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Abstract

This article is a contribution to the study of the automorphism
groups of 2 — (v,k,1) designs. Let D be 2 — (v,13,1) design and
suppose that G is a group of automorphisms of D which is block
transitive and point primitive. Then Soc(G), the socle of G, is not
isomorphic to 2G2(q) or to 2Fy(¢?) for any prime power gq.
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1 Introduction

A 2 —(v,k,1) design D = (P, B) is a pair consisting of a finite set P of v
points and a collection B of k—subsets of P, called blocks, such that any
2-subsets of P is contained in exactly one block. We will always assume
that 2 < k < w.

Let G < Aut(D) be a group of automorphisms of a 2 — (v, k,1) design
D. Then G is said to be block transitive on D if G is transitive on B and is
said to be point transitive(point primitive on D if G is transitive (primitive)
on P. A flag of D is a pair consisting of a point and a block through that
point. Then G is flag transitive on D if G is transitive on the set of flags.

The classification of block transitive 2 — (v, 3, 1) designs was completed
about thirty years ago (see [2]). In [3], Camina and Siemons classified 2 —
(v,4,1) designs with a block transitive, solvable group of automorphisms.
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Li classified 2 — (v,4,1) designs admitting a block transitive, unsolvable
group of automorphisms (see [7]). Tong and Li [12] classified 2 — (v, 5,1)
designs with a block transitive, solvable group of automorphisms. Han and
Li [4] classified 2— (v, 5, 1) designs with a block transitive, unsolvable group
of automorphisms. Liu (9] classified 2 — (v, k,1)(where k£ = 6,7,8,9,10)
designs with a block transitive, solvable group of automorphisms. In (5],
Han and Ma classified 2 — (v, 11, 1) designs with a block transitive classical
simple groups of automorphisms.

This article is a contribution to the study of the automorphism groups
of 2— (v, k, 1) designs. Let D be 2 — (v,13,1) design, G < Aut(D) be block
transitive and point primitive. We prove that following theorem.

Main Theorem Let D be 2 — (v, 13, 1) design and suppose that G is a
group of automorphisms of D which is block transitive and point primitive.
Then Soc(G), the socle of G, is not isomorphic to 2G5(g) or to 2Fy(q?) for
any prime power g.

2 Preliminary Results

Let D be a 2 — (v, k, 1) design defined on the point set P and suppose that
G is an automorphism group of D that acts transitively on blocks. For a
2 — (v, k, 1) design, as usual, b denotes the number of blocks and r denotes
the number of blocks through a given point. If B is a block, Gg denotes
the setwise stabilizer of B in G and G, is the pointwise stabilizer of B in
G. Also, GB denotes the permutation group induced by the action of Gp
on the points of B, and so G =~ Gg/G(p).

The Ree groups 2G2(q) form an infinite family of simple groups of Lie
type, and were defined in [11] as subgroups of GL(7,q). Let GF(q) be
finite finite field of ¢ elements, where ¢ = 32"+! for some positive integer
n > 1. Set t = 3"t! so that t2 = 3g. We give the following information
about subgroups of 2G3(g). For each ! dividing 2n + 1, 2G2(3') denotes
the subgroup of 2G3(q) consisting of all matrices in 2G2(g) with entries in
subfield of 3!. We use the symbols Q and K to note a Sylow 3-subgroup
and a cyclic subgroup of order g — 1 of 2G3(q), respectively.

Lemma 2.1 (/6]) Let T < 2G3(q) and T be mazimal in 2Ga(q). Then
either T is conjugate to Ps(l) = 2G2(3') for some divisor ! of 2n+1, or T
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is conjugate to one of the subgroups P; in Table 1.

Table 1

Group  Structure Remarks
P Q:K The normaliser of Q in *G(q)
P, (Z3 x D(g41y72) : Z3  The normaliser of a fours-group
P Z3 x PSL(2,q) An involution centraliser
Py Za+t+1 ' Ze The normaliser of Zg4t41
Ps Zg—t41: Zg The normaliser of Z,_;41

Lemma 2.2 ([10]) Let G = 2Fy(¢%), ¢*> = 22"*1 n > 1. Then every
mazimal subgroup of G is conjugate to one of the following:

(1) Py = [¢*%] : (PSL(2,4%) x (¢* - 1));

(2) P2 = [¢%] : (CBa(g?) X (¢® - 1);

(3) SU(3,¢°) : Zy;

(4) (Zgpsr % Zay1) : GL(2,3);

(5) (Zqﬁ...\/iq.pl X Zqz_\/iq.;.l) : [96], if ¢ > 8;

(6) (Zg24 /2041 X Zgpy3gr1) * (965

(1) (Zgs_ /203 442 v3g1) * Z12;

(8) (Zq‘+v’§q3+q’+\/§q+1) RAth

(9) PGU (3,4%) : Z;

(10) >Ba(q?) : Z5;

(11) Ba(q?) : Z»;

(12) 2Fy(g5), where g§ = 2>™*! and 224L be prime.

Lemma 2.3 ({8]) Let T =T(q) be an ezceptional simple group of Lie type
over GF(q), and let G be a group with T QG < Aut(T). Suppose that M
is a mazimal subgroup of G not containing T. Then one of the following
holds:

(1) |M| < ¢¥|G : T|, where ¢* is defined in Table 2

(2) TN M is a parabolic subgroup of T.

(8) TN M is as Table 2.

Table 2
T F TnM condition
“‘Gy(q) ¢°  none q = 32"+ >97

‘Fa(q®) ¢*7 L(3,3): 72, L(2,25) q=2

Lemma 2.4 ([5]) Let G and D = (P,B) be a group and a design, and
G < Aut(D) be block transitive, point-primitive but not flag-transitive. Let
Soc(G) =T. Then
v
ITI< 3 IT2- 16 T,

where o € P, A is the length of the longest suborbit of G on P.
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3 Proof of the Main Theorem

Proposition 3.1 Let D be 2—(v, 13, 1) design, G be block transitive, point
primitive but not flag transitive. Then v = 156by + 1.

Proof. Let by = (b,v), b2 = (b,v — 1), ky = (k,v), k2 = (k,v — 1). Obvi-
ously,

k= klkz, b= blbz, r= b2k2, v= blkl.
Since k = 13, we get k; = 1. Otherwise, k | v, by (8], G is flag transitive, a
contradiction. Thus v = k(k — 1)bg + 1 = 156b2 + 1.
Proposition 3.2 Let D be 2—(v,13, 1) design, G be block transitive, point
primitive but not flag transitive and |T'| be even. Then |T| < 79|Tu|?|G : T)|.
Proof. Let B = {1,2,---,13} € B. Then the structure of G2, the rank
and subdegree of G do not occur:

Type of GB Rank of G Subdegree of G
156

e N,
(1) 157 1)b2s"' yb2

Otherwise, |GB| = 1 is odd and |B| = 13. We have |Gp| and b; are odd.
Since v = 156b; + 1 = b; and b = byby, then b is odd and |G| = b|Gp| is
also odd, a contradiction with |T'| be even. Thus A > 2b;. By Lemma 2.4
and Proposition 3.1,

|7
|Taf?

15602 + 1

: <
IG:T| < 2by

G :T| <79G: T).

<5-1G: T

v
&K
—2b2

>l

Now we may prove our main theorem.

Suppose that Soc(G) = 2Ga(g) = T. Then 2G2(q) I G < Aut(2Ga(g)).
We have G = T : (z), where z € Out(T’), the outer automorphisms group of
T which may be generated by an automorphism of field. We may assume
that z is an automorphism of field. Set o(z) = m, then m | (2n + 1).
Obviously, |2G2(g)| = ¢®(¢® + 1)(¢ — 1). By [1] and k = 13, G is not flag
transitive. Since G is point primitive, G, (& € P) is the maximal subgroup
of G, T is block transitive in D. Hence M = G, satisfies one of the two
cases in Lemma 2.3, We will rule out these cases one by one.

Case (1) [M| < ¢3|G: T|.

By Proposition 3.2, we have an upper bound of |T|,

IT| < 79|T|%|G : T| < 79¢%|G : T| = 79¢°m.

We get
g—1<79(2n+1).
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Let 2n +1 = s > 3, then 3° < 80s. Thus s = 3,5.

If s =3, then |2G2(3%)] =3°-23.7.13.19. 37. Since v = 1563 + 1 is
odd, then 23 | |T,,|. Clearly T, is contained in some maximal subgroups of
T. By Lemma 2.1, T,, & 2G3(3), (2§ X Dg11)/2) : Z3 or Z3 x PSL(2,q),
where g = 33.

(i) To = 2G2(3). We have

Ty, _3:2°-7-13-19.37

Tl -1= R — 1 = 6662330.

v—1=
By Proposition 3.1, 156b; = 6662330, a contradiction.
(1) T = (Z3 X Digy1y/2) : Z3. We have

17, 3%9.2%.7.13.19.37
T.] ~ 3.-28.7
By Proposition 3.1, 1565 = 59960978, a contradiction.
(#48) To = Zo x PSL(2,q). We have
1= 39.2%.7.13.19.37
- 33.28.7.13

— 1 = 59960978.

v—1=

— 1 = 512486.

v—1 o]
By Proposition 3.1, 156b, = 512486, a contradiction.

If s =5, then |2G2(3%)| = 3'%. (3% +1)). (3% —1). Since v = 156b,+1 is
odd, then 23 | |T,|. Clearly T, is contained in some maximal subgroups of
T. By Lemma 2.1, T, & 2G5(3), (23 x D(g41)/2) : Zs or Z3 x PSL(2,q),
where g = 3°. It is not difficult to exclude them by Proposition 3.1.

Case (2) TN M is a parabolic subgroup of 7.

By Lemma 2.1, the parabolic subgroup of 2Gy(q) is conjugate to QK.
Then the order of parabolic subgroup is ¢3(¢ — 1) and v = ¢® + 1. By
Proposition 3.1, we have g3 = v—1 = 156b, and so 156 | ¢°, a contradiction.

Suppose that Soc(G) = 2F4(¢®) = T. Then T 4G < Aut(T). We
have G =T : (z), where z € Out(T'), the outer automorphisms group of T
which may be generated by an automorphism of field. We may assume that
z is an automorphism of field. Set o(x) = f, then f | (2n + 1). Obviously,
[2Fa(q®)] = ¢®*(¢® — 1)(¢® +1)(¢® — 1)(¢** +1). By [1] and k = 13, G is
not flag transitive. Since G is point primitive, G, (a € P) is the maximal
subgroup of G, T is block transitive in D. Hence M = G, satisfies one of
the three cases in Lemma 2.3. We will rule out these cases one by one.

Case (1) (M| < ¢®|G: T|. :

By Proposition 3.2, we have an upper bound of |T,

IT| < 79|Ta|?|G : T| < 79¢*% f.
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We get
g (q® - 1)(¢® + 1)(¢® — 1)(¢" + 1) < 79¢" f < 79¢%3¢?,

that is
(g-1)2<19.

Thus g2 = 2% or 2% and T = 2F;(25) or 2F(2%). Since v = 156b;+1 is odd,
then |T,| contains a Sylow 2-subgroup of T'. Clearly T, is contained in some
maximal subgroups of T. By Lemma 2.2, T, = T;, where T; < Pi(i = 1, 2).
Then v | (25 — 1)(215 + 1)(2%° — 1)(2%° + 1) or v | (23 — 1)(2% + 1)(2!2 -
1)(2'® 4 1). By Proposition 3.1 and rather long and repetitive numerical
calculations, we get a contradiction.

Case (2) TN M = L(3,3) : Z,, or L(2,25), if ¢ = 2.

Obviously, |T| =2'2-3%.52.13 and v = |T: T,| = 2%- 52 or 25 3. By
Proposition 3.1, we have 156 | 26 - 52 or 156 | 2° - 3, a contradiction.

Case (3) TN M is a parabolic subgroup of T'.

By Lemma 2.2, the parabolic subgroup of 2Fy(q?) is conjugate to P; or
P,. Then the order of parabolic subgroup is ¢2*(g%> —1)%(g? +1) or ¢**(¢% -
1)%(g*+1). We get v = (¢*+1)(¢°+1)(¢*%+1) or (¢* +1)(¢® +1)(¢** +1).
By Proposition 3.1, we have 39 | (¢'® + ¢ +¢2+¢® +¢®+¢> +1) or
39| (g8 + ¢ + 2 +¢'° + ¢S +¢* +1). But g1+ ¢M + g2+ ¢ +¢° +
¢®+1=1(mod3) and ¢'® +q'® +¢'2+¢°+¢%+¢* +1 = 1(mod3). Thus
3@+ +a% +P+¢°+g? +1) or 31 (¢ +"+¢"2 +¢ 0+ +4" +1),
a contradiction.
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