The 2-(v,13,1) designs with block transitive automorphism *

Shaojun Dai^{1†}and Ruihai Zhang²

¹Department of Mathematics, Tianjin Polytechnic University, 399 Binshuixi Road Xiqing District, Tianjin, 300387, P. R. China

²Department of Mathematics, Tianjin University of Science and Technology Tianjin, 300457, P. R. China

Abstract

This article is a contribution to the study of the automorphism groups of 2-(v,k,1) designs. Let $\mathcal D$ be 2-(v,13,1) design and suppose that G is a group of automorphisms of $\mathcal D$ which is block transitive and point primitive. Then Soc(G), the socle of G, is not isomorphic to ${}^2G_2(q)$ or to ${}^2F_4(q^2)$ for any prime power q.

MSC: 05B05; 20B25

Keywords: block transitive; design; point primitive

1 Introduction

A 2 - (v, k, 1) design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is a pair consisting of a finite set \mathcal{P} of v points and a collection \mathcal{B} of k-subsets of \mathcal{P} , called blocks, such that any 2-subsets of \mathcal{P} is contained in exactly one block. We will always assume that 2 < k < v.

Let $G \leq Aut(\mathcal{D})$ be a group of automorphisms of a 2-(v,k,1) design \mathcal{D} . Then G is said to be block transitive on \mathcal{D} if G is transitive on \mathcal{B} and is said to be point transitive(point primitive on \mathcal{D} if G is transitive (primitive) on \mathcal{P} . A flag of \mathcal{D} is a pair consisting of a point and a block through that point. Then G is flag transitive on \mathcal{D} if G is transitive on the set of flags.

The classification of block transitive 2 - (v, 3, 1) designs was completed about thirty years ago (see [2]). In [3], Camina and Siemons classified 2 - (v, 4, 1) designs with a block transitive, solvable group of automorphisms.

^{*}Supported by the NNSFC (Grant No. 10871205)and the Research Fund of Tianjin Polytechnic University.

[†]Corresponding author: daishaojun1978@sina.com.

Li classified 2-(v,4,1) designs admitting a block transitive, unsolvable group of automorphisms (see [7]). Tong and Li [12] classified 2-(v,5,1) designs with a block transitive, solvable group of automorphisms. Han and Li [4] classified 2-(v,5,1) designs with a block transitive, unsolvable group of automorphisms. Liu [9] classified 2-(v,k,1) (where k=6,7,8,9,10) designs with a block transitive, solvable group of automorphisms. In [5], Han and Ma classified 2-(v,11,1) designs with a block transitive classical simple groups of automorphisms.

This article is a contribution to the study of the automorphism groups of 2-(v,k,1) designs. Let \mathcal{D} be 2-(v,13,1) design, $G \leq Aut(D)$ be block transitive and point primitive. We prove that following theorem.

Main Theorem Let \mathcal{D} be 2-(v,13,1) design and suppose that G is a group of automorphisms of \mathcal{D} which is block transitive and point primitive. Then Soc(G), the socle of G, is not isomorphic to ${}^2G_2(q)$ or to ${}^2F_4(q^2)$ for any prime power q.

2 Preliminary Results

Let \mathcal{D} be a 2-(v,k,1) design defined on the point set \mathcal{P} and suppose that G is an automorphism group of \mathcal{D} that acts transitively on blocks. For a 2-(v,k,1) design, as usual, b denotes the number of blocks and r denotes the number of blocks through a given point. If B is a block, G_B denotes the setwise stabilizer of B in G and $G_{(B)}$ is the pointwise stabilizer of B in G. Also, G^B denotes the permutation group induced by the action of G_B on the points of B, and so $G^B \cong G_B/G_{(B)}$.

The Ree groups ${}^2G_2(q)$ form an infinite family of simple groups of Lie type, and were defined in [11] as subgroups of GL(7,q). Let GF(q) be finite finite field of q elements, where $q=3^{2n+1}$ for some positive integer $n\geq 1$. Set $t=3^{n+1}$ so that $t^2=3q$. We give the following information about subgroups of ${}^2G_2(q)$. For each l dividing 2n+1, ${}^2G_2(3^l)$ denotes the subgroup of ${}^2G_2(q)$ consisting of all matrices in ${}^2G_2(q)$ with entries in subfield of 3^l . We use the symbols Q and K to note a Sylow 3-subgroup and a cyclic subgroup of order q-1 of ${}^2G_2(q)$, respectively.

Lemma 2.1 ([6]) Let $T \leq {}^2G_2(q)$ and T be maximal in ${}^2G_2(q)$. Then either T is conjugate to $P_6(l) = {}^2G_2(3^l)$ for some divisor l of 2n + 1, or T

is conjugate to one of the subgroups P_i in Table 1.

Table 1

Group	Structure	Remarks
$\overline{P_1}$	Q:K	The normaliser of Q in ${}^2G_{(q)}$
P_{2}	$(Z_2^2 \times D_{(q+1)/2}) : Z_3$ $Z_2 \times PSL(2,q)$	The normaliser of a fours-group
P_3	$Z_2 \times PSL(2,q)$	An involution centraliser
P_4	$Z_{q+t+1}:Z_6$	The normaliser of Z_{q+t+1}
P_5	$Z_{q-t+1}:Z_6$	The normaliser of Z_{q-t+1}

Lemma 2.2 ([10]) Let $G = {}^{2}F_{4}(q^{2}), q^{2} = 2^{2n+1}, n \geq 1$. Then every maximal subgroup of G is conjugate to one of the following:

- (1) $P_1 = [q^{22}] : (PSL(2, q^2) \times (q^2 1));$
- (2) $P_2 = [q^{20}] : (^2B_2(q^2) \times (q^2 1));$
- (3) $SU(3,q^2): Z_2$;
- (4) $(Z_{a^2+1} \times Z_{a^2+1}) : GL(2,3);$
- $\begin{array}{l} (5) \; (Z_{q^2-\sqrt{2}q+1} \times Z_{q^2-\sqrt{2}q+1}) : [96], \; if \; q^2 > 8; \\ (6) \; (Z_{q^2+\sqrt{2}q+1} \times Z_{q^2+\sqrt{2}q+1}) : [96]; \\ (7) \; (Z_{q^4-\sqrt{2}q^3+q^2-\sqrt{2}q+1}) : Z_{12}; \end{array}$

- (8) $(Z_{q^4+\sqrt{2}q^3+q^2+\sqrt{2}q+1}): Z_{12};$
- (9) $PGU(3,q^2): Z_2;$
- (10) ${}^{2}B_{2}(q^{2}): Z_{2};$
- (11) $B_2(q^2): Z_2;$
- (12) ${}^{2}F_{4}(q_{0}^{2})$, where $q_{0}^{2}=2^{2m+1}$ and $\frac{2n+1}{2m+1}$ be prime.

Lemma 2.3 ([8]) Let T = T(q) be an exceptional simple group of Lie type over GF(q), and let G be a group with $T \subseteq G \subseteq Aut(T)$. Suppose that M is a maximal subgroup of G not containing T. Then one of the following holds:

- (1) $|M| < q^k |G:T|$, where q^k is defined in Table 2;
- (2) $T \cap M$ is a parabolic subgroup of T.
- (3) $T \cap M$ is as Table 2.

Table 2

14010 2			
\overline{T}	q^k	$T\cap M$	condition
$^2G_2(q)$	q^3	none	$q = 3^{2m+1} \ge 27$
${}^{2}F_{4}(q^{2})$	q^{24}	$L(3,3): Z_2 \ L(2,25)$	q=2

Lemma 2.4 ([5]) Let G and $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ be a group and a design, and $G \leq Aut(\mathcal{D})$ be block transitive, point-primitive but not flag-transitive. Let Soc(G) = T. Then

$$|T| \le \frac{v}{\lambda} \cdot |T_{\alpha}|^2 \cdot |G:T|,$$

where $\alpha \in \mathcal{P}$, λ is the length of the longest suborbit of G on \mathcal{P} .

3 Proof of the Main Theorem

Proposition 3.1 Let \mathcal{D} be 2-(v,13,1) design, G be block transitive, point primitive but not flag transitive. Then $v = 156b_2 + 1$.

Proof. Let $b_1 = (b, v)$, $b_2 = (b, v - 1)$, $k_1 = (k, v)$, $k_2 = (k, v - 1)$. Obviously,

$$k = k_1 k_2, b = b_1 b_2, r = b_2 k_2, v = b_1 k_1.$$

Since k = 13, we get $k_1 = 1$. Otherwise, $k \mid v$, by [8], G is flag transitive, a contradiction. Thus $v = k(k-1)b_2 + 1 = 156b_2 + 1$.

Proposition 3.2 Let \mathcal{D} be 2-(v,13,1) design, G be block transitive, point primitive but not flag transitive and |T| be even. Then $|T| \leq 79|T_{\alpha}|^2|G:T|$.

Proof. Let $B = \{1, 2, \dots, 13\} \in \mathcal{B}$. Then the structure of G^B , the rank and subdegree of G do not occur:

Type of
$$G^B$$
 Rank of G Subdegree of G

$$\langle 1 \rangle \qquad 157 \qquad 1, \overbrace{b_2, \cdots, b_2}^{156}$$

Otherwise, $|G^B|=1$ is odd and |B|=13. We have $|G_B|$ and b_2 are odd. Since $v=156b_2+1=b_1$ and $b=b_1b_2$, then b is odd and $|G|=b|G_B|$ is also odd, a contradiction with |T| be even. Thus $\lambda \geq 2b_2$. By Lemma 2.4 and Proposition 3.1,

$$\frac{|T|}{|T_{\alpha}|^2} \leq \frac{v}{\lambda} \cdot |G:T| \leq \frac{v}{2b_2} \cdot |G:T| \leq \frac{156b_2 + 1}{2b_2} \cdot |G:T| \leq 79|G:T|.$$

Now we may prove our main theorem.

Suppose that $Soc(G) = {}^2G_2(q) = T$. Then ${}^2G_2(q) \le G \le Aut({}^2G_2(q))$. We have $G = T : \langle x \rangle$, where $x \in Out(T)$, the outer automorphisms group of T which may be generated by an automorphism of field. We may assume that x is an automorphism of field. Set $\circ(x) = m$, then $m \mid (2n+1)$. Obviously, $|{}^2G_2(q)| = q^3(q^3+1)(q-1)$. By [1] and k=13, G is not flag transitive. Since G is point primitive, G_{α} ($\alpha \in \mathcal{P}$) is the maximal subgroup of G, T is block transitive in \mathcal{D} . Hence $M = G_{\alpha}$ satisfies one of the two cases in Lemma 2.3. We will rule out these cases one by one.

Case (1) $|M| < q^3|G:T|$.

By Proposition 3.2, we have an upper bound of |T|,

$$|T| < 79|T_{\alpha}|^{2}|G:T| < 79q^{6}|G:T| = 79q^{6}m.$$

We get

$$q-1 < 79(2n+1)$$
.

Let $2n + 1 = s \ge 3$, then $3^s < 80s$. Thus s = 3, 5.

If s=3, then $|{}^2G_2(3^3)|=3^9\cdot 2^3\cdot 7\cdot 13\cdot 19\cdot 37$. Since $v=156b_2+1$ is odd, then $2^3\mid |T_{\alpha}|$. Clearly T_{α} is contained in some maximal subgroups of T. By Lemma 2.1, $T_{\alpha}\cong {}^2G_2(3)$, $(Z_2^2\times D_{(q+1)/2}):Z_3$ or $Z_2\times PSL(2,q)$, where $q=3^3$.

(i) $T_{\alpha} \cong {}^{2}G_{2}(3)$. We have

$$v-1 = \frac{|T|}{|T_{\alpha}|} - 1 = \frac{3^9 \cdot 2^3 \cdot 7 \cdot 13 \cdot 19 \cdot 37}{3^3 \cdot 2^3 \cdot 7} - 1 = 6662330.$$

By Proposition 3.1, $156b_2 = 6662330$, a contradiction.

(ii) $T_{\alpha} \cong (Z_2^2 \times D_{(q+1)/2}) : Z_3$. We have

$$v - 1 = \frac{|T|}{|T_{\alpha}|} - 1 = \frac{3^9 \cdot 2^3 \cdot 7 \cdot 13 \cdot 19 \cdot 37}{3 \cdot 2^3 \cdot 7} - 1 = 59960978.$$

By Proposition 3.1, $156b_2 = 59960978$, a contradiction.

(iii) $T_{\alpha} \cong Z_2 \times PSL(2,q)$. We have

$$v-1 = \frac{|T|}{|T_{\alpha}|} - 1 = \frac{3^9 \cdot 2^3 \cdot 7 \cdot 13 \cdot 19 \cdot 37}{3^3 \cdot 2^3 \cdot 7 \cdot 13} - 1 = 512486.$$

By Proposition 3.1, $156b_2 = 512486$, a contradiction.

If s=5, then $|{}^2G_2(3^5)|=3^{15}\cdot(3^{15}+1)\cdot(3^5-1)$. Since $v=156b_2+1$ is odd, then $2^3\mid |T_\alpha|$. Clearly T_α is contained in some maximal subgroups of T. By Lemma 2.1, $T_\alpha\cong {}^2G_2(3), (Z_2^2\times D_{(q+1)/2}):Z_3$ or $Z_2\times PSL(2,q)$, where $q=3^5$. It is not difficult to exclude them by Proposition 3.1.

Case (2) $T \cap M$ is a parabolic subgroup of T.

By Lemma 2.1, the parabolic subgroup of ${}^2G_2(q)$ is conjugate to QK. Then the order of parabolic subgroup is $q^3(q-1)$ and $v=q^3+1$. By Proposition 3.1, we have $q^3=v-1=156b_2$ and so $156 \mid q^3$, a contradiction.

Suppose that $Soc(G) = {}^2F_4(q^2) = T$. Then $T \leq G \leq Aut(T)$. We have $G = T : \langle x \rangle$, where $x \in Out(T)$, the outer automorphisms group of T which may be generated by an automorphism of field. We may assume that x is an automorphism of field. Set $\circ(x) = f$, then $f \mid (2n+1)$. Obviously, $|{}^2F_4(q^2)| = q^{24}(q^2-1)(q^6+1)(q^8-1)(q^{12}+1)$. By [1] and k=13, G is not flag transitive. Since G is point primitive, G_{α} ($\alpha \in \mathcal{P}$) is the maximal subgroup of G, G is block transitive in G. Hence G is a satisfies one of the three cases in Lemma 2.3. We will rule out these cases one by one.

Case (1) $|M| < q^{24}|G:T|$.

By Proposition 3.2, we have an upper bound of |T|,

$$|T| < 79|T_{\alpha}|^{2}|G:T| < 79q^{48}f.$$

We get

$$q^{24}(q^2-1)(q^6+1)(q^8-1)(q^{12}+1) < 79q^{48}f < 79q^{48}q^2,$$

that is

$$(q-1)^2 < 79.$$

Thus $q^2=2^5$ or 2^3 and $T={}^2F_4(2^5)$ or ${}^2F_4(2^3)$. Since $v=156b_2+1$ is odd, then $|T_{\alpha}|$ contains a Sylow 2-subgroup of T. Clearly T_{α} is contained in some maximal subgroups of T. By Lemma 2.2, $T_{\alpha}\cong T_i$, where $T_i\leq P_i(i=1,2)$. Then $v\mid (2^5-1)(2^{15}+1)(2^{20}-1)(2^{30}+1)$ or $v\mid (2^3-1)(2^9+1)(2^{12}-1)(2^{18}+1)$. By Proposition 3.1 and rather long and repetitive numerical calculations, we get a contradiction.

Case (2) $T \cap M = L(3,3) : \mathbb{Z}_2$, or L(2,25), if $q^2 = 2$.

Obviously, $|T| = 2^{12} \cdot 3^3 \cdot 5^2 \cdot 13$ and $v = |T| \cdot T_{\alpha}| = 2^6 \cdot 5^2$ or $2^5 \cdot 3$. By Proposition 3.1, we have $156 \mid 2^6 \cdot 5^2$ or $156 \mid 2^5 \cdot 3$, a contradiction.

Case (3) $T \cap M$ is a parabolic subgroup of T.

By Lemma 2.2, the parabolic subgroup of ${}^2F_4(q^2)$ is conjugate to P_1 or P_2 . Then the order of parabolic subgroup is $q^{24}(q^2-1)^2(q^2+1)$ or $q^{24}(q^2-1)^2(q^4+1)$. We get $v=(q^4+1)(q^6+1)(q^{12}+1)$ or $(q^2+1)(q^6+1)(q^{12}+1)$. By Proposition 3.1, we have $39\mid (q^{18}+q^{14}+q^{12}+q^8+q^6+q^2+1)$ or $39\mid (q^{18}+q^{16}+q^{12}+q^{10}+q^6+q^4+1)$. But $q^{18}+q^{14}+q^{12}+q^8+q^6+q^6+q^6+1$ is $q^{18}+q^{14}+q^{12}+q^8+q^6+q^6+q^6+1$ in $q^{18}+q^{14}+q^{12}+q^8+q^6+q^2+1$ or $q^{18}+q^{16}+q^{14}+q^{12}+q^{16}+q^{14}+q^{$

References

- F. Buekenhout, A. Delandtsheer, J. Doyen, P. Kleidman, M. W. Liebeck and J. Saxl, Linear spaces with flag transitive automorphism groups. Geom. Dedicata, 1990, 36: 89-94.
- [2] P. Calpham, Steiner system with block transitive automorphism groups, *Discrete Math.*, 1976, 14: 121-131.
- [3] A. Camina and J. Siemons, Block-transitive automorphism groups of 2-(v, k, 1) design, J. Combin. Theory Ser. A, 1989, 51: 268-276.
- [4] G. G. Han, H. L. Li, Unsolvable block transitive automorphism groups of 2 (v, 5, 1) designs, J. Combin. Theory Ser. A., 2007, 114:77-96.
- [5] G. G. Han, C. G. Ma, Block transitive 2 (v, 11, 1) design and classical simple groups, *Advances in Math.*, 2010, 39(3): 319-330.

- [6] P. B. Kleidman, The maximal subgroups of the Chevally groups ${}^2G_2(q)$ with q odd, the Ree groups ${}^2G_2(q)$, and their automorphism groups, J. Algebra, 1988, 117: 30-71.
- [7] H. L. Li, On block-transitive 2-(v, 4, 1) designs, J. Combin. Theory Ser. A, 1995, 69: 115-124.
- [8] M. Liebeck, J. Saxl, On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proc. London Math. Soc., 1987, 55: 299-330.
- [9] W. J. Liu, Block transitive 2 (v, k, 1) designs, *Ph.D. Thesis*, Zhejiang University, 1998.
- [10] G. Malle, The maximal subgroups of ${}^2F_4(q^2)$, J. Algebra, 1991, 139: 52-69.
- [11] R. Ree, A family of simple groups associated with the simple Lie algebra of type (G_2) , Amer. J. Math., 1961, 83: 432-462.
- [12] W. Tong, H. L. Li, Solvable block transitive automorphism groups of 2 (v, 5, 1) designs, *Discrete Math.*, 2003, 260: 267-273.