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Abstract

In this paper, we introduced the notion of f-derivations, and considered the prop-
erties of f-derivations of lattice implication algebras. We give an equivalent condition
to be isotone f-derivation in a lattice implication algebra. Also, we characterized the
fixed set Fiza(L) and Kerd by f-derivations. Moreover, we introduced the normal
filter and obtained some properties of normal filters in lattice implication algebras.
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1. Introduction

In order to research a logical system whose propositional value is given
in a lattice. Y. Xu [6] proposed the concept of lattice implication algebras,
and some researchers have studied their properties and the corresponding
logic systems. Also, in [7], Y. Xu and K. Y. Qin discussed the properties
lattice H implication algebras, and gave some equivalent conditions about
lattice H implication algebras. Y. Xu and K. Y. Qin [8] introduced the
notion of filters in a lattice implication, and investigated their properties.
In this paper, we introduced the notion of f-derivations, and considered
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the properties of f-derivations of lattice implication algebras. We give
an equivalent conditivn to he isotone f-derivation in a lattice implication
algebra. Also, we characterized the fixed set Fizg(L) and Kerd by f-
derivations. Moreover, we introduced the normal filter and obtained some
properties of normal filters in lattice implication algebras.

2. Preliminary

A lattice implication algebra is an algebra (L; A, V, 1, =, 0, 1) of type
(2,2,1,2,0,0), where (L; A,V,0,1) is a bounded lattice, “7” is an order-
reversing involution and “ — ” is a binary operation, satisfying the following
axioms:

() x> (o 2)=y—(z—z)
2 z—-z=1

1) z—-y=y -

) zoy=y—ar=1=2>z=y.
(I5) (x—=y)=y=(y—z)—>=
(L1) (zVvy)oz=(r = 2)A(y = 2).
(L2) (zAy) o z=(x—2)V(y > z).

for all z,y,2 € L. If L satisfies conditions (I1) — (I5), we say that L is a
quasi lattice implication algebra. A lattice implication algebra L is called a
lattice H implication algebra if it satisfiess zVy V ((x Ay) = 2) =1 for all
z,y,2 € L.

In the sequel the binary operation “ — ” will be denoted by juxtaposition.
We can define a partial ordering “ < on a lattice implication algebra L
byx <yifandonlyifr 2 y=1.

In a lattice implication algebra L, the following hold (see [6]):
ul)O0—-oz=L1z=zandx—->1=1

(W2 z-oy<(y—=z)—(z—o2).

(u3) z<yimpliesy > z<zx > zandzozx< 2z Y.

(ud) 2’ =z - 0.

(ws) zvy=(x—y) =y
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() (y = x) =2 y) =zAy=((x > y)—-z).
(7)) z<(z>y)—>y.

(u8) (z-oy)viy—=x)=1.

In a lattice H implication algebra L, the following hold:
W) z-o(z—-y)=r-uy.
() z > (y—=2)=(2 > y) - (x> 2).

A subset F of a lattice implication algebra L is called a filter of L it it
satisfies:

(F1) 1e F.
(F2) ze Fanda > y€ Fimplyy € F forall 2,y € L.

Let L; and L, be lattice implication algebras. A map f: L; — Ly is called
an implication homomorphism if f(x — y) = f(z) = f(y) for all z,y € L;.

Definition 2.1 [5]. Let L bhe a lattice implication algebra. A map d :
L — L is a derivation of L if

d(x = y) = (z - d(y)) vV (d(z) = v)
for all z,y € L.

3. f-derivations of lattice implication algebras

In what follows, let /. denote a lattice implication algebra unless otherwise
specified.

Definition 3.1. Let L be a lattice implication algebra and let f be an

implication endomorphism of L. A map d: L — L is a f-derivation of L if
it satisfies the identity

d(r — y) = (f(z) = d(y)) V (d(z) = f(y))

for all z,y € L.
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Example 3.2. Let X = {z,y}. Then
L=P(X) = {0,{z}, {y}, X}.

Let 0 =0, a = {z}, b = {y}, 1 = X. Then L = {0,a,b,1} is a bounded
lattice with above Hasse diagram.
We can make an implication — on L such as

a—=b={z}°u{y}={y}u{y} =y} =0

Hence we have the operation table of the implication :

x| a - | 0 a b1
o1 0f1 11 1
al| b alb 1 b1
bl « bia a 1 1
110 170 a b 1

If we defineamap f: L — L by
0 ifz=0,a
f(m)—{l ifz=b1

then this map f is an implication endomorphism, and defineamapd: L —

L by
b ifz=0,a
d(z) = ’

(=) {1 if z = b,1.
Then it is easy to check that d is a f-derivation of lattice implication
algebra L. But d is not a derivation of L since d(b — 0) = d(a) = b,
but (b = d(0)) vV (d(h) 2 0)=(b—->bVv(l1—=>0)=1v0 =1, and so
d(b— 0) # (b — d(0)) Vv (d(b) — 0).

Example 3.3. In I’xample 3.2, define a map f: L — L by

0 ifxz=0
b ifz=a
fla) = a ifz=b
1 ifz=1.
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Then it is easy to check that f is an implication endomorphism of lattice
implication algebra L. Define amap d: L — L by

a ifz=0,b
d(z) = !
(z) {1 ifz=a,l.

Then it is easy to check that d is a f-derivation of lattice implication
algebra L. But d is not a derivation of L since d(a — 0) = d(b) = a,
but (@ — d(0)) vV (d(a) - 0) =(a 2 a)V(1 2 0)=1Vv0 =1, and so
d(a — 0) # (a = d(0)) v (d(a) — 0).

Also, define amap f: L — L by

f(a) = {o ifz=0,b

1 ifz=aq,l.

Then it is easy to check that f is an implication endomorphism of lattice
implication algebra . Define a map d: L — L by

1 ifr=a,l
d@) = {a ifz=0,b.

Then it is easy to check that d is a f-derivation of lattice implication
algebra L. But d is not a derivation of L since d(a — 0) = d(b) = a,
but (¢ = d(0)) vV (d(a) 2 0) =(a - a)V(l > 0)=1Vv0 =1, and so
d(a — 0) # (a — d(0)) v (d(a) — 0).

Proposition 3.4. Let d be a f-derivation of L. Then we have d(1) = 1.

Proof. Let d be a f-derivation of L. From (u8), we have

d(1) = d(1 = 1) = (f(1) = d(1)) v (d(1) = £(1))
=(1-d(1)Vv(dl)—-1)=d1)vi=1

since f(1) = 1.

Proposition 3.5. l.et d be a f-derivation of a lattice implication algebra
L. Then the following properties hold for all z,y € L.

(i) d(z) = d(z) V f(z).
(i) f(z) < d(z).
(ili) f(z)V £(y) < d(z) v d(y).
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(z)f = (z)p arvy am ‘7 > fi‘z (e 10} (R)f « (Z)p = (/i « x)p soysires N J]
*7 e1qa3[e uotgeot[dul 901198 JO UOTIRALIAP-{ B 3( p 19'| 4 ¢ uonisodoig

(1) woxy

(B)p « (2)f = ((A)p « (2)f) - 1=
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(B « @)p) A ((R)p  (1)f) = (A x)p
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(R} A (2)f
satjduat
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(@ A(2)p =

(@) 1A (@ 1)=
(®)f « (P A (@)« (1) =< 1)p=(2)p
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Proof. Let d be a f-derivation of L. If it satisfies d(z — y) = d(z) = f(¥)
for all z,y € L, we have

d(z) =d(1 = z) =d(1) = f(z)
— 15 /(@) = f(z).

This completes the proof.

Proposition 3.8. l.et d be a f-derivation of lattice implication algebra
L. If it satisfies f(z) » d(y) = d(z) = f(y) for all x,y € L, then d = f.

Proof. Let d be a f-derivation of L. If it satisfies f(z) — d(y) = d(z) —
f(y) for all z,y € L, we have

d(z) = d(1 = z) = f(1) - d(z)
=d(1) = f(z) =1 - f(z)
= f(z)

from Theorem 3.6. This completes the proof.

Definition 3.9. Let L be a lattice implication algebra and d be a f-
derivation on L. If » < y implies d(x) < d(y) for all z,y € L, then d is
called an isotone f-derivation of L.

Proposition 3.10. Let d be a f-derivation of a lattice implication algebra
L. Then the following conditions are equivalent:

(i) d is an isotone f-derivation.

(ii) d(z) vd(y) < d(z Vy) for all z,y € L.

Proof. (i)= (ii): Suppose that d is an isotone f-derivation. We know
that £ < zVy and y < z V y. Since d is isotone, d(z) < d(z V y) and
d(y) < d(z V y). Hence we obtain d(z) V d(y) < d(z V y).

(ii)=> (i): Suppose that d(z)vVd(y) < d(zVy) and z < y. Then we have
d(z) < d(z) v d(y) < d(z Vy) =d(y).

Let d be a f-derivation of L. Define a set Fizq(L) by
Iixg(L) := {x € L | d(z) = f(z)}

for all z € L. Clearly. 1 € Fizg(L).
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Proposition 3.11. Let L be a lattice implication algebra and let d be a
f-derivation on L. Then we have the following properties:

(i) If z € L and y € Fizq4(L), we have £ = y € Fizq(L),
(ii) Ifz € L and y € Fizy(L), xVy € Fizg(L).

Proof. (i) Let = € . and y € Fizq(L). Then we have d(y) = f(y). Hence

we get
d(z - y) = f(z) = d(y)

= f(z) = f(y)
=f(z - v)
from Theorem 3.6. T'his completes the proof.
(ii) Let z,y € Fixy(L). Then we get
d(z Vy) =d((z = y) = y)
= flz = y) = d(y)
= flx = y) = f(v)
=flzx>y)—>y)
= f(zVy)

from Theorem 3.6. This completes the proof.

Proposition 3.12. Let d be a f-derivation of a lattice implication algebra
L. Ifz <yand z € IYizg(L), we have y € Fizq(L).

Proof. Letz < yandz € Fizy(L). Thenwehavez = y =1, f(z) < f(y)
and d(z) = f(z). Thus we get

d(y) =d((1 > y) =d((z = y) = y)
=d((y 2 ) = 2) = f(y = z) = d(z)
= fly = 2) = f(z) = (f(y) = f(z)) = f(z)
= (f(x) = f(¥) = f(y) = f(=) V f(y) = f(),

from Theorem 3.6. Hence y € Fizy(L).

Definition 3.13. Let L be a lattice implication algebra and let d be a
f-derivation. Define » Kerd hy

Kerd = {z € L | d(z) = 1}.
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Proposition 3.14. Let d be a f-derivation of a lattice implication algebra
L. If d is an endomorphism of L, Kerd is a filter of L.

Proof. Clearly, 1 ¢ Kerd. Let z,z — y € Kerd. Then d(z) = 1 and
d(z — y) = 1. Hence we have

1=d(x = y) =d(z) = dy) =1 - d(y) =d(y),
which implies y € Kerd. '

Proposition 3.15. Let L be a lattice implication algebra and let d be a
f-derivation. If y € KNerd and for all x € L, then z Vy € Kerd.

Proof. Let d be a f-derivation and y € Kerd. Then we get d(y) = 1, and

¥ i@V y) = d((z = ¥) = 3) = f(z = y) > d()

=flzoy)-1=1
from Theorem 3.6. Hence we have z Vy € Kerd. This completes the proof.

Proposition 3.16. Let L be a lattice implication algebra and let d be a
f-derivation. If x < y and = € Kerd, we have y € Kerd.

Proof. Let r <y and z € Kerd. Then we get z — y = 1 and d(z) = 1,
and so

dly) =d() = y) =d((zx = y) = y) =d((y = z) - z)
=fly—2)=d)=fly—=z)->1
=1

from Theorem 3.6. lence we have y € Kerd.

Proposition 3.17. Let L be a lattice implication algebra and let d be a
f-derivation. If y € Kerd, we have z = y € Kerd for all z € L.

Proof. Let y € Kerd. Then d(y) = 1. Thus we have

d(z = y) = f(z) - d(y)
=f(z) =1
= l,

from Theorem 3.6. llence z — y € Kerd.
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Definition 3.18. l.et L be a lattice implication algebra. A non-empty
set F of L is called « normal filter if it satisfies the following conditions:
(i) 1 € F,
(i) z€e Land y ¢ Fimply z - y € F.

Example 3.19. In Example 3.2, let F = {1,a}. Then F is a normal filter
of a lattice implication algebra L.

Proposition 3.20. Let L be a lattice implication algebra and let d be a
f-derivation. Then Fizq(L) is a normal filter of L.

Proof. Clearly, 1 ¢ Fiz4(L). Let z € L and y € Fiz4(L). Then we have

d(y) = f(y), and so
d(x = y) = f(z) = d(y)

= f(z) = f(y)

= f(x - y)‘
which implies £ = v € Fizg(L) from Theorem 3.6. This completes the
proof. '

Proposition 3.21. Let L he a lattice implication algebra and let d be a
f-derivation. Then Kerd is a normal filter of L.

Proof. Clearly, 1 ¢ Kerd. Let z € L and y € Kerd. Then we have
d(y) =1, and so
d(z = y) = f(z) = d(y)
= f(z) =1
=1,
which implies * — y € Kerd from Theorem 3.6. Hence Kerd is a normal
filter of L.
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