCC-algebra G. Then from definition (2.1) (ii) and (iii) we get

$$0 = d(0) = d(xx) = d(x)x \wedge d(x)x$$

= $d(x)x.(d(x)x.d(x)x)$

$$= d(x)x.0$$
$$= d(x)x.$$

Thus we obtain $d(x) \leq x$ for all $x \in G$.

Conversely , let be $d(x) \le x$ for all $x \in G$, then in particular $d(0) \le 0$. Thus 0 = d(0).0 = d(0) ,i.e.,d is regular.

Corollary 3.6. Let G be a group-like weak BCC-algebra and d be a right derivation of G.If d is regular, then d(x) = x for every $x \in G$.

Proof. Let d be a right derivation of G. We have $d(x) \leq x$ for all x in G by Proposition(3.5). By Definition(2.1)(ii) and (ix), we obtain $0 = xx \wedge xd(x)$. From this we get $0 \leq xd(x)$ and $0.xd(x) = 0 = \varphi(xd(x))$. Thus we find $xd(x) \in Ker\varphi$ and so xd(x) = 0 since $Ker\varphi = 0$ by Theorem (2.13). From this $x \leq d(x)$. Thus we obtain d(x) = x by Definition(2.1)(iv) and the proof is completed.

Theorem 3.7. A right derivation d of a weak BCC-algebra G is regular if and only if for every $x \in G$ elements x and d(x) belongs to the same branch.

Proof. Let d be a regular right derivation of a weak BCC-algebra G. Since d is regular, $d(x) \leq x$. From Definition(2.1) (ix) and (ii), $0 = xx \leq xd(x)$ and thus we find $xd(x) \in B(0)$. This, according to Proposition (2.11) shows that x and d(x) are in the same branch.

Conversely, let elements x and d(x) be in the same branch for every $x \in G$. Then $d(x)x \in B(0)$ and from this $0 \le d(x)x$ and 0.d(x)x = 0.

Hence we get

```
d(0) = d(0.d(x)x) = d(0).d(x)x \wedge d(d(x)x).0
= d(0).d(x)x \wedge d(d(x)x)
= d(0).d(x)x \wedge (d(d(x))x \wedge d(x)d(x))
= d(0).d(x)x \wedge (d(d(x))x \wedge 0)
= d(0).d(x)x \wedge (0.0(d(d(x))x))
= d(0).d(x)x \wedge \varphi(0.(d(d(x))x)).
```

Since by hypothesis x and d(x) are in the same branch and d(x) and d(d(x)) are in the same branch, this gives that x and d(d(x)) are in the same branch. According to Proposition(2.11) $d(d(x))x \in B(0)$. Thus we obtain $0 \le d(d(x))x$ and 0.d(d(x)x) = 0.

By Theorem (2.2) we can find that

```
d(0) = d(0).d(x)x \land \varphi(0.(d(d(x))x))
= d(0).d(x)x \land \varphi(0)
= d(0).d(x)x \land 0
= 0(0(d(0).d(x)x))
= \varphi^{2}(d(0).d(x)x)
= \varphi^{2}(d(0)).\varphi^{2}(d(x)x)
= \varphi^{2}(d(0)).\varphi(0.d(x)x)
= \varphi^{2}(d(0)).\varphi(0)
= \varphi^{2}(d(0)).\varphi(0)
= \varphi^{2}(d(0)).0
= \varphi^{2}(d(0)).0
```

By Theorem (2.3) we obtain $d(0) \in I(G)$. Since by hypothesis 0 and d(0) are in the same branch, it gives that $0d(0) \in B(0)$, i.e, $0 \le 0d(0)$. From this we find that $0 = 0(0d(0)) = \varphi^2(d(0)) = d(0)$. Hence we get d(0) = 0, i.e., d is regular.

Corollary 3.8. A right derivation d of a weak BCC-algebra G is regular if and only if for every x in G, x and d(x) belongs to the same branch.

Corollary 3.9. A right derivation d of a weak BCC-algebra G is regular if and only if for every a in I(G), d(a) = a.

Proof. Let be d a regular right derivation of G.By Proposition (3.5), $d(a) \le a$ for every $a \in G$ and by Theorem(3.7) a and d(a) are in the same branch. Since $a \in B(a)$, we obtain that $d(a) \in B(a)$. Then we have $a \le d(a)$.

Thus we can find that a = d(a) by Definition (2.1)(iv).

Conversely, we suppose that a=d(a) for every $a\in I(G)$. Now, we'll prove that d is regular. Firstly we will show that $a\in I(G)$. Let be $x\leq 0$ for every $x\in G$. Hence x.0=0 and x=0 by definition(2.1)(iii). Thus we obtain $0\in I(G)$. Since $0\in I(G)$, this gives that d(0)=0. Hence d is regular.

Corollary 3.10. Let G be a weak BCC-algebra and d be any right derivation of G. Then $d(B(a)) \subset B(a)$.

Proof. We suppose that $x \in B(a)$. Then $d(x) \in d(B(a))$. Since d is regular, according to Theorem(3.7), x and d(x) are in the same branch. So, this gives that $d(x) \in B(a)$ and we obtain that $d(B(a)) \subset B(a)$.

Corollary 3.11. Let G be a weak BCC-algebra and d be any regular right derivation of G. Then $d(x)y \leq xd(y)$ for every $x, y \in G$.

Proof. Since d is regular, $d(x) \le x$ and $d(y) \le y$ for every $x, y \in G$ by Proposition (3.5.). Then We obtain $d(x)y \le xy$ and $xy \le xd(y)$ by definition(2.1)(viii) and (ix). Thus it gives that $d(x)y \le xy \le xd(y)$, i.e., $d(x)y \le xd(y)$.

Theorem 3.12. If a weak BCC-algebra G is group-like, then $Kerd = \{0\}$ for any regular right derivation d of G.

Proof. Let G be a group-like. Then firstly we will prove that B(0) = 0. We suppose that $x \in B(0)$. Then $0 \le x$ and from this 0.0x = 0.0 = 0, i.e., $\varphi^2(x) = 0$. Since G is group-like, $\varphi^2(x) = x = 0$, i.e., $B(0) = \{0\}$.

Suppose that $x \in Kerd$. According to Proposition(3.5), since d is regular $d(x) = 0 \le x$. So, $x \in B(0) = \{0\}$. Hence x = 0. Then $Kerd = \{0\}$ and the proof is completed.

Proposition 3.13. Let d be a right derivation of a weak BCC-algebra G. Then the following holds:

 $(\mathbf{1})d(0)\in I(G)$

 $(2)d(I(G)) \subset I(G)$

Proof.(1) Suppose that $x \leq d(0)$ for every $x \in G$. Then xd(0) = 0. Thus we get $d(x)0 \leq xd(0) = 0$ by Corollary(3.11). So, $d(x).0 = d(x) \leq 0$. From this d(x)0 = 0 = d(x). Thus we can find that $d(0)x \leq 0d(x) = 0.0 = 0$ by Corollary (3.11). So, d(0)x.0 = 0 = d(0)x. Hence we obtain that $d(0) \leq x$. Then we can find d(0) = x by definition(2.1)(iv). This gives that $d(0) \in I(G)$.

(2) Suppose that $d(a) \in d(I(G))$ for every $a \in I(G)$. Since d is a right derivation of G, we get

$$d(0) = d(a.a) = d(a)a \wedge d(a)a$$

= $d(a)a.(d(a)a.d(a)a)$
= $d(a)a.0$

=d(a)a.

Then $d(0) = d(a)a \in I(G)$ by (1). By Theorem (2.7.(f) \Longrightarrow (a)), we can find $d(a) \in I(G)$ and the proof is completed.

Definition 3.14. Let G be a weak BCC-algebra and A be a weak BCC-ideal of G and d be a right derivation of G. If $d(A) \subset A$, A is called *d-invariant*.

Theorem 3.15. A right derivation d of a weak BCC-algebra G is regular if and only if all weak BCC-ideals of G are d-invariant.

Proof. Let d be a right derivation of a weak BCC-algebra G and let be $x \in A$ for all weak BCC-ideals A of G. Since d is regular $d(x) \leq x$ according to Proposition(3.5). Thus $d(x)x = 0 \in A$. Since any weak BCC-ideal A is ideal by lemma(2.10), we obtain that $d(x) \in A$. So, $d(A) \subset A$, i.e., according to definition(3.14), all weak BCC-ideals of G are d-invariant.

Conversely , let all weak BCC-ideals A of G be d-invariant . Then $d(A) \subset A$. In particular for $A = \{0\}$, $d(\{0\}) \subset \{0\}$. It is not difficult to see that d(0) = 0. So , d is regular.

REFERENCES

- [1] H.A.S.A. Abujabal and N.O. Al-Shehri, On left derivations of BCI-algebras. Soochow Journal of Mathematics. (2007) 33 (3):435-444.
- [2] W.A.Dudek, On BCC-algebras, Logique et Analyse, 129-130(1990), 103-111.
- [3] W.A.Dudek, On proper BCC-algebras, Bull. Inst. Math. Acad. Sinica, 20 (1992), 137-150.
- [4] W.A.Dudek, On constructions of BCC-algebras. Selected Papers on BCK and BCC-algebras (1992) 1:93-96.
- [5] W.A.Dudek, X.Zhang, On ideals and conruences in BCC-algebras. Czechoslovak Math. Journal. (1998) 48 (123):21-29.
- [6] W.A.Dudek, X.H.Zhang, Y.Q. Wang, Ideals and atoms of BZ-algebras, Math. Slovaca, 59 (2009), 387-404.
- [7] W.A.Dudek, B.Karamdin, S.A.Bhatti, Branches and ideals of weak BCCalgebras, Algebra Coll. (2011), in print.
- [8] L.Ferrari, On Derivations of Lattices, Pure Math. Appl. (2001) 12, no. 4, 365-382.
- [9] A.Firat, On f-derivations of BCC-algebras, Ars Combinatoria. 97A (2010), 337-382.
- [10] K.Iseki,S.Tanaka, Ideal theory of BCK-algebras. Math. Japonica. (1976) 21: 351-336.
- [11] K.Iseki,S.Tanaka, An Introduction to the theory of BCKalgebras. Math. Japonica. (1978) 23:1-26.
- [12] Y.B.Jun,L.Xin, On derivations of BCI-algebras. Information Sciences (2004) 159:167-176.
- [13] S.D.Lee and K.H.Kim, On derivations of lattice implication algebras, (to appear in Ars Combinatoria).
- [14] A.lorgulescu, Algebras of logic as BCK algebras, Acad. Econom. Studies, Bucharest, 2008.
- [15] D.J.Meng, BCI-algebras and abelian groups. Math. Japonica. (1987) 47(1):693-696.
- [16] D.J.Meng, X.L.Xin, Commutative BCI-algebras. Math. Japonica. (1992) 37 (3):569-572.
- [17] C.Prabpayak, U. Leerawat, On derivations of BCC-algebras. Kasetsart J. (Nat. Sci.) (2009) 43:398-401.
- [18] G.Szasz, Derivations of Lattices, Acta Sci. Math. (Szeged) (1975) 37,149-154.
- [19] J.Thomys, f-derivations of weak BCC-algebras, (2011) 5:325-334.

- [20] J.Thomys, Derivations of weak BCC-algebras, submitted.
- [21] X.L.Xin ,T.Y.Li and J.H.Lu, On derivations of lattices, Information Sciences (2008) 178, 307-316.
- [22] R.F.Ye, On BZ-algebras, Selected Papers on BCI, BCK-algebras and Computer Logics, Shanghai Jiaotong Univ. Press, (1991), 21-24.
- [23] X.H.Zhang, R.Ye, BZ-algebras and groups, J.Math. Phys. Sci. 29 (1995), 223-233.

NURCAN ALP
Institute of Science, Ege University,
35100 Bornova, Izmir-Turkey
e-mail: buz_kett@hotmail.com

ALEV FIRAT
Department of Mathematics, Ege University,
35100 Bornova, Izmir-Turkey
e-mail: alev.firat@ege.edu.tr