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union distinct. In this paper, we recognize that this is only a sufficient condition
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plied to find efficient anti-collusion digital fingerprinting codes.
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1. Introduction

Cover-free families of sets, introduced by Kautz and Singleton [6] have received
significant attention in the literature, with application to such diverse fields as
group testing, cryptography and communications. Let Q be a universal set of v
elements and 77 be a family consisting of » subsets of Q. Then % is called a X-
cover-free family, or K-CFF(v, n), if no union of X or fewer members of 7 in-
cludes as a subset, i.e., covers, any member of # other than those involved in the
union. It is readily seen that if 7 is a K-CFF(v, n), then % is also a K-union dis-
tinct family, or K-UDF(v, n), in the sense that all unions involving K or fewer
members of 7 are distinct. Indeed, it is this feature that accounts for certain ap-
plications of cover-free families, notably in the construction of anti-collusion
digital fingerprinting codes; see [11]. Hence we focus on union distinct families
of sets in the present article. While such families are of theoretical interest on
their own, they will be seen to be attractive also from practical considerations.

Although a K-cover-free family of sets is K-union distinct, the converse is not

true. The following example shows that a family of sets can be K-union distinct
even without being K-cover-free.

Example 1. Let Q = {1, 2, 3} x {0, 1, 2}, where x denotes Cartesian product of
sets. Consider a family 3 of n =12 subsets of Q as given by

{10, 20, 30}, {10, 21, 32}, {10, 22, 31}, {11, 20, 32}, {11, 21, 31}, {11, 22, 30},

{12, 20, 31}, {12, 21, 30}, {12, 22, 32}, {10, 21,31}, {11, 22, 32}, {12, 20, 30}.
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Then # is not 2-cover-free — e.g., the union of {10, 20, 30} and {11, 21, 31}
covers the set {10, 21, 31}. Nevertheless, one can directly verify that 7 is 2-
union distinct. It may also be noted that 7 is only partially 2-cover-free in the
sense that the subfamily, consisting of the first nine sets, is indeed 2-cover-free.

Clearly, if # is K-union distinct then so is any subfamily of #/. Given K and v,
therefore, union distinct families with larger »n are appealing. Example 1 holds
out the promise of the existence of union distinct families which are only par-
tially cover-free but have larger n, for given K and v. Moreover, as we will see,
partially cover-free families can also be used to obtain (completely) cover-free
and hence union distinct families with larger n. In Section 2, we derive results in
this direction on the construction of union distinct families. For this purpose, the
notion of union distinct codes is introduced and the role of orthogonal arrays and
related combinatorial structures is explored. Finally, in Section 3, the results are
applied to find efficient anti-collusion digital fingerprinting codes and illustrative
examples are given. The longer proofs appear in the appendix.

In what follows, given a universal set Q of v elements and a family 7 con-
sisting of n subsets of Q , the incidence matrix of 3 'is defined as a vx n matrix
with (i, Hth element 1 if the ith element of Q belongs to the jth member of 7/,

and 0 otherwise.
2. Construction of union distinct families

2.1 Union distinct codes
Definition 1. Let C = {(c,{,. Cjm): 1< j <M } be a code consisting of M code
vectors each of length m and defined over an alphabet of size s. Then C is called
K-union distinct (K-UD) if no two distinct subsets Jyand J5 of {1,..., M} satisfy
{cii:je} = {cy:jeda} forevery i (1<i<m), when each of Jy, J, has
K or fewer elements.

It is not hard to see that if the minimum (Hamming) distance d of C satisfies

Km-d)<m, (¢))

then ¢ is K-UD. This happens because, with Jjand J, as in Definition 1, there
exists a j* which belongs to one of them, say J5 , but not the other, say J; . Then
for each j € Jy, one has ¢ j; = ¢, for at most m—d choices of i. Thus c;s; €

{cji : j € J1} for at most K(m - d)choices of i, as J) has at most K elements.
So, if (1) holds then for some i, one gets ¢y €{c;:jeJ1} and hence
{cji1je 1} # {cj; : j € J}, thatis, Cis K-UD. The next example, in the spirit

of Example 1, shows that C can be X-UD even when (1) does not hold.
Example 2. Let C be a code over an alphabet of size s = 3 and consisting of 12
code vectors, each of length m = 3, as shown below:
(0,0,0),(0, 1,2), (0,2, 1),(1,0,2),(1, 1, 1), (1,2, 0),
(2,0,1),(2,1,0),(2,2,2),0,1,1),(1,2,2),(2,0,0).
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The minimum distance of ¢ is 4= 1, which does not meet (1) for X = 2. Still, it
may be directly checked that ¢ is 2-UD. The 12 code vectors here correspond to
the 12 sets of the family in Example 1, a point which will be clarified below
when we continue with this example.

2.2 Union distinct families from union distinct codes
Consider a K-UD code C = {(c,1,., € m): 1< j <M } over an alphabet {ay,
ay,.., &1} Of size s. For 1<i<m and 1< <M, write ¢;; =1 if cjy =a.
Let Q= {1, 2,..., m}x {0, 1,..., g-1} be a set of mgelements, F = {F(0),
F(1),..., F(s-1)} be a family of subsets of {0, 1, ..., g—1}, and #{0) be a family
consisting of the M subsets
of Q, where, for each j,

Ej,'= {i}XF(EJ,), 1sism. . (3)
Example 2 (continued). We continue with the 2-UD code ¢ in Example 2 to
illustrate the ideas underlying (2) and (3). Here M=12 and m =s=3.Letg=3.
Then Q={1, 2,3} x {0, 1, 2} = {10, 11, 12, 20, 21, 22, 30, 31, 32}. The code ¢
considered here is over the alphabet {0, 1, 2}, ie., a; =/ (/=0, 1, 2), so that ¢ i

= c; for everyjand i.Hence taking F(0) = {0}, F(1) = {1}, F(2) = {2}, by (3),
we get E ;= {i}x{c;}, i.e,, Ejis singleton for each j and i, with unique mem-
ber ic ji - As M =12 and m = 3, it now follows from (2) that the family #{0) con-
sists of the 12 subsets E;= {lc;;,2¢;3,3c;3} of Q. For instance, E\= {10, 20,

30} and E, = {10, 21, 32} as the first two code vectors in ¢ are (0, 0, 0) and (0,
1, 2). In this manner, one can check that #{0) is precisely the same as the 2-union
distinct family shown in Example 1.

The last example illustrates the construction of a 2-union distinct family via
(2) and (3), starting from a 2-UD code and using a smaller family ¥ = {F(0),
F(1), F(2)} which is also 2-union distinct. Theorem 1 below puts together these
ideas in the form of a general result. We note at this stage that, as (2) and (3)
suggest, #{(0) could equivalently be introduced via concatenation of codes but the
present description will be more convenient for our proofs.

Theorem 1. Suppose F is K-union distinct, that is, a K-UDF(q, s). Then the fam-
ily 30), obtained from the K-UD code C via (2) and (3), is a K-UDF(v, n),
where v=mq andn=M.

Progf: If #(0) is not K-union distinct, then by (2) and (3), there exist two distinct
subsets J; and J, of {l,..., M}, such that each of J; and J, has K or fewer

elements and, for every i (1<i<m), the union of the sets F(Eﬂ), jed,
equals the union of the sets F(c;), j€J;. Since ¥ is K-union distinct, it fol-
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lows that {C;: je J1}={c;:jeJp} andhence {c;;:jej}={c;:je Ja},
for 1 £i < m. This is impossible as C is a K-UD code. o

Theorem 1 does not require the X-UD code C to satisfy (1). This is demon-
strated by Example 2. Since being K-UD is less stringent than meeting (1), one
can hope that this would allow the use of C with larger M and hence yield a union
distinct family 7£0) with larger n (= M) via Theorem 1. A construction for such ¢
will be presented in Theorem 3 and the resulting #{0) will turn out to be only
partially cover-free. However, before doing so, we present Theorem 2 below
which shows how partially cover-free families can as well be used to obtain
(completely) cover-free and hence union distinct families with larger n, even
when ( satisfies (1). The proof of Theorem 2 appears in the appendix. We con-
tinue with the notation for Theorem 1. In addition, we consider a family of sub-
sets G= {G(1),..., G(u)} of {0, 1, ..., g1}, and for 1 <i<m, define

H) = {3 xGQW),..., {i}xGu)} C))

as a family consisting of » subsets of Q .
Theorem 2. Suppose (i) K < m, (ii) the minimum distance d of C satisfies
K(m—d) < m, (iii) F is K-cover-free, that is, a K-CFF(g, s), and (iv) no union of
K or fewer members of FUG covers any member of G other than those involved
in the union. Then the family 3 = 3{0)U3{1)...U%m) is a K-CFF(v, n), and
hence a K-UDF(v, n), wherev=mq and n=M +mu.
Remark 1. In Theorem 2, we do not need ¥ UG to be K-cover-free. While it has
a K-cover-free subfamily ¥, a union of X or fewer members of £ UG can poten-
tially cover a member of ¥ not involved in the union, and still the theorem re-
mains valid. Thus the family F UG, which is only partially cover-free, leads to a
(completely) cover-free and hence union distinct family # This entails gains in
the sense that  contains more sets than #{0) which one would have obtained
using F alone. Incidentally, the idea in Theorem 2 of augmenting 7(1),..., #{(m)
to #(0), via the use of G in addition to #, is reminiscent of an adding-column
technique in the construction of orthogonal arrays (see [12]), and this is new in
the present context.

Example 3 below illustrates an application of Theorem 2. More examples
appear in Section 3. For ease in presenting these examples, we first indicate how
orthogonal arrays of index unity and binary codes of constant weight can help in

finding F, Gand C, as stipulated in Theorem 2. An orthogonal array OA ', m,
s,1) of index unity is an s‘ xm array, with entries from a set of s symbols, such

that each ordered ¢-tuple of symbols occurs exactly once as a row in every s’ x¢
subarray.
Proposition 1. Let the rows of an OA (s', m,s,t) be taken as the code vectors of

¢. Then conditions (i) and (ii) of Theorem 1 are metif £ >1 and K(t-1)<m.
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Proof. Obviously here K < m, i.e., condition (i) of Theorem 2 is satisfied. Fur-
thermore, following [8], p. 329, the code C obtained as above is maximum dis-
tance separable and hence meets the Singleton bound with equality, so that
d=m-t+1. Hence K(m~d)= K(t—1)<m, and condition (ii) of Theorem 2

is also satisfied. o
We next discuss how one can use binary codes of constant weight to obtain
the families £ and G meeting conditions (iii) and (iv) of Theorem 2. Let

B(g,N,d,w) denote a binary code with minimum distance d and N code vectors
each of length ¢ and weight w. Consider two such binary codes B;= B(q, s, d|,
wy)and B, = B(q,u,d,,w,). Write the code vectors of B, and B, as columns
to form gxsand gxu matrices and take these as the incidence matrices of F

and G respectively. If the rows of these matrices are indexed as 0, 1, ..., g—1, then
¥ and @ contain, respectively, s and ¥ members, each member being a subset of

{0,1,...,q9-1}.
Proposition 2. Let K ‘= min(z —1,K). Then the families  and G obtained as
above meet conditions (iii) and (iv) of Theorem 2 if

Kw-Ld)<w, K-K"w+K (wy-Ldy)<w, and wy>Kwy. (5)
Proof. Since every code vector of By has weight wjand B; has minimum dis-
tance dj, each member of Fhas wy elements and, if any two distinct members of

F intersect in p elements, then 2(w; -~ p) 2 d), ie, p<w --%d. . Thus any un-
ion of K or fewer members of F has at most K(w, —-%dl) elements in common

with any member of & not involved in the union. So, if the first inequality in (5)
holds then ¥ is K-cover-free, i.e., condition (iii) of Theorem 2 is met.

Tuming to condition (iv) of Theorem 2, consider any union of K or fewer
members of #UgG and any member of G not involved in the union. Suppose the
union involves K; members of F and K, members of G . Arguing as in the last
paragraph, then there are at most K w; + Ky(w, —-ZLdz) [= ®(X},K3), say]
elements common to the union and the member of G which does not appear in the
union. Now K;+K5 <K and 0<K; < K®, because G has u members one of
which is not involved in the union. Hence

(K1, K3) < (K- Ky)wy +Ka(wy -1 dy)
< max{(K - K")w + K" (wy ~1dy), km} .
Since each member of G has w, elements, it is now immediate that condition (iv)

of Theorem 2 is met if the last two inequalities in (5) hold. o
Given X, g, s and y, the aforesaid method of construction for Fand § is suc-
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cessful provided there exist binary codes B(qg, s, dy,w;) and B(q,u,d,,w;) satis-
fying (5). To explore this, one needs to identify the choices of (d},w;,d5,w;)
meeting (5), and then for each such choice check the existence of B(g,s,d;,w;)
and B(q,u,d,,w,) by verifying whether or not the conditions

s < A(q,dy,w) and u < A(g,dy,wy) 6)
hold, where A(g,d,w) is the largest possible N ina B(q,N,d,w), given g, d and

w. In particular, if ¥ = 1, then X *=0and (5) does not involve d5 . In this case, it
suffices to identify the choices of (dj,w;, w;)meeting (5) and for each such
choice check only the existence of B(q,s,d;,w;) by verifying the first condition
in (6), with the understanding that the single code vector in B(q,1,d3,w;) can
simply be taken as any binary vector of length g and weight w, . Tables showing
exact values of or lower bounds on A(q,d,w) are useful for this purpose. Such
tables appear in [2] and [10], with further significant improvements reported in
[9] and the webpage http://www.win.tue.nl/~aeb/codes/Andw.html.

Example 3. This example illustrates an application of Theorem 2 by constructing
a K-UDF(v, n), where K =3, v =77 and n= 1373. We employ Theorem 2 with ¢

obtained via Proposition 1. Thenv =mg and n=M +mu = s' +mu . Equating

these with the stipulated values of v and n, we get mg =77, and s* + mu= 1373.
These equations together with the conditions of Proposition 1, namely ¢ >1 and
K({—-1)<m,are satisfiedifm=7,g=s=11,t=3 andu=6.

(a) Hence we take C as the code represented by the rows of an OA(1 1? , 1,11,

3). Then by Proposition 1, conditions (i) and (ii) of Theorem 2 are met.
(b) With g =s = 11 and # = 6, we next invoke Proposition 2 to find the fami-

lies of sets F and g satisfying conditions (iii) and (iv) of Theorem 2. Here X =
3 and the possible choices of (d},w;,d;,w;) meeting (5) are (2, 1,6, 4), (2, 1, 8,
4), (2, 1,8,5),(2, 1,10, 5) and (2, 1, 10, 6), out of which only the first one satis-
fies (6). Indeed, A(11,2,1)= 11 and A(11,6,4) =6, and starting from the associ-
ated binary codes B(11,11,2,1) and B(11,6,6,4), one can find the families  and
G , satisfying conditions (iii) and (iv) of Theorem 2, as given by the members F{(/)
={}( =0,1,..,10)and G(1) = {0, 1, 2,3}, G(2) = {0, 4, 5, 6}, G(3) = {0, 7, 8,
9},G(4)={1,4,7,10}, G(5) = {2, 5, 8, 10}, G(6) = {3, 6, 9, 10}.

With ¢,Fand G chosen as in (a) and (b) above, Theorem 2 yields a 3-UDF(77,

1373).

With reference to Theorem 1, we now proceed to construct codes that are un-
ion distinct even without meeting (1). A method, which is shown to work for K =
2 and can potentially be extended to general X, is presented. Let s be a prime or
prime power and let ay,,...,a;_1be the elements of the finite field GF(s),
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a; =1 being the multiplicative identity element. Suppose 3 <m < s and define
the following row vectors of order m over GF(s):
pG)=(@h.af )  (=012.). (7
For 2<t<m, let R be a t xm matrix with rows p(i), 0<i<t-1, and Ry
be a (f-1)xm matrix with rows p(i), 0<i<t-2. Define U as the s’ xm
array with rows §TR , £€S@), and V as the s*'xm array with rows

pl)+ yTRo , H€8(t-1), where S(i) is the set of the s’ column vectors of or-
der i over GF(s). It is well-known (see e.g., [3], p. 37, or [4], p. 38) that U is an
OA(s’,m,s, t) of index unity and hence, following Proposition 1, yields a code
satisfying (1) if K(¢#-1) < m. Theorem 3 below shows that for K = 2 and odd s,
under the same condition on ¢ and m, the larger array

U
W= [V] (@)

with s* +s"! rows and m columns, represents a 2-UD code.
Theorem 3. If s is an odd prime or prime power, t 22and 2(t —1) < m , then the

s' +5' rows of W, interpreted as code vectors, yield a 2-UD code of size
st

Theorem 3 is proved in the appendix. Withs=m=3,¢r=2and a,;=1({=0,
1, 2), it yields the 2-UD code of Example 2. A more appealing application ap-
pears in Example 4 in the next section. While a 2-UD code arising from Theorem
3 may not satisfy (1) (cf. Example 2), it has more code vectors than the one given
by U alone and hence yields a union distinct family with larger » via Theorem 1.
Also note that if in Theorem 1, ¥ is taken as a 2-cover-free family and C is ob-
tained using Theorem 3, then the resulting 740) is only partially cover-free in the
sense that the subfamily of #/0), associated with the rows of U, is 2-cover-free.

3. Application to digital fingerprinting codes

3.1 Background

Digital fingerprinting is a technique for tracing consumers who use their multi-
media contents for illegitimate purposes, such as redistribution (see [1]). Anti-
collusion codes (ACCs) aim at deterring such unauthorized utilization by a coali-
tion of users, and have been of considerable recent interest. Trappe et al. [11]
introduced an attractive class of ACCs, called AND-ACCs. In order to formally
define AND-ACCs, we note that the element-wise AND of a set of binary vectors

(x15.%jy) , Where j belongs to some index set J, equals (j[eIJ x j,,...,JIe'IJ Xjy).

Definition 2. Let X = {(x),..., X;y):1< j<n} be a code consisting of n binary
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code vectors each of length v. Then X is called a K-resilient AND-ACC if the
element-wise ANDs of all distinct subsets of K or fewer code vectors in X are
distinct, i.e., if no two distinct subsets Jyand J of {1,..., n}, with both J, and
Jy having K or fewer elements, satisfy 11 x;; = I1 x for each i, 1<i<v.
JjeJ; JjeJ,
Let the n code vectors in X be used to watermark the digital contents of »n con-
sumers. There is a possibility that some of these consumers might collude and
use their own contents to produce an illegitimate content for unauthorized redis-
tribution. Then the watermark of this illegitimate content can be detected in the
form of the element-wise AND of the code vectors used for these colluders.
Therefore, if the number of colluders is K or fewer, then they can be uniquely
identified whenever the element-wise ANDs of all distinct subsets of K or fewer
code vectors in X are distinct, i.e., whenever Xis a K-resilient AND-ACC.

A code X as in Definition 2 is denoted as a (v, n, ) AND-ACC. It involves v
basis vectors, accommodates » users, and has resilience X in the sense described
above. Construction of AND-ACCs is an interesting combinatorial problem
which has been addressed by several researchers. Trappe et al. [11] gave a
method that makes use of balanced incomplete block (BIB) designs. Kang et al.
[5] proposed another approach using group-divisible designs. Yagi et al. [13]
used finite geometries for obtaining AND-ACCs, while Li et al. [7] suggested a
construction procedure based on cover-free families of sets. We refer to these
papers for further related references. As noted by all these authors, for a given
resilience K, one prefers a (v, n, K) AND-ACC with relatively large » and small v
because this accommodates more users and avoids distribution of energy over a
large number of basis vectors.

3.2 AND-ACC:s from union distinct families

By Definition 2, a (v, n, K) AND-ACC and a K-UDF(v, n) are co-existent. To
see this, it suffices to interpret the bit complements of the columns of the inci-
dence matrix of the latter as the code vectors of the former, and vice versa. Thus
the constructions in Section 2 readily yield AND-ACCs. For instance, the 3-
UDF(v, n) with v =77 and n = 1373, as obtained in Example 3, yields a (77,
1373, 3) AND-ACC. Indeed, as this example and the ones to be presented now
show, given K, the AND-ACCs obtained via the constructions in Section 2 are
often better than the existing ones in terms of ensuring larger n with the same or
smaller v; see Remark 2 below. The same happens also in many other examples
which are not reported here in order to save space.

Example 4. Suppose it desired to construct a (v, n, K) AND-ACC with v = 60, n
=6972 and K=2. As K =2, we consider employing Theorem 1 with ¢ obtained
via Theorem 3. The resulting 2-union distinct family will have v=mgand n = M

=s' +s"1. Equating these with the stipulated values of v and n, we get mq = 60

and s° + s~ = 6972. These equations together with the conditions of Theorem 3,
namely s an odd prime or prime power, ¢ 22and 2(f - 1) <m, are satisfied if m
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=3,9=20,s=83andr=2.

(a) Hence we use Theorem 3 with m =3, s = 83 and ¢ = 2, to obtain a 2-UD
code C consisting of M = 6972 code vectors each of length m = 3.

(b) For employing Theorem 1, it remains to find a family of sets # which is K-
UDF(g, s), where g = 20 and s = 83. Now, from Table I-B in [2], 4(20, 6, 5) > 84.
Thus there exists a constant weight binary code B(20, 83, 6, 5) which meets the
first inequality in (5) for K = 2 and therefore, using the same arguments as in
Proposition 2, leads to a family of sets F which is 2-CFF(20, 83) and hence 2-
UDF(20, 83).

With ¢ and ¥ chosen as in (a) and (b) above, Theorem 1 yields a 2-UDF(60,
6972) and hence a (60, 6972, 2) AND-ACC.

Example 5. This example illustrates the construction of a (v, n, ) AND-ACC
with v = 90, n = 6591 and K = 3, employing Theorem 2 with ¢ obtained via

Proposition 1. Then one gets v = mq and n=M +mu = s’ + mu. Equating

these with the given values of v and n, we get mg = 90 and s’ +mu= 6591.
These equations together with the conditions of Proposition 1, namely ¢>1 and
K(-1)<m,aresatisfiedifm=10,g=s5s=9,t=4and u=3.

(a) Hence we take ( as the code represented by the rows of an 0A(94, 10, 9,
4). Then by Proposition 1, conditions (i) and (ii) of Theorem 2 are met.

(b) With ¢ =5 =9 and u = 3, it now remains to find the families of sets ¥ and
G satisfying conditions (iii) and (iv) of Theorem 2. Proposition 2 is used for this
purpose. Here K *=2 and the possible choices of (dj,w;,d;,w;) meeting (5)
are (2,1,6,4),(2, 1, 8,4) and (2, 1, 8, 5), out of which only the first one satisfies
(6). Indeed, A(9,2,1)= 9 and A(9,6,4) =3, and starting from the associated bi-
nary codes B(9,9,2,1) and B(9,3,6,4), one can find the families Fand g, satis-
fying conditions (iii) and (iv) of Theorem 2, as given by the members F() = {I}
(¢=0,1,..8and G(1)={0, 1, 2,3}, G(2) = {0,4, 5,6}, G3) = {1,4, 7, 8}.

With ¢ ,F and G chosen as in (a) and (b) above, Theorem 2 yields a 3-
UDF(90, 6591) and hence a (90, 6591, 3) AND-ACC.
Example 6. We now employ Theorem 2, with ¢ obtained via Proposition 1, to
construct a (v, n, K) AND-ACC where v = 147, n = 29798 and K = 3. As in Ex-
ample 4, then we get the equations mg = 147 and s + mu = 29798. These equa-
tions together with the conditions of Proposition 1, namely ¢>1 and
K(@-1)<m,aresatisfiedifm=7,g=21,5s=31,t=3andu=1.

(a) Hence we take C as the code represented by the rows of an OA(31°, 7, 31,
3). Then by Proposition 1, conditions (i) and (ii) of Theorem 2 are met.

(b) With g =21, s = 31 and » = 1, we next use Proposition 2 to find the fami-
lies ¥ and g satisfying conditions (iii) and (iv) of Theorem 2. Here X *=0and
(5) does not involve d, . Among the possible choices of (d),w;,w,) meeting
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(5), only the ones of the form (6, 4, w, ), where w, > 13, satisfy the first inequal-
ity in (6); note that A(21, 6,4) =31 from Table IB in [2]. Hence if we take F as
the family of sets given by a constant weight binary code B(21,31,6,4) and G
as consisting of the only set {0,1,...,20}, then conditions (iii) and (iv) of Theorem

2 are met.
With ¢ ,F and G chosen as in (a) and (b) above, Theorem 2 yields a 3-

UDF(147, 29798) and hence a (147, 29798, 3) AND-ACC.
Example 7. We now use Theorem 2, with C obtained via Proposition 1, to con-
struct a (v, n, ) AND-ACC with v = 81, n= 747 and K = 4. Then mg = 81 and
s' + mu= 747. These equations together with the conditions of Proposition 1,
namely ¢ >1 and K(t-1) <m, are satisfied if m=g=s=9,¢t=3andu=2.

(a) Hence we take ( as the code represented by the rows of an 0A(93, 9,9,3).

Then by Proposition 1, conditions (i) and (ii) of Theorem 2 are met.
(b) With ¢ = s = 9 and u = 2, Proposition 2 is now used to find the families ¥

and ¢ satisfying conditions (iii) and (iv) of Theorem 2. Here K *=1and the only
choice of (d},w;,d,,w;) meeting (5), namely (2, 1, 8, 5), satisfies (6) as well.
Indeed, 4(9,2,1)= 9 and A(9,8,5) =2, and starting from the associated binary
codes B(9,9,2,1) and B(9,2,8,5), one can find the families # and G, satisfying
conditions (iii) and (iv) of Theorem 2, as given by the members F() = {I} (! =0,
1,....8)and G(1)= {0, 1, 2, 3, 4}, G(2) = {0, 5, 6, 7, 8}.

With ¢ ,F and G chosen as in (a) and (b) above, Theorem 2 yields a 4-
UDF(81, 747) and hence a (81, 747, 4) AND-ACC.
Remark 2. Our approach can yield AND-ACCs which are better than the exist-
ing ones in the sense of ensuring larger » with the same or smaller v, given K.
For instance, in the construction in [11], » must satisfy n<v(v-1)/{(K +1)K},
while the values of 7 in our Examples 3-7 far exceed this upper bound. Similarly,
in the construction in [5], n= {v/(K + l)}z, while the AND-ACCs in Examples 3-
7 have much larger values of #n. Moreover, in the respective setup of these exam-
ples, the construction in [7] based on cover-free families as considered by there,
yields AND-ACCs with (v,n,K)= (77, 1331, 3), (249, 6889, 2), (90, 6561, 3),
(217, 29791, 3) and (81, 729, 4). Our methods lead to larger » and smaller v in
Examples 4 and 6, and same v but larger » in Examples 3, 5 and 7.

Appendix: Proofs of Theorems 2 and 3

Proof of Theorem 2. From the definitions of #(0), #(1),..., H(m), it is clear that
9 has n= M +mu sets, all subsets of Q. Consider any set A from # and any
collection of ksets Hy,..., H; from 3 suchthat k<X and H ¢ {H,,...H;}.

It will suffice to show that the union of H),..., H; does not cover H. Since 7 =
FHOYU(1)...Us{m), we can write
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{Hy,..H }=ToUnLU..UT,, (A.1)
where Ty,I3,...,I}, are intersections of {Hy,..,H;} with #(0), 7(1),..., #{(m)
respectively. Then I, I;,..., I, are disjoint, and if g, %,....k,, are the numbers
of sets in Iy, I7,..., [, respectively, then by (A.1), kg, %,.... &, satisfy

ko +ky+..+k,=k<K. (A2)
Also, as I is a subfamily of #{0) consisting of %, members of the latter, by (2),
Lo={E;VU... UE;,: jeJp}, (A.3)

where the set Jg consists of some k; elements of {1,..., M}.

First, let H € 7{0). Then by (2), H =E o) U. UE o for some j*, where
1< j*< M and, in view of (A.3), j*&Jy because H ¢ {H,,...,H;}. By (3) and
(A.3), the kg sets of Iy together cover E+; for any fixed I, if and only if the
union of the kg sets F(¢};), jeJy, covers F(Cj;). Since ky < K and Fis K-
cover-free by condition (iii), this happens if and only if Cp; € {Cj; : jeJo}, or
equivalently, if and only if

cjwi €{cy i jedo}. (A4)
But as j*e Jy and ¢ has minimum distance d, (A.4) can hold for at most
ko(m—d) choices of i. Thus the ky sets of I'y (< #0)) together cover at
most ko(m—d) of the sets Ejs,..., Ejsp. Also, by (3) and (4), for each
i 1<i<m), the union of the k; sets of I; (S #4#) has a nonempty overlap
with at most one, namely E % s of the sets E 41 0ees E Thus, by (A.1), writ-
ing 6; =1 if k; >0 and &; =0 if k; =0, the union of Hjy,..., H; covers at most
ko(m=d)+ 8, +...+ 6, (= v, say) of the disjoint sets Ejss...; E jop, . Now, by

(A2),
WS kolm—d)+ky+..tky < kg(m-d-1)+K. (AS)

If ky > 0, then by (A.2) and conditions (i) and (ii),

kom=-d 1)+ K <kg(mK™' 1)+ K < KmK™' =)+ K=m,
while if kg =0, then by condition (i), ko(m-d-1)+ K= K < m, so that by
(A.5), ¥ <m. As aresult, the union of H,,..., H; fails to cover at least one of the
sets E ju ;..o E oy, i.e., this union does not cover H.

We next turn to the case H € #{i) for some i (1<i<m), say H € #{1). Then
by (4), H has empty overlap with every set in I’ U...UT,,. On the other hand,
the union of the kg + &; sets of Ty UT} cannot cover H, in view of (2)-(4), con-
dition (iv) and the fact that ky + &; < K (vide (A.2)). This proves the result. o
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Proof of Theorem 3. Given any two rows (x;,...,Xp)and (3,...y,,) of W, the
number of coincidences between them is defined as the cardinality of the set
{i:x; = y;, 1<i < m}, ie., it is m minus the Hamming distance between the two

TOWS.
Lemma 1.The number of coincidences between any two rows of W cannot exceed
(a) t -1, if these are distinct rows of U, (b) t—2, if these are distinct rows of V,
and (c) t , if one of these is a row of U and the other is arow of V.

Proof: (a) If any two distinct rows of U have ¢ or more coincidences, then there

exists an s’ x¢ subarray of U where an ordered -tuple of symbols occurs at least
twice as a row. This is impossible because, as noted in Section 2, U is an

OA(s',m,s,t) of index unity.

(b) By the definition of V, if (b) does not hold then there exist 4, u; € S(¢-1),
4 # i, and a square submatrix of Ry, say Ry, consisting of some -1 col-
umns of Ry such that (g - pz)T Ry is a null row vector. This is impossible
since 4 — y5 # 0 while every square submatrix, of order 7—1, of Ry is nonsin-
gular by (7) as ag,ay,...,@y- are distinct.

(c) By the definitions of U and ¥, if (c) does not hold then there exist £ € S(f)
and g e S(t—1) such that there are #+1 or more coincidences between §TR
and p(f) + ,aTRo , or equivalently, between ¢& TR- yTRo and p(f) . Therefore,
a subvector of p(t), of order ¢+1, is in the row space of the corresponding
tx(t+1) submatrix of R, because the rows of Ry are also rows of R. This is
impossible because by (7), every square submatrix, of order ¢ +1, of

~ | R
p(1)
is nonsingular as @y, y,...,Q,,-; are distinct. a

Proof of Theorem 3 (continued). Since2(t -1) < m , i.e., m 2 2t -1, it will suffice
to prove the result for m=2t-1. Then m2¢+1 as t22, and by Lemma 1, all
rows of W are distinct. Hence it is clear that no two distinct collections of rows of

W, say {(xjj,X;m): je€i}and {(x,....X )i j€J2}, each with two or
fewer rows, can have {x;; : je J1}={x; : je J,} forevery i (1<i<m), when
any of the two collections has only one row or they have one row in common.

It remains to consider two collections of the form (a,4) and (x,y), where
a=(ay,...ap), b=(b,.,0p), x=(x1,... %) and y=(n,....y,,) are four
distinct rows of W. If the sets {a;,5;} and {x;,y;}are identical for every
i 1Si<m), then, for each i, either (i) a; =x;, b; =y;, or (ii) a; #x;,
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a; = y;, b; = x; . Without loss of generality, suppose (i) holds for 1 <i <m,, and
(ii) holds for m) +1<i<m +m,, where m +m, =m=2t-1. Since m <t
and m, <t by (i), (ii) and Lemma 1, the pair (m;,m,) equals either (¢, 1) or
(-11).

First let (my,my)=(t,t-1). Partition R and Ry, as R = [R, R;] and Ry=
[Roy Rgy], where Ryand Ry, consist of their first # columns, while Ryand Ry,
consist of their last -1 columns. Similarly, partition the row vectors p(z), a, b,
xand y as p(1)= (p(1,1) p(1,2)), a=(a(l) a(2)), b= (b(1) b(2)), x = (x(1)
x(2)) and y = ()(1) (2)) , where p(t,1), a(l) etc. consist of the first  elements of
these vectors, while p(#,2), a(2) etc. consist of their last 7 — 1 elements. Then by
(i) and (ii),

a)=x(1), b(1)=n1), a@R)=y2), b2)=x2). (A6)
Since m, =t¢, by (i) and Lemma 1, one of a and x, say a, is a row of U and the

other, say x, is a row of V. Similarly, one of b and y is a row of U and the other is
arow of V. But if b is a row of V and y is a row of U, then both b and x are rows
of ¥V and, by the last equation in (A.6), they have ¢ -1 coincidences, which con-
tradicts Lemma 1(b). Thus we need to consider only the situation where a and b
are rows of U, and x and y are rows of V. Then by the definitions of U and V,

there exist &1,&; € S(¢#) and 24, 45 € S(t —1) such that
a=¢R,b=¢[R,  x=pW)+ulRy, y=p)+ulRy,
where
&H#&, M # g, (A7)

as a, b, x, y are distinct. Recalling the partitioned forms of a, b, R etc., the equa-
tions in (A.6) can now be expressed as

& Ri=p.D+p{ Ror. & Ri=plt.))+ ] Roy,
H Ry=pt. )+l R,  EJRy=p(t.2)+p{ Ry (AS)
As the rows of Ry are also rows of R, we have Ry = QOR, for some (¢-1)x¢
matrix Q. Thus
Roy = ORy, Ry =QOR;. (A9)
By (A.9), the first two equations in (A.8) yield (& - gz)TR|= (1 - 12)T OR, .
But by (7), R, being a ¢x¢submatrix of R, is nonsingular. Therefore,

(& -&)7 = (g - #,)7 O, and hence using (A.9),

& -&) Ry=(u1 - 12)" Ry . (A.10)
On the other hand, the last two equations in (A.8) yield
(& -&) Ry=(uz ~ )  Rey . (A.11)
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Since s is odd, by (A.10) and (A.11), (4 — i3 )T Rgp equals the null vector. But
Rgy is a (t-1)x(¢r-1)submatrix of R; and is nonsingular, by (7). Hence
M) = M , which contradicts (A.7).

In a similar manner, a contradiction is reached when (m;,m;)=(t-1,1). o
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