Minimum degree and nowhere-zero 3-flows
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ABSTRACT. Let G be a 2-edge-connected simple graph on n vertices,
n > 3. It is known that if G satisfies that d(z) > n/2 for every vertex
z € V(G), then G has a nowhere-zero 3-flow with several exceptions. In
this paper, we prove that with ten exceptions, all graphs with at most two
vertices of degree less than n/2 have nowhere-zero 3-flows. More precisely,
if G is a 2-edge-connected graph on n vertices, n > 3, in which at most
two vertices have degree less than n/2, then G has no nowhere-zero 3-flow
if and only if G is one of ten completely described graphs.
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1 Introduction

The vertex set and edge set of a graph G are denoted by V(G) and E(G),
respectively. For zy € E(G), we call y a neighbor of z, and the set of
neighbors of = in G is denoted by Ng(z), or simply N(z). Let H be
a subgraph of G and v € V(G), define that dy(v) = |[N(v) N V(H)|, the
number of the neighbors of v in H. When H = G, dg(v) is called the degree
of v, and abbreviated to d(v). Denote by §(G) and A(G) the minimum and
maximum degree of G, respectively. For a subgraph A, d(A) denotes the
number of edges with exact one end in A.

An edge is contracted if it is deleted and its two ends are identified into
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a single vertex. Let H be a connected subgraph of G. G/H denotes the
graph obtained from G by contracting all the edges of H and deleting all
the resulting loops. For § C V(G), G — S denotes the graph obtained from
G by deleting all the vertices of S together with all the edges with at least
one end in S. When S = {v}, we simplify this notation to G — v. The
complete graph on n vertices is denoted by K. Denote by K, the graph
obtained from K, by deleting an edge.

A k-circuit is a circuit of k vertices. A wheel Wy, is the graph obtained
from a k-circuit by adding a new vertex, called the center of the wheel,
which is joined to every vertex of the k-circuit. Wy is an odd (even) wheel
if k is odd (even). For simplicity, A 3-circuit (triangle) on vertices {z,y, 2}
is denoted by zyz.

Let G be a graph with an orientation. For each vertex v € V(G), E*(v)
is the set of non-loop edges with tail v, and £~ (v) is the set of non-loop
edges with head v. Let Z; denote an abelian group of k elements with
identity 0. Let f be a function from E(G) to Zi. Set

f)y= Y flo- 3 fle)

e€eE+(v) e€E-(v)

fis a Zg-flow in G if f(v) = O for each vertex v € V(G). For an edge
e € E(G), we call f(e) the flow value of e. The support of f is defined by
S(f) = {e € E(G) : f(e) # 0}. f is nowhere-zero if S(f) = E(G). It is
well known that a graph G has a nowhere-zero Zi-flow if and only if there
is an integer-valued function f on E(G) such that 0 < |f(e)| < k for each
e € E(G), and f(v) = 0 for each v € V(G), which is called a nowhere-
zero k-flow in G. Therefore, we also call a Zi-flow a k-flow. Tutte [
conjectured that every 2-edge-connected graph has a nowhere-zero 5-flow.
Seymour (7] proved that every 2-edge-connected graph has a nowhere-zero
6-flow. In this paper, we focus on nowhere-zero 3-flow. Since loops play
no role with respect to existence of nowhere-zero flows, we only consider
loopless graphs. The well-known 3-flow conjecture of Tutte (see unsolved
problem 48 of [1]) is that

Conjecture 1.1 Every 4-edge-connected graph has a nowhere-zero 3-flow.

A subgraph H of G is 3-flow contractible if G/H having a nowhere-zero
3-flow implies that G has a nowhere-zero 3-flow. By results in [2, Propo-
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sition 2.4 and Observation 1.3], the even wheel Wy is 3-flow contractible
for k > 2. Similarly, by [5, Corollary 3.5] and [2, Observation 1.3], K7 and
K, are 3-flow contractible for n > 5. In summary,

Proposition 1.2 (2, 5] (i) Wa is 3-flow contractible for k > 2; (ii) K
and K, are 8-flow contractible for n > 5.

In [3], it is shown that all graphs which satisfies Ore condition have
nowhere-zero 3-flows except for six completely described graphs. Precisely,

Proposition 1.3 [3] Let G be a simple graph on n vertices, n > 3. If
d(z) + d(y) 2 n for each zy ¢ E(G), then G has no nowhere-zero 3-flow if
and only if G is one of the siz graphs (G,, G, G7,Gg, Gy, G1o) in Fig. 1.

\ ) \
\
Gy Go Gs G,
<
\ \
\ \
\ N \
Gs Gs Gr Gs
Gy Gro
Fig. 1

Proposition 1.4 None of the ten graphs in Fig. 1 has a nowhere-zero 3-

flow.
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Proof. By Proposition 1.3, we need only prove that G3, G4, Gs and
Gg have no nowhere-zero 3-flows. It is not difficult to see that G3, G4
and G5 have no nowhere-zero 3-flows since they are obtained from G3 by
subdividing one edge. Since the subgraph induced by vertices of degree 3
in Gg contains triangle, it is not bipartite, and thus has no nowhere-zero
3-flows. W

Let G be a simple graph on n vertices. In (3], it is shown that if G
satisfies the Ore-condition [6]: d(z)+d(y) > n for every pair of non-adjacent
vertices z and y, then G has a nowhere-zero 3-flow with six exceptions. We
can directly obtain that if the minimum degree of G is no less than n/2,
then G also has a nowhere-zero 3-flow with several exceptions. In this
paper, we intend to prove the existence of nowhere-zero 3-flow if G has at
most two vertices of degree less than n/2.

Main Theorem Let G be a 2-edge-connected simple graph on n vertices,
n > 3. If G has at most two vertices of degree less than n/2, then G has
no nowhere-zero 8-flow if and only if G is one of the ten graphs in Fig. 1.

The bound on the number of vertices with degree less than n/2 is best
possible. For each n > 7, there exists a simple graph G on n vertices
without nowhere-zero 3-flow, in which there are three vertices of degree
less than n/2. Let G be the graph obtained by joining vertex-disjoint K3
and K,_3 with three independent edges, where n > 7. Then, d(z) > n/2
for every = € V(G) except for three vertices. However, the graph G has no
nowhere-zero 3-flow, since the contraction of the K,,_3 results in a K.

As a technique, we introduce the concept of splitting. For a graph G, let
v be a vertex of G and e;,e; be two edges incident with v. Splitting e;, e2
away from v means that deleting edges e;, e2 and adding an edge e, which
joins two ends of e;, e; other than v. We denote the graph obtained from
G by splitting e, e away from v by Giy;(e, e,})- It is proved by Fleischner
that property of 2-edge-connectivity can be preserved after splitting. In
summary,

Proposition 1.5 (see [4]) Let G be a 2-edge-connected graph and v €
V(G) with d(v) > 4. Then there are two edges ey, ez such that Gly(e, e,)]
is 2-edge-connected.

Repeatedly applying Proposition 1.5, if v has degree even, then the
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graph obtained by splitting v out (splitting all edges incident with v away
from v) also remains 2-edge-connected.

2 Lemmas

For a K, the union of zy2z and zyw with zy in common, if it satisfies that
d(z) > 4 or d(w) 2 4, then we say the K is desired.

Lemma 2.1 Let G be a simple graph on n vertices. If n > 7 and 6(G) >
n/2, then either G contains a desired K or G 1is bipartite.

Proof. Clearly, if G contains no triangle, then by Turén’s theorem, G is
bipartite. Suppose that G contains a triangle xyz. Note that d(z) +d(y) +
d(z) > 8n > n + 3. Thus, there is a vertex w € V(G) such that w has at
least two neighbors in {z,y, z}. Without loss of generality, let z,y € N(w).
Then the union of triangles zyz and zyw with zy in common is the desired
K;. m

Lemma 2.2 K, , — e has a nowhere-zero 3-flow, here e € F(K, ) and
n > 4.

Proof. Let X andY be the two parts of K, , and X = {z1,22, - ,2,},Y
{v1,¥2,* - ,yn}. Without loss of generality, let e = z;y;. If n is even , let
G’ be the graph obtained from G by deleting n — 2 vertices 23,74, -+ ,Zn
and adding n — 2 copies of edges y1y2, Y3Y41, " * , Yn—1¥n. Then by consecu-
tively contracting 2-circuits, which are 3-flow contractible, we get a simple
graph G*. It is easy to see that G* is K;. Obviously, K; has a nowhere-
zero 3-flow, and hence G also has a nowhere-zero 3-flow. If n is odd, let
G’ be the graph obtained from G by deleting 2 vertices r;,y; and adding
n — 1 edges Zox3,T4T5," * , Tn—-1Zn,Y2Y3, Ya¥s," ** ,Yn—1Yn. It is not diffi-
cult to see that G’ can be decomposed into a bipartite cubic graph, which
is known to have a nowhere-zero 3-flow, and a set of 2-factors (each has
a nowhere-zero 2-flow), and combining these flows yields a nowhere-zero
3-flow in G'. This implies that there is a nowhere-zero 3-flow in G. ®

Lemma 2.3 Let G be a 2-edge-connected simple graph onn (n < 7) ver-
tices. If G has at most two vertices of degree less than n/2, then G has a
nowhere-zero 3-flow if and only if G is not one of ten graphs in Fig. 1.
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Proof. If G is one of ten graphs in Fig. 1, by Proposition 1.4, G has
no nowhere-zero 3-flow. Conversely, suppose that G has no nowhere-zero
3-flow, we are to prove that G is one of graph in Fig. 1. If n < 4, it is
not difficult to see that G is Ky, which is G; in Fig. 1. From now on, we
assume that n > 5.

(i) n = 5. If §(G) = 2, let w e V(G) with d(w) = 2 and N(w) =
{u1,u2}. Let G’ be the graph obtained from G by deleting vertex w and
adding edge uyup. If G’ has a nowhere-zero 3-flow, then G also has a
nowhere-zero 3-flow, it is contrary to the hypothesis. Thus, G’ has no
nowhere-zero 3-flow, which implies that G’ is K4, and hence, G is G» in
Fig. 1. Suppose that §(G) > 3. Since n is odd, there is a vertex u such
that d(u) = 4. If each vertex v € V(G) \ {u} has degree 3, then G is a
W centered at u; If there is a vertex v € V(G) \ {u} such that d(v) = 4,
then G is K5 or K . Either in the former case or in the later case, G has
a nowhere-zero 3-flow, a contradiction.

(ii) n = 6. If §(G) = 2, let w be a vertex of degree 2 in G and N(w) =
{uj,u2}. Let G’ be the graph obtained from G by deleting vertex w and
adding edge ujup. By the similar method used in case (i), if G’ is simple,
then G’ is G in Fig. 1, and hence, G is G3, G4 or G5 in Fig. 1. If G’ is
not simple, let G* denote the graph obtained from G’ by contracting the
2-circuit. If G* is not simple, then G* has a nowhere-zero 3-flow, which
implies that G has a nowhere-zero 3-flow, a contradiction. If G* is simple,
then G* is Ky, and G is Gg in Fig. 1. Thus we may assume that 6(G) > 3.
Then G satisfies Ore condition that d(z) + d(y) > n for every pair of non-
adjacent vertices =z and y, and by Proposition 1.3, G is G7, Gs, Gg or Gyg
in Fig. 1.

(iii) n = 7. Since n is odd, there is at least one vertex u such that d(u)
iseven. If d(u) = 2, let N(u) = {u1,u2} and G’ be the graph obtained from
G by deleting vertex u and adding edge u,us. If G’ is simple, then G is one
of G;(3 <7< 10) in Fig. 1. But G;(3 <7 < 10) has at least four vertices of
degree 3, which implies that G has at least four vertices of degree less than
n/2, a contradiction. Thus, G’ is not simple. Denote by G* the simple
graph obtained from G by consecutively contracting 2-circuits, and denote
by u* the new vertex generated by contraction. By the hypothesis, G* has
no nowhere-zero 3-flow, this implies that G* is G; or G» in Fig. 1. Note
that all vertices, except for u*, of G* has the same degree as in G. However,
both G; and G3 have four vertices of degree 3, also a contradiction. Thus,
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d(u) > 4. By splitting the vertex u out, we get a 2-edge-connected graph
G’ by Proposition 1.5. If G’ is simple, then G’ is one of G; (3 <4 < 10) in
Fig. 1. But the number of vertices with degree 3 gives the contradiction.
So, G’ is not simple. If G’ contains only one 2-circuit, then we get a graph
G* by contracting that 2-circuit. Since G* has no nowhere-zero 3-flow, G*
is G1 or Gz in Fig. 1. It is easy to see that all vertices, except for one
vertex, of G* have the same degree as in G, contrary to the hypothesis that
at most two vertices have degree less than n/2. If G’ has two 2-circuits, let
G* be the graph obtained from G’ by contracting these two circuits and
let u*,v* be the new vertices generated by contraction. Since G* has no
nowhere-zero 3-flow, G* is K4 and V(G*) \ {u*,v*} are vertices of degree
less than n/2 in the original graph G. Suppose that two 2-circuits in G’
are on {uj,uz} and {v1,vz}, respectively. From dg-(u*) = dg-(v*) = 3,
we can get that

da(ul) + dc(‘UQ) =34+4=1, dc;(vl) + dc(vg) =3+4=17,

which implies that there are at least two vertices of degree 3 in {uy, u2, v1, v2}.
Together with two vertices in V(G*) \ {u*,v*} give four vertices of degree
less than n/2 in G, a contradiction. This completes the proof of Lemma 2.3.

Lemma 2.4 Let G be a 2-edge-connected simple graph on n vertices. If
n 2> 8 and G has at most 2 vertices of degree less than n/2, then G has a
nowhere-zero 3-flow or G contains a desired K .

Proof. Suppose first that G contains no desired K;. What remains is
to show that G has a nowhere-zero 3-flow. By Lemma 2.1, we need only
consider the following two cases.

(i) G has two vertices of degree less than n/2.

Suppose that z and y are vertices of degree less than n/2. Let Z be the
subgraph induced by N(z) N N(y) and W = G — (N(z) U N(y) U {z,y}).
Denote the subgraph induced by N(z)\V(Z) and N(y)\V(Z) by X and Y,
respectively. Suppose that Z # 0. If W = 0, then, by the hypothesis that
d(z) < n/2, d(y) < n/2, we get [V(Z)| = 1 and d(z) = 25!,d(y) = 251.
In this case, n is odd. If there is a path of length 3 (three vertices) in N(z)
or N(y), then there is a desired K, a contradiction. Thus there is no path
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of length 3 in N(x) and N(y), which means that d(z) < 4, contrary to that
n > 9. Therefore we may suppose that W # 0.

Claim 1. There is no edge in W.

Suppose to the contrary that there is an edge wywe € E(W). Since
d(w;) + d(wg) = n and z,y ¢ N(wi) N N(wz), we have that |[N(w;) N
N(wz)| > 2. Let u,v € N(w;) N N(wz). Then the union of wywzu and
wywav is the desired K, a contradiction.

Claim 2. There is no edge in Z.

Suppose to the contrary that there is an edge 2122 € E(Z). If d(z) >
4 or d(y) > 4, then the union of 2120z and 223y is the desired K, a
contradiction. Thus, d(z) < 3 and d(y) < 3, which implies that | X|+|Y|+
|Z| < 4. For a vertex w € V(W), if wz;,wz; € E(G), then the desired
K7 (union of z;2px and 2z 2w) with d(w) > 4 gives a contradiction. So,
ziw ¢ E(G) or zzw ¢ E(G). By Claim 1, we have d(w) < 3, contrary to
the hypothesis that d(w) > n/2 > 4.

Claim 3. There is no edge in X and there is no edge in Y.

If there is an edge, say )z, in X, then for any z € V(Z), we have that
zzy ¢ E(G) and zzo ¢ E(G). Otherwise, let zz; € E(G). Then the union
of £z, 15 and zz, z forms a desired K with d(z) > 4, a contradiction. Since
d(z1) + d(z2) = n and Z N (N(z1) U N(z2)) = @ we have that [N(z;) N
N(z2)| 2 n—|V(G)\(V(Z)U{y})| = 2. Let u be the vertex in N(z;)NN(z2)
other than z, we can get a desired K; (the union of z;z2z and z;z2u) with
d(u) > 4, a contradiction. Therefore, there is no edge in X. Similarly, there
isnoedgein?.

Claim 4. dx(z) <1 and dy(z) < 1 for each z € V(Z).

Suppose to the contrary that dx(z) > 1 for some z € V(Z). Let
2z1,2z2 € E(G). Then the union of 2zz, and zzz, gives a desired K,
contrary to the hypothesis. Thus, dx(z) <1 for any z € V(Z). Similarly,
we have dy (z) < 1 for any z € V(Z).

Claim 5. dz(z') < 1 and dz(y’') < 1 foreach '’ € V(X) and ' € V(Y),
respectively.

The proof is similar to that of Claim 4, we omit the details.

Assume that there is a vertex z € V(Z) such that dx(2) = 1 and
dy(z) = 1. Let z12,412 € E(G). By Claim 4 and Claim 2, dw(z) 2>
n/2 — 4. Thus, |V(W)| > n/2 — 4. Further, by Claim 1, we have that
[V(X)|+|V(Y)|+|V(Z)| 2 n/2. Suppose first that there is w € V(W) such
that wz € E(G). If wz, € E(G) or wy; € E(G), then we get a desired K,
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a contradiction. So, wz;, wy1 ¢ E(G), which implies that |V (X)|+|V(Y)|+
[V(2)} 2 n/2+2. Thus, |[V(W)| =n/2—4and |V(X)|+|V(YV)|+|V(Z2)| =
n/2 + 2. Since d(z) > n/2 and z has four neighbors in V(G) \ V(W), all
vertices in W are neighbors of z, that is, wz € E(G) for each w € V(W).
Then N(z;) N W = 0. Note that z,y1 ¢ E(G) and d(z;) = n/2. Then
[V(Y)] = n/2 — 1 by Claim 3 and Claim 5. Similarly, [V(X)| = n/2 — 1.
Combining these two inequations, we have that |V(X)| + |[V(Y)| > n - 2.
But |[V(X)|+|V(Y)| =n/2—|V(Z)|+2 < n/2+1, a contradiction. Thus,
we may suppose that wz ¢ E(G) for each w € V(W). Then d(z) = 4,
by the hypothesis, we have that n = 8. Since d(z) < 3 and d(y) < 3,
it is derived from d(w) > 4(w € V(W)) that |V(X)| = 2,|V(Y)| = 2 and
|[V(Z)| = 1. Then |V(W)| =1and N(w) = V(X)UV(Y), here w = V(W).
Suppose that 2 € V(X) \ {z1}. If 22 has degree at least 2 in N(w), then
there is a desired K, a contradiction. Thus, z2 has degree at most 1 in
N(w) = V(X) v V(Y), which implies that d(z;) < 3 < n/2, contrary to
the hypothesis that d(z,) > n/2.

Suppose, then, that there is a vertex z € V(Z) such that dx(z) =1
and dy(z) = 0. Let 2z, € E(G). Using the similar method, if there is
w € V(W) such that zw € E(G), then |V(W)| = n/2 — 3 and {V(X)| +
V()| +1V(Z)| = n/2 + 1. Thus, for each w € V(W), we have that
ziw ¢ E(G). By Claim 3, we have that n/2 < d(z;) < |V(Y)| + 2, which
means that [V(Y)| > n/2 — 2 and [V(X)| + |V(2)| < 3. Similarly, by the
hypothesis that d(y) < n/2, we can get that |V(Z)| = 1, |[V(X)| = 2 and
[V(Y)] = n/2 —2. Let 25 € V(z)\ {z1}. It is not difficult to see that
dy(z2) > 2 and dw(z2) > 1 because of d(zz) > n/2. Let y;1,y2 € V(Y)
satisfies that 21, Zoy2 € E(G). Then the desired K (union of wzay, and
wZayz) yields a contradiction. Therefore, wz ¢ E(G) for every w € V(W).
By Claim 2 and Claim 4, we have that d(z) = 3 < n/2, contrary to the
hypothesis. By exchanging X and Y, the case of dy(z) = 1 and dx(z) =0
cannot occur.

Thus, we assume that dx(z) = 0 and dy(z) = 0 for each z € V(2).
Since d(z) > n/2, we have that |V(W)| 2 n/2—2. Note that d(w) > n/2 for
each w € V(W). By Claim 1, we have that |V/(X)|+|V(Y)|+|V(Z)| = n/2,
which implies that [V(W)| =n/2-2 and [V(X)|+ |V (V)| +|V(Z)| = n/2.
Thus, N(w) = V(X)u V(Y)U V(Z) for each w € V(W). If there is
z' € V(X),y' € V(Y) such that z'y’ € E(G), then by the fact that W
N(z")NN(y'), we get a desired K, a contradiction. Thus, there is no edge
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between X and Y. If V(Y) # 0, then by Claim 3, d(3’) < [V(W)|+1 =
n/2—-1 for eachy’ € V(Y), impossible. So, V(Y) = 0. Similarly, V(X) = 0.
By Claim 1 and Claim 2, |V(W)| = n/2 -2 and |V(Z)| = n/2, contrary to
the hypothesis that d(z) < n/2.

Therefore, we assume that V(Z) = 0. Let G’ = G — {z,y} and n’ =
[V(G")| = n — 2. Then, d¢(u) 2 n'/2 =n/2 -1 for each v € V(G'). If
n > 9, then, by Lemma 2.1, either G’ has a desired K; or G’ is bipartite.
In the former case, the desired K; in G’ is also a desired K in G, a
contradiction. In the later case, if G contains a triangle, then G has a
desired K , a contradiction; if G contains no triangle, then G is K» m —zy,
here m = n/2. Then G has a nowhere-zero 3-flow by Lemma 2.2. If n =8
and §(G) = 2, then we get a graph G” by splitting the degree 2 vertex
out. If G” is simple, by Lemma 2.3, G”, and hence G, has a nowhere-zero
3-flow. If G” is not simple, Let G* be the simple graph obtained from G”
by consecutively contracting 2-circuits. If G* has a nowhere-zero 3-flow,
then G”, and also G, has a nowhere-zero 3-flow. Thus, we suppose that
G* has no nowhere-zero 3-flow. By Lemma 2.3, G* is one of graphs in
Fig. 1. Note that all vertices, except for two vertices, in G* have degree
at least 4. But for each graph in Fig. 1, there are at least four vertices of
degree less than 4, a contradiction. So, we may assume that n = 8 and
4(G) = 3. By the hypothesis, both = and y have degree 3 in G. If there is
a triangle in G’, then it is not difficult to see that there is a desired K in
G, a contradiction. So, there is no triangle in G’, then G’ is bipartite. If
G contains a triangle, then G also contains a desired K, a contradiction.
Thus, there is no triangle in G. In this case, G is K4 4 — zy. It derives from
Lemma 2.2 that G has a nowhere-zero 3-flow.

(ii) G has only one vertex, say z, with degree less than n/2.

Let G’ = G —z and |V(G')| = n'. If n is odd, then dg(u) > n'/2
for each u € V(G'). By Lemma 2.1, G’ is bipartite or G’ contains a
desired K. If G’ contains a desired K, then so does G, contrary to the
assumption. Thus G’ is bipartite and dg/(u) = L‘,} for each u € V(G’). By
the hypothesis that all vertices, except for z, have degree at least "7' +1, we
have that d(z) = n’ = n—1, contrary to that d(z) < n/2. So, n is even. Let
A={ueV(G) : do(u) 2 2t} and B = {u € V(G') : dor(u) < 251}
Since d(z) < n/2, we have that |B| < l‘i2=l, which implies that [A| > -"—;’,ﬂ
Further, dg/(b) = l’{—l for each b € B. It is easy to see that there exist two
vertices u,v € A such that uv € E(G). Note that dg/(u) + dg/(v) > n' + 1.
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Thus, there is a vertex w € V(G') such that w € N(u) N N(v). Then

'+1 -1 3 1
dor(u) +der(v) +dor(w) 22- TFL 4 B2 By 1

It is not difficult to see that there exists a vertex z € V(G), which has
at least two neighbors in {u,v,w}. Then the desired K contained in the
subgraph induced by {u,v,w,z} gives a contradiction. We complete the
proof of Lemma 2.4. W

3 Proof of Main Theorem

Proof of Main Theorem: If G is one of the ten graphs in Fig. 1, then,
by Proposition 1.4, G has no nowhere-zero 3-flow. Conversely, suppose
that G is not any of the ten graphs in Fig. 1. We shall prove that G
has a nowhere-zero 3-flow. By the 2-edge-connectivity of G, we have that
(G) = 2.

We use induction on n = |V(G)|. If » < 7, the theorem holds by
Lemma 2.3. Suppose then n > 8 and the theorem holds for any graph
G with |V(G)| < n. By Lemma 2.4, we may assume that G contains
a desired K. Consider the K; as the union of two triangles zyz and
zyw, with edge zy in common. Without loss of generality, we assume that
d(z) > 4. Let G’ be the graph obtained from G by deleting zz, 2y, and
adding zy. We claim that G’ is 2-edge-connected or G has a nowhere-zero
3-flow. Otherwise, suppose that G’ is disconnected or G’ has an edge cut
e. We shall to prove that G has a nowhere-zero 3-low. Let C;,C5 be two
components of G’ or G’ —e. Without loss of generality, suppose z € V(C)
and z,y,w € V(C3). If |V(C2)| = 4, then, by the hypothesis that there
are at most two vertices of degree less than n/2, there is a vertex in V(C5)
which has degree at least n/2. Then |V(C2)| > n/2. If there is a vertex u
in V(Ci1)\ {2} such that d(u) > n/2, then |V(C})| > n/2+ 1, which makes
[V(G)| = |V(C1)| + |V(C2)| =2 n + 1, a contradiction. Thus, all vertices in
C1, except for z, have degree less than n/2. It means that |V(C))| < 3.
By the 2-edge-connectivity of G, |V/(C1)| = 3 and C; is a 3-circuit. Let
a be the vertex of degree 2 in C; and G” the graph obtained from G by
deleting a and adding an edge between the remained vertices of C;. By
consecutively contracting the 2-circuits in G”, we get a simple graph G*.
Then G* has at most one vertex of degree less than n/2. By the induction
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hypothesis, G* has a nowhere-zero 3-flow or G* is one of ten graphs in
Fig. 1. In the former case, the nowhere-zero 3-flow on G* can be extend to
a nowhere-zero 3-flow on G; in the later case, since there are at least four
vertices of degree less than 4 in each graphs in Fig. 1, contrary to the fact
that only one vertex may has degree less than 4 in G*. If |V (C3)| = 3, then
d(w) = 2 or d(w) = 3. If d(w) = 3, then d(z) = d(y) = 3, which implies
that n < 6, a contradiction. Thus d{w) = 2 and at least one of {z,y} has
degree 3. Without loss of generality, we may assume that d(z) = 3. Then
d(y) = 4 and n = 8. Let G” be the graph obtained from G by deleting
w and adding an edge zy. By consecutively contracting the 2-circuits in
G", we get a simple graph G* on at most 5 vertices. It is easy to see that
G* has a nowhere-zero 3-flow since all vertices, except for one, of G* have
degree at least 4. So far, we complete the proof of the claim.

In the following argument, we can assume that G’ is 2-edge-connected.
Note that, in G’, we have a 2-circuit on {z,y}.

Technique 1: Let G! be the graph obtained from G’ by contracting
the 2-circuit on {z,y} into a single vertex u*. Then, G! has a 2-circuit on
{u*,w}. Let G? be the graph obtained from G by contracting the 2-circuit
on {u*,w}, and for convenience, the resulting new vertex is still denoted by
u*. If there is 2-circuit containing u*, we continue to contract the 2-circuit
into u*, and denote the resulting graph by G3. Keep going this way until
no 2-circuit exists. Let G!,G?,.--,G* be a sequence of graphs obtained
in the above-described way of contraction 2-circuits. So, for each i, G* is
obtained from G*~! by contracting a 2-circuit into u*, 1 < ¢ < t, where
G° = G'. Note that G® is a simple graph, in which all vertices, except for
u* and z, have the same degree as in G. Since G* is obtained from G’ by
consecutively contracting 2-circuits, if G* has a nowhere-zero 3-flow, then
so does G’, and hence G has a nowhere-zero 3-flow. Moreover, there is a
subgraph H such that G* = G'/H. Let |V(G*)| = n*. Since t > 2, we
have that n* < n — 2. If n* < 3, then Gt has a nowhere-zero 3-flow, which
implies that G’, and so G, has a nowhere-zero 3-flow. Thus, assume that
n* > 4 and G* has no nowhere-zero 3-flow. By the hypothesis, G* has at
most four vertices (z, u* together with two original vertices of degree less
than n/2 in G) of degree less than n/2.

For convenience, we consider the following three cases independently.

(i) n = 8. If G has a vertex of even degree (including degree of 2), then
by splitting this vertex out, we get a 2-edge-connected graph G according
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to Proposition 1.5. If G” is simple, then |V(G"”)| = 7 and G” has at most
two vertices of degree less than n/2. By the argument in Lemma 2.3 case
(iii), G”, and hence G, has a nowhere-zero 3-flow. Thus suppose that G”
is not simple. Let G* be the graph obtained from G” by consecutively
contracting 2-circuits. Therefore, G* is one of graphs in Fig. 1. Using the
similar method in the proof of Lemma 2.3 case (iii), we have that this case
cannot occur. Thus, we assume that all vertices of G have odd degrees.

By applying the Technique 1 described above, we get a graph G*. Note
that d(2) > 5 and n* < n — 2. So, dgt(2) > n*/2. If none of two vertices
which have degree less than n/2 in G is contained in H, then dg:(u*) >
5(n—-n*+1)—(n—n*)(n—n*+1)—2 = (n*-3)(9—n*)—2. Note that 4 <
n* < 6. Sodge(u*) > n*/2. Suppose that at least one of two vertices which
have degree less than n/2 in G is contained in H. Then G* has at most
two vertices which have degree less than n*/2. Note that G* has at most
four vertices of degree less than n/2 = 4. Thus, by hypothesis, Gt is G, Gg
or Gy in Fig. 1. If G* is K4, then |V(H)| = 5. Let H’' be the subgraph
obtained from H by deleting one edge of 2-circuit on {z,y}. If H' is K,
then G/H' is not simple because of dx(2) > 2. Moreover, |V(G/H')| = 4,
then G/H’ has a nowhere-zero 3-flow. By Proposition 1.2, H' is 3-flow
contractible, hence G has a nowhere-zero 3-flow. Thus, suppose that H’ is
not Ks. Note that G* has four vertices of degree 3, in which two vertices
have degree less than n/2 in the original graph G. Then dg:(u*) = 3 and
d(a) > 5 for each a € V(H). However, dg:(u*) =d(H') > 5+2-2=05,a
contradiction. If G* is Gy or Gig, then |V (H)| = 3. But d(z) > 5,d(y) > 5
and d(w) > 5, which implies that dg:(u*) > 7, a contradiction.

(ii) » = 9. Apply Technique 1 to G. If d(z) = 4, then there is a vertex
of degree 2 in G*. By deleting this vertex and adding an edge connecting its
two neighbors, we get a graph G* on n* — 1 vertices. If G* has a nowhere-
zero 3-flow, then G has a nowhere-zero 3-flow. So, G* has no nowhere-zero
3-flow. Note that there are at most two vertices of degree less than 5 in
G*. Then n* = 7. It is not difficult to see that G* is K, which has a
nowhere-zero 3-flow, a contradiction. Thus, d(z) > 5 and n* < n—2. Then
dg:(2) 2 3. We intend to prove that G* has at most two vertices of degree
less than n*/2. If n* < 6, then dg:(2) > n*/2. If one vertex of degree less
than n/2 in G is contained in H, then G* has at most two vertices of degree
less than n*/2. Suppose then none of vertices of degree less than n/2 is
contained in H. Thus, dg:(u*) 2 5(n—n*+1) - (n—n*)(n—n*+1)-2=
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(n* — 3)(9 — n*) — 2. When n* < 6, dg:(u*) > n*/2, and G* has at most
two vertices of degree less than n* /2. Thus, we need only consider the case
n* = 7. Then |V(H)| = 3. If all vertices of H have degree at least 5, then
det(u*) =5x3-6—2=17>n* -1, this is impossible. If all vertices of
G with degree less than n/2 are contained in H, then G* has at most two
vertices of degree less than n*/2. Suppose then H contains only one vertex
of degree less than n/2 in G. In this case, dge (u*) > 5x2-4-2 =4 > n*/2.
Also, Gt has at most two vertices of degree less than n*/2. Note that G*
has at most four vertices of degree less than n/2. If G* has a nowhere-zero
3-flow, then G also has a nowhere-zero 3-flow. Suppose then G* has no
nowhere-zero 3-flow. By Lemma 2.3, we have that Gt is Gy or Gyo. If G*
is K4, then |V(H)| = 6. Since dgt(u*) = 3 and degrees of vertices in H are
no less than 5, we have that

Toevndu(v) 2 5x6—-3=27.

Note that H has only one 2-circuit on {z,y}. So, there is a vertex v € V(H)
such that dg(v) > 5. By the 2-edge-connectivity of H, we have that
dy(v') > 2 for each v' € V(H). Let H' be the subgraph of G obtained
from H by deleting one edge of 2-circuit on {z,y}. If H' contains an even
wheel centered at v, then by Proposition 1.2, H' is 3-flow contractible.
Then G/H' is a 2-edge-connected graph on 4 vertices. Since dy/(z) > 2
(2z,2zy € E(H')), we have that G/H'’ is not simple, which means that
G/H' has a nowhere-zero 3-flow, and hence G has a nowhere-zero 3-flow.
Therefore, assume that the subgraph induced by Ng(v) contains no even
circuit, that is, each block of subgraph induced by Ny (v) is an édge or an
odd circuit. Since dge(u*) = 3, the minimum degree of subgraph induced
by Ng(v) is at least 2 and the maximum degree is at least 3. It is not
difficult to see that the subgraph induced by Ng(v) is two triangles with
one vertex in common. But, E,evdp(v) = 5+5+3 x4+2 = 24,
this means that dg:(u*) = d(H) > 5 x 6 — 24 = 6, a contradiction. If
[V(G?)| = 6, then |[V(H)| = 4 and G* is Gyo. It is easy to calculate that
dgt(u*) =d(H) > 5x4—-3x4—2=6. However, Gjo has four vertices of
degree 3, which means that degree of ©u* in G* must be 3, a contradiction.

(iii) » = 10. Apply Technique 1 to G. If d(z) = 4, then there is
a vertex of degree 2 in Gt. By deleting this vertex and adding an edge
connecting its two neighbors, we get a graph G* on n* — 1 vertices. If G*
has a nowhere-zero 3-flow, then G has a nowhere-zero 3-flow. So, assume

174



that G* has no nowhere-zero 3-flow. Note that there are at most two
vertices of degree less than 5 in G*. If G* is simple, then by case (ii),
G* has a nowhere-zero 3-flow, and so does G. If G* is not simple, then
by consecutively contracting 2-circuits in G*, we get a simple graph G'.
Note that |V(G’)| < 6. Since G’ has at most two vertices of degree less
5, G’ has a nowhere-zero 3-flow, a contradiction. Suppose then d(z) > 5.
We intend to prove that G* has at least two vertices of degree less than
n*/2. Since d(z) > 5, dge(2) > 3. If dge(z) < &', then 7 < n* < 8
and dg:(z) = 3, which means that {V(H)| < 4. Note that G contains at
most two vertices, say a,b, of degree less than n/2. Ifa € H or b € H,
then dgt (u*) > 4 > n*/2. In these cases, G* has at most two vertices of
degree less than n*/2. Then we consider the case that a,b ¢ V(H). If
dg:(a) 2 4 or dge(b) > 4, then G* has at most two vertices of degree less
than n*/2. Thus, we may assume that dg:(a) < 3 and dg:(b) < 3. Let
X ={v:d(v) 25veV(G)\ {u*}}. Thus, 3 <|X|<4. If |X]|=3, then
n* =7 and dg:(u*) > 5x4-3x4—2 = 6. If the subgraph induced by X is
a circuit, then one vertex of {2, a,b} has at least two neighbor in X. Thus
G" contains an even wheel centered at u*. By contracting this even wheel,
we have that G, and then G, has a nowhere-zero 3-flow. Suppose then the
subgraph induced by X is not a circuit. Thus dg:(X) > 4+4+3 = 11. So,
e(X,{z,a,b}) > 8. Since dg:(u*) = 6 and dg:(z) = 3, there is one vertex
in {a,b} which has degree more than 3 in Gt. So, G! has at most two
vertices of degree less than n*/2. If | X| = 4, then n* = 8 and dg: (u*) = 7.
Similarly, suppose that the subgraph induced by X contains no even circuit.
Then dg:(X) > 34+3+2+4 = 12. So, e(X, {2,a,b}) > 8. Sincedg:(u*) =7
and dg:(2) = 3, at least one of {a,b} has degree more than 3 in G®. So,
G*® has at most two vertices of degree less than n*/2. If dg:(z) > n*/2,
then we need only to prove that dg:(u*) > n*/2. If |V(H)| < 5, then it
is not difficult to see that dg:(u*) > n*/2. What remains is to prove the
cases |[V(H)| = 6 and |[V(H)| = 7. If |V(H)| = 6, then there is a vertex
a € V(G) \ V(H) such that d(a) > 5, which means that a has at least
two neighbors in V(H), contrary to the simplicity of G'. If [V(H)| = 7,
then G* is K4. Let H’ be subgraph of G obtained from H by deleting
one edge of 2-circuit on {z,y}. Then H’ is simple and 2-edge-connected.
If H' is 3-flow contractible, then G/H’ is a 2-edge-connected graph on
4 vertices and not simple (zz and zy form a 2-circuit in G/H'). It is
clearly that G/H’ has a nowhere-zero 3-flow, and also, G has a nowhere-
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zero 3-flow. Thus, we assume that H’ is not 3-flow contractible. Since
dg:(u*) = 3, there are at least two vertices, say u,v, of H' such that
dy+(u) > 5 and dy/(v) > 5, respectively. Suppose first that uv € E(G).
Let S be the subgraph induced by Ny(u) N Ng:(v). Then |V(S)| 2 3. If
there is s € V(S) such that ds(s) > 2, then there is an even wheel centered
at u, which implies that H’ is 3-flow contractible, a contradiction. So,
ds(s) < 1 for each s € V(S). If |V(S)] = 3, let u; € Np+(u) \ V(S),v, €
Ni:(v)\V(S). If dg(u;) > 2, then subgraph induced by N(u)U{u} contains
an even wheel, also gives a contradiction. Thus dg(u1) < 1. By the 2-edge-
connectivity of H’, we have that ds(u;) = 1. Similarly, ds(v;) = 1. Then
dp(u1) < 2,dy:(v1) < 2 and dy(s) < 4 for each s € V(S). In this case,
dgt(u*) > 2+2+3-2=05. But in G, u* has degree 3, a contradiction.
Suppose that [V(S)| = 4. If dy/(v) = 6, then by the similar method
used above, we have a contradiction. Thus, we assume that |V (S)| = 4 and
dp(u) = dy(v) = 5. Let uy € V(H')\(V(S)U{u,v}). Since ds(s) < 1 for
each s € V(S) and dg:(u*) = 3, we have that u;s € E(H') and ds(s) =1
for each s € V(S). Let G” be the graph obtained from G by deleting edges
us;, usy and adding edge s,s2, here 51,30 € V(S) and sy3; € E(G). Then
by consecutively contracting 2-circuits, we get a simple graph G*. Since
z has at least two neighbors in V(H). we have that |[V(G*)| < 3, which
means that G has a nowhere-zero 3-flow. If |V(S)| = 5, then dy/(s) < 3,
and so dg:(u*) > 2 x 5 — 2 = 8, impossible. Therefore, assume that
uv ¢ E(G). Then Ny(u) = Ny(v). Let S denote the subgraph induced
by Ny(u). Then |V(S)| = 5. If there is s € V(S) such that ds(s) > 3,
then it is the case d(u) > 5,d(s) > 5 and us € E(G), which we have
discussed above. Thus, suppose that dg(s) < 2 for each s € V(S). Note
that there is no even wheel in H’. Then S is a 5-circuit. Let 31,85 € V()
and s;sp € E(G). Let G” be the graph obtained from G by deleting edges
usy, use and adding edge s1s2. By consecutively contracting 2-circuits, we
get a simple graph G*. It is easy to see that |V(G*)| £ 8. Thus, G*, and
also G, has a nowhere-zero 3-flow. Therefore, we suppose that |V (H)| < 6.
By the hypothesis and G* has at most four vertices of degree less than 5, we
have that G* is Gyo in Fig. 1. Let H’' be the subgraph of G obtained from
H by deleting one edge of 2-circuit on {z,y}. Note that dg:(v*) = 3. Then
H' is K35, which is 3-flow contractible. Thus G/H’ is not simple (z has two
neighbors in V(H’)). It is not difficult to see that G has a nowhere-zero
3-flow by consecutively contracting the 2-circuits in G/H'.
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From now on, we may suppose that n > 11. After applying Technique
1, we have a simple graph G®.
Claim 1. G* has at most two vertices of degree less than n*/2 or G* has
a nowhere-zero 3-flow.

Suppose that there are two vertices, say a and b, in V(G) with degree
less than n/2. If a,b € V(H), then G* has at most two vertices u* and z
of degree less than n*/2. If a,b ¢ V(H), then consider the following two
cases.

(i) V(G)\ (V(H)U {a,b,2z}) # 0. Let v € V(G) \ (V(H) U {a,b,2})
and |V (H)| = h. Since dy(v) €1 and d(v) > n/2, we have that h < n/2.
If h > 5, then dg:(z) = dg(z) — 2 > n* /2. Further, dg:(u*) 2 h-(n/2 -
h+1) —2 > n*/2. So, the vertices of G*, which possibly have degree less
than n*/2, are in {a, b}, and Claim 1 holds for this case. Thus, we assume
that b < 4. If h = 3, then d(z) + d(y) + d(w) > 3n, which implies that
dge(u*) > $n — 8. On the other hand, dg:(u*) < n* —1 = n — 3. Thus,
we have that n — 3 > dge(u*) > %n — 8, that is, n < 10, contrary to the
hypothesis that n > 11. If A = 4, then by the similar calculation, we have
that dge(u*) > 2n — 14. But dgt(u*) £ n* — 1 = n — 4. Combining these
two inequations, we get n < 10, also a contradiction.

(if) V(G)\ (V(H) L {a,b,z}) = 0. Then n* = 4 and G* is K4. Notice
that dg:(2) = 3. Thus dg(z) = 3 + 2 = 5, which implies that n < 10, a
contradiction.

Suppose then only one of a,b is contained in V(H). Without loss of
generality, let a € V(H). If |V(H)| = 5, then dg:(2) = dg(z) — 2 > n*/2,
and hence the vertices in G*, which possibly have degree less than n*/2,
are in {u*,b}. In this case, Claim 1 holds. Thus, we need only consider
two cases |V(H) = 3| and |V(H)| = 4. If [V(H)| = 3, then dg:(u*) >
d(z) + d(y) + d(a) — 8 > n — 6. Note that n* = n ~ 2 and n > 10. Then
dg:(u*) 2 n*/2. If |[V(H)| = 4, then dge(u*) > 3n — 11. Note that
n* =n —3 and n > 10. Then dg:(u*) = n*/2. In either case, the vertices
in G*, which possibly have degree less than n*/2, are in {z, b}, and we are
done. .
If G has one vertex of degree less than n/2, then we need only consider
two cases |V(H)| = 3 and |V(H)| = 4. By the similar analysis, we can
easily prove that Claim 1 holds for these two cases.

If G has no vertex of degree less than n/2, then the vertices in G*, which
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possibly have degree less than n*/2, are in {u*, z}. We complete the proof
of Claim 1.

By Claim 1 and induction hypothesis, either G* has a nowhere-zero 3-
flow or Gt is one of the ten graphs in Fig. 1. In the former case, since G*
is obtained from G’ by consecutively contracting 2-circuits, which is 3-flow
contractible, we see that G’, and so G, has a nowhere-zero 3-flow, and we
are done. In the later case, G* contains at least 4 vertices of degree 3, at
most two of which have degree 3 in the original graph G, then dg:(z) = 3.
But dg(z) = dgt(2z) + 2 = 5 > n/2, which implies that n < 10, contrary to
the hypothesis that n > 10. This completes the proof of the Main Theorem.
=
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