On f-derivations of lattice implication algebras

Yong Ho Yon^a and Kyung Ho Kim^{b,*}
^a Innovation Center for Engineering Education, Mokwon University,
Daejeon 302-729, Korea

b.* Department of Mathematics, Korea National University of transportation, Chungju 380-702, Korea

Abstract

In this paper, we introduced the notion of f-derivations, and considered the properties of f-derivations of lattice implication algebras. We give an equivalent condition to be isotone f-derivation in a lattice implication algebra. Also, we characterized the fixed set $Fix_d(L)$ and Kerd by f-derivations. Moreover, we introduced the normal filter and obtained some properties of normal filters in lattice implication algebras.

Keywords: lattice implication algebra, f-derivation, normal filter, $Fix_d(L)$, Kerd.

AMS Mathematics Subject Classification (2000): 08A05, 08A30, 20L05

1. Introduction

In order to research a logical system whose propositional value is given in a lattice. Y. Xu [6] proposed the concept of lattice implication algebras, and some researchers have studied their properties and the corresponding logic systems. Also, in [7], Y. Xu and K. Y. Qin discussed the properties lattice H implication algebras, and gave some equivalent conditions about lattice H implication algebras. Y. Xu and K. Y. Qin [8] introduced the notion of filters in a lattice implication, and investigated their properties. In this paper, we introduced the notion of f-derivations, and considered

E-mail address:ghkim@ut.ac.kr b,*Corresponding author.

the properties of f-derivations of lattice implication algebras. We give an equivalent condition to be isotone f-derivation in a lattice implication algebra. Also, we characterized the fixed set $Fix_d(L)$ and Kerd by f-derivations. Moreover, we introduced the normal filter and obtained some properties of normal filters in lattice implication algebras.

2. Preliminary

A lattice implication algebra is an algebra $(L; \land, \lor, \lor, \lor, \rightarrow, 0, 1)$ of type (2,2,1,2,0,0), where $(L; \land, \lor, 0, 1)$ is a bounded lattice, " \prime " is an order-reversing involution and " \rightarrow " is a binary operation, satisfying the following axioms:

(I1)
$$x \to (y \to z) = y \to (x \to z)$$
.

(I2)
$$x \rightarrow x = 1$$
.

(I3)
$$x \to y = y' \to x'$$
.

(I4)
$$x \rightarrow y = y \rightarrow x = 1 \Rightarrow x = y$$
.

(I5)
$$(x \to y) \to y = (y \to x) \to x$$
.

(L1)
$$(x \lor y) \to z = (x \to z) \land (y \to z)$$
.

(L2)
$$(x \wedge y) \rightarrow z = (x \rightarrow z) \vee (y \rightarrow z)$$
.

for all $x,y,z\in L$. If L satisfies conditions (I1) – (I5), we say that L is a quasi lattice implication algebra. A lattice implication algebra L is called a lattice H implication algebra if it satisfies $x\vee y\vee ((x\wedge y)\to z)=1$ for all $x,y,z\in L$.

In the sequel the binary operation " \rightarrow " will be denoted by juxtaposition. We can define a partial ordering " \leq " on a lattice implication algebra L by $x \leq y$ if and only if $x \to y = 1$.

In a lattice implication algebra L, the following hold (see [6]):

(u1)
$$0 \to x = 1, 1 \to x = x \text{ and } x \to 1 = 1.$$

(u2)
$$x \to y \le (y \to z) \to (x \to z)$$
.

(u3)
$$x \le y$$
 implies $y \to z \le x \to z$ and $z \to x \le z \to y$.

(u4)
$$x' = x \to 0$$
.

(u5)
$$x \lor y = (x \to y) \to y$$
.

(u6)
$$((y \rightarrow x) \rightarrow y')' = x \land y = ((x \rightarrow y) \rightarrow x')'$$
.

(u7)
$$x \le (x \to y) \to y$$
.

(u8)
$$(x \rightarrow y) \lor (y \rightarrow x) = 1$$
.

In a lattice H implication algebra L, the following hold:

(u9)
$$x \to (x \to y) = x \to y$$
.

(u10)
$$x \rightarrow (y \rightarrow z) = (x \rightarrow y) \rightarrow (x \rightarrow z)$$
.

A subset F of a lattice implication algebra L is called a *filter* of L it it satisfies:

(F1)
$$1 \in F$$
.

(F2)
$$x \in F$$
 and $x \to y \in F$ imply $y \in F$ for all $x, y \in L$.

Let L_1 and L_2 be lattice implication algebras. A map $f: L_1 \to L_2$ is called an *implication homomorphism* if $f(x \to y) = f(x) \to f(y)$ for all $x, y \in L_1$.

Definition 2.1 [5]. Let L be a lattice implication algebra. A map $d: L \to L$ is a derivation of L if

$$d(x \to y) = (x \to d(y)) \lor (d(x) \to y)$$

for all $x, y \in L$.

3. f-derivations of lattice implication algebras

In what follows, let L denote a lattice implication algebra unless otherwise specified.

Definition 3.1. Let L be a lattice implication algebra and let f be an implication endomorphism of L. A map $d:L\to L$ is a f-derivation of L if it satisfies the identity

$$d(x \to y) = (f(x) \to d(y)) \lor (d(x) \to f(y))$$

for all $x, y \in L$.

Example 3.2. Let $X = \{x, y\}$. Then

$$L = \mathcal{P}(X) = \{\emptyset, \{x\}, \{y\}, X\}.$$

Let $0 = \emptyset$, $a = \{x\}$, $b = \{y\}$, 1 = X. Then $L = \{0, a, b, 1\}$ is a bounded lattice with above Hasse diagram.

We can make an implication \rightarrow on L such as

$$a \to b = \{x\}^C \cup \{y\} = \{y\} \cup \{y\} = \{y\} = b.$$

Hence we have the operation table of the implication:

\boldsymbol{x}	x'	\rightarrow	0	а	b	1
0	1	0				
a	b	\boldsymbol{a}	b	1	b	1
b	a	b	a	\boldsymbol{a}	1	1
1	()	1	0	\boldsymbol{a}	b	1

If we define a map $f: L \to L$ by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, a \\ 1 & \text{if } x = b, 1 \end{cases}$$

then this map f is an implication endomorphism, and define a map $d:L\to L$ by

$$d(x) = \begin{cases} b & \text{if } x = 0, a \\ 1 & \text{if } x = b, 1. \end{cases}$$

Then it is easy to check that d is a f-derivation of lattice implication algebra L. But d is not a derivation of L since $d(b \to 0) = d(a) = b$, but $(b \to d(0)) \lor (d(b) \to 0) = (b \to b) \lor (1 \to 0) = 1 \lor 0 = 1$, and so $d(b \to 0) \neq (b \to d(0)) \lor (d(b) \to 0)$.

Example 3.3. In Example 3.2, define a map $f: L \to L$ by

$$f(x) = \begin{cases} 0 & \text{if } x = 0 \\ b & \text{if } x = a \\ a & \text{if } x = b \\ 1 & \text{if } x = 1. \end{cases}$$

Then it is easy to check that f is an implication endomorphism of lattice implication algebra L. Define a map $d: L \to L$ by

$$d(x) = \begin{cases} a & \text{if } x = 0, b \\ 1 & \text{if } x = a, 1. \end{cases}$$

Then it is easy to check that d is a f-derivation of lattice implication algebra L. But d is not a derivation of L since $d(a \to 0) = d(b) = a$, but $(a \to d(0)) \lor (d(a) \to 0) = (a \to a) \lor (1 \to 0) = 1 \lor 0 = 1$, and so $d(a \to 0) \neq (a \to d(0)) \lor (d(a) \to 0)$.

Also, define a map $f: L \to L$ by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, b \\ 1 & \text{if } x = a, 1. \end{cases}$$

Then it is easy to check that f is an implication endomorphism of lattice implication algebra L. Define a map $d: L \to L$ by

$$d(x) = \begin{cases} 1 & \text{if } x = a, 1 \\ a & \text{if } x = 0, b. \end{cases}$$

Then it is easy to check that d is a f-derivation of lattice implication algebra L. But d is not a derivation of L since $d(a \to 0) = d(b) = a$, but $(a \to d(0)) \lor (d(a) \to 0) = (a \to a) \lor (1 \to 0) = 1 \lor 0 = 1$, and so $d(a \to 0) \neq (a \to d(0)) \lor (d(a) \to 0)$.

Proposition 3.4. Let d be a f-derivation of L. Then we have d(1) = 1.

Proof. Let d be a f-derivation of L. From (u8), we have

$$d(1) = d(1 \to 1) = (f(1) \to d(1)) \lor (d(1) \to f(1))$$

= $(1 \to d(1)) \lor (d(1) \to 1) = d(1) \lor 1 = 1$

since f(1) = 1.

Proposition 3.5. Let d be a f-derivation of a lattice implication algebra L. Then the following properties hold for all $x, y \in L$.

- (i) $d(x) = d(x) \vee f(x)$.
- (ii) $f(x) \leq d(x)$.
- (iii) $f(x) \lor f(y) \le d(x) \lor d(y)$.

Proof. (i) Let $x \in \mathbb{A}$. Then we have

$$((x)f \leftarrow (1)p)) \lor ((x)b \leftarrow (1)f) = (x \leftarrow 1)b = (x)b$$

$$((x)f \leftarrow (1)p)) \lor ((x)b \leftarrow (1)f) = (x \leftarrow 1)b = (x)b$$

$$((x) f \leftarrow I \land ((x)p \leftarrow I) =$$

$$(x)f \wedge (x)p =$$

$$(x)f \wedge (x)p =$$

(ii) From (i), we have

 $\mathsf{T} = \mathsf{T} \leftarrow ((x)f \leftarrow (x)p) = ((x)f \leftarrow (x)f) \leftarrow ((x)f \leftarrow (x)p) =$ $((x)f \leftarrow ((x)f \leftarrow (x)p)) \leftarrow (x)f = ((x)f \land (x)p) \leftarrow (x)f = (x)p \leftarrow (x)f$

which implies $f(x) \ge d(x)$.

səilqmi (iii) Since $f(x) \le d(x)$, we have $d(x) \to f(y) \le f(x) \to f(y)$, which

 $(x)p \leftarrow ((x)p \leftarrow (h)f) =$ $(h)f \leftarrow ((h)f \leftarrow (x)p) \geq (h)f \leftarrow ((h)f \leftarrow (x)f) = (h)f \wedge (x)f$

Similarly, from $f(y) \leq d(y)$, we have

 $(h)p \land (x)p = (x)p \leftarrow ((x)p \leftarrow (h)p) \ge (x)p \leftarrow ((x)p \leftarrow (h)f)$

Hence we obtain $f(x) \lor f(y) \le d(x) \lor d(y)$.

derivation on L. Then we have $d(x \to y) = f(x) \to d(y)$ for all $x, y \in L$. **Theorem 3.6.** Let L be a lattice implication algebra and let d be a f-

d(y) from Proposition 3.5 (ii) and (u3). Hence we get L. Then we have $d(x) \to f(y) \le d(x) \to d(y)$ and $d(x) \to d(y) \le f(x) \to d(y)$. **Proof.** Let d be a f-derivation on lattice implication algebra L and $x, y \in$

 $((h)f \leftarrow (x)p) \leftarrow (((h)f \leftarrow (x)p) \leftarrow ((h)p \leftarrow (x)f)) =$ $((h)f \leftarrow (x)p) \land ((h)p \leftarrow (x)f) = (h \leftarrow x)p$

 $((h)p \leftarrow (x)f) \leftarrow ((h)p \leftarrow (x)f) \leftarrow ((h)f \leftarrow (x)p) =$

 $(h)p \leftarrow (x)f = ((h)p \leftarrow (x)f) \leftarrow (h)f = (h)f \leftarrow (h)f$

.(61) mori

If it satisfies $d(x \to y) = d(x) \to f(y)$ for all $x, y \in L$, we have d(x) = f(x). Proposition 3.7. Let d be a f-derivation of lattice implication algebra L. **Proof.** Let d be a f-derivation of L. If it satisfies $d(x \to y) = d(x) \to f(y)$ for all $x, y \in L$, we have

$$d(x) = d(1 \rightarrow x) = d(1) \rightarrow f(x)$$
$$= 1 \rightarrow f(x) = f(x).$$

This completes the proof.

Proposition 3.8. Let d be a f-derivation of lattice implication algebra L. If it satisfies $f(x) \to d(y) = d(x) \to f(y)$ for all $x, y \in L$, then d = f.

Proof. Let d be a f-derivation of L. If it satisfies $f(x) \to d(y) = d(x) \to f(y)$ for all $x, y \in L$, we have

$$d(x) = d(1 \rightarrow x) = f(1) \rightarrow d(x)$$
$$= d(1) \rightarrow f(x) = 1 \rightarrow f(x)$$
$$= f(x)$$

from Theorem 3.6. This completes the proof.

Definition 3.9. Let L be a lattice implication algebra and d be a f-derivation on L. If $x \leq y$ implies $d(x) \leq d(y)$ for all $x, y \in L$, then d is called an *isotone* f-derivation of L.

Proposition 3.10. Let d be a f-derivation of a lattice implication algebra L. Then the following conditions are equivalent:

- (i) d is an isotone f-derivation.
- (ii) $d(x) \lor d(y) \le d(x \lor y)$ for all $x, y \in L$.

Proof. (i) \Rightarrow (ii): Suppose that d is an isotone f-derivation. We know that $x \leq x \vee y$ and $y \leq x \vee y$. Since d is isotone, $d(x) \leq d(x \vee y)$ and $d(y) \leq d(x \vee y)$. Hence we obtain $d(x) \vee d(y) \leq d(x \vee y)$.

(ii) \Rightarrow (i): Suppose that $d(x) \lor d(y) \le d(x \lor y)$ and $x \le y$. Then we have $d(x) \le d(x) \lor d(y) \le d(x \lor y) = d(y)$.

Let d be a f-derivation of L. Define a set $Fix_d(L)$ by

$$Fix_d(L) := \{ x \in L \mid d(x) = f(x) \}$$

for all $x \in L$. Clearly, $1 \in Fix_d(L)$.

Proposition 3.11. Let L be a lattice implication algebra and let d be a f-derivation on L. Then we have the following properties:

- (i) If $x \in L$ and $y \in Fix_d(L)$, we have $x \to y \in Fix_d(L)$,
- (ii) If $x \in L$ and $y \in Fix_d(L)$, $x \vee y \in Fix_d(L)$.

Proof. (i) Let $x \in L$ and $y \in Fix_d(L)$. Then we have d(y) = f(y). Hence we get

$$d(x \to y) = f(x) \to d(y)$$

$$= f(x) \to f(y)$$

$$= f(x \to y)$$

from Theorem 3.6. This completes the proof.

(ii) Let $x, y \in Fix_d(L)$. Then we get

$$d(x \lor y) = d((x \to y) \to y)$$

$$= f(x \to y) \to d(y)$$

$$= f(x \to y) \to f(y)$$

$$= f((x \to y) \to y)$$

$$= f(x \lor y)$$

from Theorem 3.6. This completes the proof.

Proposition 3.12. Let d be a f-derivation of a lattice implication algebra L. If $x \leq y$ and $x \in Fix_d(L)$, we have $y \in Fix_d(L)$.

Proof. Let $x \le y$ and $x \in Fix_d(L)$. Then we have $x \to y = 1$, $f(x) \le f(y)$ and d(x) = f(x). Thus we get

$$d(y) = d((1 \rightarrow y) = d((x \rightarrow y) \rightarrow y)$$

$$= d((y \rightarrow x) \rightarrow x) = f(y \rightarrow x) \rightarrow d(x)$$

$$= f(y \rightarrow x) \rightarrow f(x) = (f(y) \rightarrow f(x)) \rightarrow f(x)$$

$$= (f(x) \rightarrow f(y)) \rightarrow f(y) = f(x) \lor f(y) = f(y),$$

from Theorem 3.6. Hence $y \in Fix_d(L)$.

Definition 3.13. Let L be a lattice implication algebra and let d be a f-derivation. Define a Kerd by

$$Kerd = \{x \in L \mid d(x) = 1\}.$$

Proposition 3.14. Let d be a f-derivation of a lattice implication algebra L. If d is an endomorphism of L, Kerd is a filter of L.

Proof. Clearly, $1 \in Kerd$. Let $x, x \to y \in Kerd$. Then d(x) = 1 and $d(x \to y) = 1$. Hence we have

$$1 = d(x \rightarrow y) = d(x) \rightarrow d(y) = 1 \rightarrow d(y) = d(y),$$

which implies $y \in Kerd$.

Proposition 3.15. Let L be a lattice implication algebra and let d be a f-derivation. If $y \in Kerd$ and for all $x \in L$, then $x \vee y \in Kerd$.

Proof. Let d be a f-derivation and $y \in Kerd$. Then we get d(y) = 1, and so

$$d(x \lor y) = d((x \to y) \to y) = f(x \to y) \to d(y)$$

= $f(x \to y) \to 1 = 1$

from Theorem 3.6. Hence we have $x \lor y \in Kerd$. This completes the proof.

Proposition 3.16. Let L be a lattice implication algebra and let d be a f-derivation. If $x \leq y$ and $x \in Kerd$, we have $y \in Kerd$.

Proof. Let $x \leq y$ and $x \in Kerd$. Then we get $x \to y = 1$ and d(x) = 1, and so

$$d(y) = d(1 \rightarrow y) = d((x \rightarrow y) \rightarrow y) = d((y \rightarrow x) \rightarrow x)$$
$$= f(y \rightarrow x) \rightarrow d(x) = f(y \rightarrow x) \rightarrow 1$$
$$= 1$$

from Theorem 3.6. Hence we have $y \in Kerd$.

Proposition 3.17. Let L be a lattice implication algebra and let d be a f-derivation. If $y \in Kerd$, we have $x \to y \in Kerd$ for all $x \in L$.

Proof. Let $y \in Kerd$. Then d(y) = 1. Thus we have

$$d(x \to y) = f(x) \to d(y)$$
$$= f(x) \to 1$$
$$= 1.$$

from Theorem 3.6. Hence $x \to y \in Kerd$.

Definition 3.18. Let L be a lattice implication algebra. A non-empty set F of L is called a *normal filter* if it satisfies the following conditions:

- (i) $1 \in F$,
- (ii) $x \in L$ and $y \in F$ imply $x \to y \in F$.

Example 3.19. In Example 3.2, let $F = \{1, a\}$. Then F is a normal filter of a lattice implication algebra L.

Proposition 3.20. Let L be a lattice implication algebra and let d be a f-derivation. Then $Fix_d(L)$ is a normal filter of L.

Proof. Clearly, $1 \in Fix_d(L)$. Let $x \in L$ and $y \in Fix_d(L)$. Then we have d(y) = f(y), and so

$$d(x \to y) = f(x) \to d(y)$$
$$= f(x) \to f(y)$$
$$= f(x \to y),$$

which implies $x \to y \in Fix_d(L)$ from Theorem 3.6. This completes the proof.

Proposition 3.21. Let L be a lattice implication algebra and let d be a f-derivation. Then Kerd is a normal filter of L.

Proof. Clearly, $1 \in Kerd$. Let $x \in L$ and $y \in Kerd$. Then we have d(y) = 1, and so

$$d(x \to y) = f(x) \to d(y)$$
$$= f(x) \to 1$$
$$= 1.$$

which implies $x \to y \in Kerd$ from Theorem 3.6. Hence Kerd is a normal filter of L.

Acknowledgement The research was supported by a grant from the Academic Research Program of Korea National University of transportation in 2013.

References

- [1] L. Bolc and P. Borowik, Many-Valued Logic, Springer, Berlin, 1994.
- [2] Alev Firat, On f-derivations of BCC-algebras, Ars Combinatoria, XCVIIA (2010), 377-382.
- [3] J. Liu and Y. Xu. Filters and structure of lattice implication algebras, Chinese Science Bulletin 42(18) (1997), 1517-1520.
- [4] C. Prabpayak and U. Leerawat, On derivations of BCC-algebras, Kasetsart J. 43 (2009), 398-401.
- [5] S. D. Lee and K. H. Kim, On derivations of lattice implication algebras, (to appear in Ars Combinatoria)
- [6] Y. Xu, Lattice implication algebras, J. Southwest Jiaotong Univ. 1 (1993), 20-27.
- [7] Y. Xu and K. Y. Qin, Lattice H implication algebras and lattice implication algebra classes, J. Hebei Mining and Civil Engineering Institute 3 (1992), 139-143.
- [8] Y. Xu and K. Y. Qin, On filters of lattice implication algebras, J. Fuzzy Math. 1(2) (1993), 251-260.