Groups PSL(n,q) and 3 — (v, k, 1) designs *

Jianxiong Tang®®, Weijun Liu®! Jinhua Wang®
a. School of Mathematics and Statistics, Central South University,
Changsha, Hunan, 410075, P. R. China
b. Department of Education Science, Hunan First Normal University,
Changsha, Hunan, 410002, P. R. China
c. School of Science, Nantong University, Nantong, Jiangsu, 226007, P. R. China

Abstract

Let T = PSL(n,q) be a projective linear simple group, where n > 2,
g a prime power and (n,q) # (2,2) and (2,3). We classify all 3 — (v, k,1)
designs admitting an automorphism group G with T 9 G < Aut(T) and
no1
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1 Introduction

Let t,k,v and A be integers such that 0 <t < k < vand A > 0. Let X be
a v-set and Pi(X) denote the set of all k-subsets of X. A t — (v,k,)) design
is a pair D = (X, B) in which B is a collection of elements of Pc(X) (called
blocks) such that every t-subset of X appears in exactly A blocks. If B has
no repeated blocks, then it is called simple. If every t-subset of X is in fact a
block, i.e., the number of blocks is b = (}), the binomial coefficient, then the
design is called trivial. Here we are concerned only with simple and non-trivial
designs. An automorphism of D is a permutation ¢ on X such that o(B) € B
for each B € B. An automorphism group of D is a group whose elements are
automorphisms of D. Let G be a finite group acting on X. For z € X, the orbit
of z is G(z) = {gz|g € G} and the stabilizer of z is G, = {g € Glgz = z}.
It is well known that |G| = |G(z)||Gz|. Sometimes we use also € to denote
the orbit of x under G. Orbits of size |G| are called regular and the others are
called non-regular. If there is an z € X such that G(z) = X, then G is called
transitive on X. The action of G on X induces a natural action on P(X). If
this latter action is transitive, then G is called k-homogeneous. The flags of D
are the order pairs (z, B), where z is a point and B is a block containing z. A
group is flag-transitive if it is transitive on the set of flags; this is equivalent to
the assertion that the group is transitive on blocks (points) and the subgroup

*Supported by the NSFC (Grant No. 11271208 and 61272424) and the Research Founda-
tion of Education Bureau of Hunan Province of China (No. 08¢021).
tCorresponding author: wjliu6210@126.com

ARS COMBINATORIA 110(2013), pp. 217-226



fixing a block (point) is transitive on the points of that block (the blocks through
that point).

All 3 — (v, k, 1) designs which admit a flag-transitive automorphism group
were classified by M. Huber in {9]. The most interesting examples which occur
have an almost simple group with socle PSL(2, g) as group of automorphisms.
Moreover, In [8], M. Huber discussed the case where there is an almost simple
groups with socle PSL(n,q) acting on a 3 — (v,4,1) design. As a continuation
of his works, in this paper, we consider the case where there is an almost simple
group with socle PSL(n, q) acting on a 3 (v, k, 1) design. We get the following
theorem:

Theorem 1.1 Let D = (X,B) be a nontrivial simple 3 — (v, k,1) design and
G < Aut(D). If PSL(n,q) 9 G < Aut(PSL(n,q)) and v = gq—;"Tl with ¢ = p7,
where p is a prime and f o positive integer, then one of the following occurs:

1. If G is block-transitive, then G is flag-transitive, and

(a) D is isomorphic to a 3— (pf +1,p™+1,1) design whose points are the
elements of the projective line GF(p’) U {co} and whose blocks are
the images of GF(p™) U {oo} under PGL(2,p’) (resp. PSL(2,p%)
with f/m odd), and PSL(2,pf) < G < PT'L(2,p’), where m|f,

(b) D is isomorphic to a 3 — (g + 1,4,1) design whose points are the
elements of the projective line GF(q)U{oo} with ¢ =7 (mod 12) and
whose blocks are the images of {0,1,€,00} under PSL(2,q), where
€ is a primitive sizth root of unity in GF(q), and PSL(2,q) < G <
PEL(2,q),

2. If G is not block-transitive, then pf = 1 (mod 4), and D is isomorphic to a
3—(p/ +1,p™+1, 1) design with 2m|f, and PSL(2,p’) < G < PTL(2,p7),
B =TUT, where T = {GF(p™) U {00}}PSL2P’) and IV = BPSL2.9),
where B is a k-subset of GF(p’)U {00} with Ps(B) N {0,1,00}% = 0.

The second section contains some preliminary results about PSL(2,q) and
t—designs. In the third section we give the proof of the main theorem.

2 Preliminary Results

Let D= (X,B) be at — (v,k, A) design, and G < Aut(D). Let b denote the
number of blocks of D, and r the number of blocks that is incident with a fixed
point of D. Now, we introduce the following results which play an important
role in the proof of the main theorem.

Lemma 2.1 ([6]) Let D = (X, B) be at — (v,k,A) design. Then the following
holds:
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1. bk=wvr;
o My-1)...(v—t+1) |
2. r= (%—15...(::('—'2_52“ i
_ Av...(v-t+1)
3 b= w(k=t+1) -

Lemma 2.2 (2]) If D = (X,B) is a non-trivial Steiner t-design, then v —
t+12(k—t+2)(k—t+1)fort > 2. If equality holds, then (¢, k,v) =
(3,4,8),(8,6,22),(3,12,112),(4,7,23) or (5,8,24).

From now on, we let X := GF(g) U {00} with ¢ = p/, where p is a prime
and f a positive integer. The set of all mappings of the form: = = g—:—H with
a,b,¢c,d € GF(q), ad — bc being a square in GF(q) constitutes the projective
special linear group, PSL(2,4) on X. Let 7 be a mapping of the form: = — z?,
z € X. Then we use the notation PXL(2,q) to denote PSL(2,q) x (r). The
action of PEL(2, q) induces a natural action on Pi(X). It is well known that this
action is transitive on P3(.X) if and only if ¢ = 3 (mod 4). But in the case where
g=1 (mod 4), PXL(2,q) is not transitive on P3(X). In this case, we start with
a simple observation which is quite straightforward to verify: any 3-subset of X
belongs to A; = G({0,00,1}) or Az = G({0,00,6}), where G = PXL(2,q) and
0 is a primitive root of unity in GF(q).

The following lemma and perspective come from [5).

Lemma 2.3 Let k be a positive integer and consider the action of G := PSL(2, q)
on Pe(X). IfT is an orbit for this action then so is 6T, where 8 is a primitive
oot of unity in GF(q). Moreover, 8T =T.

Remark 2.4 There is a more general perspective by Lemma 2.3 as follows. Fiz
k > 4 and consider the induced action of PSL(2,q) on Pu(X). The set Pp(X)

is partitioned into orbits I'y, i = 1,...,m for some m, so that we have
m
P(X)=JT:
i=1

Let F = {I'1,T2,...,I'm}. Then the group GF(q)* acts on F as
v-I'=19l, fory € GF(q)",T € F.
Thus we can write

F=Ux,

where each F; is an orbit of F under GF(q)*. Furthermore, since the map
z — oz is an element of PSL(2,q), it follows that |F;| = 1 or 2. Hence each
orbit for the action described above gives us e simple 3-design with PSL(2,q)
acting as a group of automorphisms.
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The results contained in the following lemma are established in (7} and [11].

Lemma 2.5 Let ¢ = p/ with p a prime and f a positive integer, and d =
(2,9 — 1). Then the subgroups of PSL(2,q) are as follows:

1. Cyclic subgroups of order z where zi-"%;

. Dihedral subgroups of order 2z where zlg-:'a:l ;
. Aq whenp > 2 orp=2 and f even;

. Sy when ¢ — 1 =0 (mod 16);

As whenp =5 or ¢ —1=0 (mod 5);

T NN N

The semidirect product of the elementary abelian subgroup of order p™ and
the cyclic group of order z where m < f, z|9;—l, z{(p™ — 1) and z may be
I;

7. Subgroups PSL(2,p™) with m|f, and subgroups PGL(2,p™) with 2m|f.

We state that the sizes of orbits from the action of subgroups of PSL(2,q)
on the projective line X as follows. When ¢ = 3 (mod 4), P. J. Cameron, H. R.
Maimani, G. R. Omidi and B. Tayfeh-Rezaie has determined the sizes of orbits
in (3]. In [10}, M. Huber have determined the sizes of orbits with all cases. The
main techniques involve Cauchy-Frobenius-Burnside Lemma and the fact that
if Hy < Hy < G then the orbit of H; is a union of orbits from the action of H;.
In the following lemmas we suppose that H is a subgroup of PSL(2,q) and N,
denotes the number of orbits of size [.

Lemma 2.6 ([10]) Let H be the cyclic group of orderc > 1 and d = (2,9 — 1),
1. if c|(g +1)/d, then N, = (g + 1)/c,
2. if¢|(g - 1)/d, then Ny =2 and N, = (¢ — 1)/c,
3. ifc=p, then Ny =1 and N, = q/c.

Lemma 2.7 ([10]) Let H be the dihedral group of order 2c with c|(g+1)/d and
d=(2,9—1), wherec > 1. Then

1. for g=1 (mod 4)

(a) if c|(g + 1)/2, then N, = 2 and Npc = (¢ — 2¢c + 1)/(2c),

(b) if c|(g — 1)/2, then N = 1, N. = 2 and Nac = (g — 2c — 1)/(2¢),
unless ¢ = 2, in which case N =3 and Ny = (g — 5)/4.

2. for g=3 (mod 4)

(a) if cl(g+1)/2, then Noc = (g +1)/(2¢),
(b) if c|(qg — 1)/2, then Na =1 and Np. = (g — 1)/(2¢);
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3. for g=0 (mod 2)

(a) if c|(g+ 1), then N. =1 and N3¢ = (g — ¢+ 1)/(2¢),
(b) ifcl(g— 1), then N3 =1, N. =1 and Npc = (g — ¢~ 1)/(2¢).

Lemma 2.8 ([10]) Let H be isomorphic to As, and g =1 (mod 4). Then
ifq="5% e=1 (mod 2), then N¢ =1 and Ngo = (g — 5)/60,

if g =5% e =0 (mod 2), then Ng = 1, Nyg = 1 and Ngo = (g — 25)/60,
if 15|(q¢ + 1), then N3o = 1 and Neo = (g — 29)/60,

if 3|(g + 1) and 5|(g — 1), then Nig = 1,N3p = 1 and Ngo = (g — 41)/60,
. i 3|(g — 1) and 5|(q + 1), then Nag = 1, N3g = 1 and Ngo = (g — 49)/60,
if 15|(q — 1), then Nyg = 1,Ngo = 1, N3p = 1 and Ngy = (g — 61)/60,

if 3|q and 5|(g + 1), then Nyg =1 and Ngy = (¢ — 9)/60,

. if 3|q and 5|(g — 1), then Nyjg = 1,N12 =1 and Ny = (g — 21)/60.

RS ;™ e~

Lemma 2.9 ([10]) Let H be the elementary Abelian group of order p™ with
1<m < f, then Ny =1, and other orbits are regular.

Lemma 2.10 ([10)) Let H be a semidirect product of the elementary Abelian
group of order p™ and the cyclic group of order z > 1 where 1 < m < f,
z|(p™ — 1) and z|(q — 1)/d withd = (2,9 — 1), then Ny =1, Npm =1 and other
orbits are regular.

Lemma 2.11 Let H be PSL(2,p™) where m|f, then

(i) if f/m is odd, then Npm4; = 1 and other orbits are regular;

(i) if f/m is even, then Nymyy = Npmm_y3y = 1 and other orbits are
regular.

Moreover, the orbit of size p™ + 1 is GF(p™) U {o0}.

Proof. (i) and (ii) come from [10]. Since Npm4; = 1 and PSL(2,p™)
acts transitively on GF(p™) U {oo0}, it follows that the orbit of size p™ + 1 is
GF(p™) U {o0}.

Lemma 2.12 Let H bte PGL(2,p™) where 2m|f, then Npm ) = Npm(pm_1y =1
and other orbits are regular. Moreover, the orbit of size p™+1 is GF(p™)U{0c0}.

Proof. The proof is similar to that of Lemma 2.11.

The following lemma is useful in the proof of Theorem 1.1.
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Lemma 2.13 Let S,, be a symmetric group on the set X with |X|=n, and H
a subgroup of S,,. If|H|=n(n-1)(n—-2) orn(n—1)(n—-2)/2 with3 <n <5,
then H is transitive on X. If n = 6, then H & S5 or As, where A, denotes the
alternating group on X.

Proof. When n = 3 and 4, the lemma is obvious. If n = § and |H| =
n(n — 1)(n — 2), then H = As. If H is a subgroup of Ss of order 30, then
clearly H is not a subgroup of As since As is simple. So H must contain
an odd permutation and it can easily be shown that |[H N 45| = |H|/2 = 15
which is impossible. Thus H 2 As, and so the conclusion holds. If n = 6 and
|H| = n(n—1)(n—2) = 120, then H must contain odd permutations since Ag has
no any subgroups of order 120 by (4], and so H £ Ss. Note that the subgroups
of order 60 of S are isomorphic to As, and so if |H| = n(n — 1)(n — 2)/2 =60
then H = As. Thus the conclusion holds. O

3 The Proof of Main Theorem

Let D be a non-trivial simple 3 — (v, k,1) design, and T 9 G < Aut(T) with
a projective linear simple group T = PSL(n,q), where n > 2, ¢ a prime power
and (n,q) # (2,2),(2,3). We consider the natural action of G on the projective
space PG(n —1,q), v = -9;7‘}.
Lemma 3.1 Let D = (X, B) be a non-trivial simple 3 — (v, k,1) design, and
T = PSL(2,q), v=q+ 1. If TAG £ Aut(T) is 3-homogeneous on X and
G < Aut(D), then G is flag-transitive, and

1. D is isomorphic to a 3 — (pf +1,p™ + 1,1) design whose points are the
elements of the projective line GF(pf) U {00} and whose blocks are the
images of GF(p™) U {00} under PGL(2,p’) (resp. PSL(2,pf) with f/m
odd), and PSL(2,p) € G < PTL(2,p’), where m|f,

2. D is isomorphic to a 3— (g +1,4,1) design whose points are the elements
of the projective line GF(q)U {00} with ¢ =7 (mod 12) and whose blocks
are the images of {0, 1,,00} under PSL(2,q), where € is a primitive sizth
root of unity in GF(q), and and PSL(2,p’) < G < PTL(2,p’).

Proof. If G is 3-homogeneous, then in particular G is block-transitive by
the definition of design. If ¢ = 0 or 3 (mod 4), then PSL(2, q) and PGL(2, q) are
all 3-homogeneous on X. If ¢ = 1 (mod 4), then PGL(2,q) is 3-homogeneous
but PXL(2,q) is not that on X. Thus if ¢ = 0 or 1 (mod 4), then we may
assume that G = PGL(2,q), and if ¢ = 3 (mod 4), then we may assume that
G = PSL(2,q). Since G = PGL(2,q) is 3-transitive on X, the Lemma is true
by [12). Thus we assume that ¢ = 3 (mod 4) and G = PSL(2,q). By Lemma
2.1 we have
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E-(k=1)(k-2) ~ [Cal

Therefore, |Gg| = |PSL(2,q)p| = k(k—1)(k—2)/2. Note that the representation
Gp — Sym(B) = 8y is faithful. Thus we may suppose that Gg < Sym(B).
If £ = 4 or 5, then, by Lemma 2.13, Gp is transitive on B, and so G is flag-
transitive since G is block-transitive. The assertion comes from [9]. If k = 6,
then by Lemma 2.13, Gg & As. If A5 acts transitively on B, then G is flag
transitive, and the assertion comes from [9]. Assume that Aj is not transitive
on B. By (4], As has no subgroups of orders 30, 20 and 15, and so it has no
orbits of sizes 2, 3 and 4. This deduces that A5 has an orbit of size 1 on B,
say a. Thus As < G,, and so G, p contains a subgroup A4. Note that A4 has
no any subgroup of order 6. Thus A4 has no orbits of size 2. Moreover, A4 is
not transitive on B \ « since 5 { |A4|. Therefore, A4 has an orbit of size 1, say
B € B\ o, which implies that A4 fixes two points of X. On the other hand,
the stabilizer of two point in G is cyclic by [11], a contradiction as Aq is not
cyclic. Now let k > 7, and so |G| = 105. It follows that Gp is isomorphic
to a subgroup of type 1, 2, 6 or 7 in Lemma 2.5. Set s = k(k — 1)(k — 2)/2.
Suppose that Gp is a subgroup of type 1, that is, a cyclic subgroup of order
s. Note that B is a union of some orbits of Gg on X. Hence by Lemma 2.6,
we have k > |G| = k(k - 1)(k — 2)/2, which is absurd. If Gz is a subgroup
of type 2, that is, a dihedral subgroup of order s, then by Lemma 2.7 we have
k > s/2 = k(k — 1)(k — 2)/4, which is also absurd since k > 7. If Gp is a
subgroup of type 6, then by Lemmas 2.9 and 2.10 we have k > p™, and so

pm(™-1)2p"z=|Gp| > s> p™(p™ - 1)(p™ - 2)/2.

It follows that p™ < 4 and |Gg| < 12. This implies that ¥ < 4, contrary to
k 2 7. If Gg is a subgroup of type 7, then

k(k—1)(k - 2)/2 £ |Gs| < P™(P™ — 1)(P™ + 1),

and so k < p™(p™ — 1) (recall here k > 7). Hence, by Lemmas 2.11 and 2.12,
we have k = p™ + 1 and B = GF(p™) U {o0}. If Gg = PGL(2,p™) then
B = BPGL2?") and if Gp = PSL(2,p™) with f/m odd, then B = BPSL2#"),
It follows that Gp is transitive on B, and so G is flag-transitive. Therefore, by
[9], we get a 3 — (pf + 1,p™ + 1,1) design whose points are the elements of the
projective line GF(p?)U{co} and whose blocks are the images of GF(p™)U{oo0}
under PGL(2,p') (respectively, PSL(2,p’) with f/m odd), where m|f. O

Lemma 3.2 Let D = (X, B) be a non-trivial simple 3 ~ (v,k,1) design, and
T = PSL(2,q) and v = g+ 1 with g = p/. If T QG < Aut(T) is not 3-
homogeneous on X and G < Aut(D), then pf =1 (mod 4), and
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1. if G is block-transitive, then G is flag-transitive, and D is isomorphic
to a 3— (pf +1,p™ + 1,1) design whose points are the elements of the
projective line GF(p’ )U{oo} and whose blocks are the images of GF(p™)U
{00} under PSL(2,p’), and PSL(2,p’) < G < PEL(2,pf), where m|f;

otherwise

2. D is isomorphic to a 3—(p/ +1,p™+1, 1) design with 2m|f, and PSL(2,p’) <
G < PSL(2,pf), B=TUT", where T = {GF(p™) U {00} }FSL(2P") and
IV = BPSL(29) where B is a k-subset of GF(pf) U {co} with P3(B) N
{0,1,00}¢ = 0.

Proof. By hypothesis, we have the case ¢ = 1 (mod 4) and PSL(2,q) <
G < PXL(2,q). Since G and PSL(2,q) are both 2-transitive on X, we may
restrict ourselves to the case G = PSL(2,q). In this case, The 3-subsets of X
under PSL(2,q) are split in exactly two orbits A; and A, of equal length.

If G is transitive on B, then there exists a k-subset B € Px(X) such that
B = B€. By Theorem 1 of [13], we have |P3(B) N A1| lPa(B) N Ap| =

k(k — 1(k — 2)/12. Note that pshq = |BS| = b= (U= Thus |G| =
k(k — 1)(k — 2)/2. By the proof of Lemma 3.1, we get (l) of Lemma 3.2.
Assume that G is not transitive on B, and BY, .. BP are p distinct orbits

of G on the set of blocks with p > 1. Thus for any two distinct blocks B; and
B; above, we know that one is empty set and the other one nonempty set in
A; N P3(B;) and Ay N Ps(B;), where I = 1 and 2. Otherwise, both P3(B;) and
Py(B;) are contained in the same orbit of 3-subsets, and so there is an element
g € G such that S{ = S;, where S; € P5(B;) and S; € Ps(B; ) By the definition

of design, we have B = B;, which conflicts with B # B Hence p = 2 and
B=Bf U BS. Let u;; = |A; N P3(B;)| wherei,j =1, 2. Then uy = up = (§)
and ujp = ug;) = 0 or uy; = uge = 0 and uyp = ug; = (’;) Moreover, by
Theorem 1 of [13], we have
i - |BF| | wia-|Bf|
|A;| |4

Note that |A;] = |Az| = (g + 1)g(g — 1)/12. Therefore, we have |Bf| = | B|.
Set B = B;. It follows that

=1, wherei=1, 2.

+

2|PSL(2,9)| _ glg+1(¢—1)

B| = 2|BS| =
1Bl = 218" =~z Csl

On the other hand, |B| = é%"'—'gﬁfk—-%s by Lemma 2.1. Comparing the two
expressions, we get |Gg| = k(k — 1)(k — 2). If k = 4, then the design is example
3 in (8] (There exists an error in [8], {0,1,a,00} is replaced by {0, —a,a,o0}
there). If k = 5, then by Lemma 2.13 Gg = As. Since B is a union of some
orbits of Gp acting on X, we have |B| = k > 6 by Lemma 2.8, a contradiction.
Hence k > 6 and |Gp| 2 654 = 120. Considering the orders of subgroups,
we have Gp is isomorphic to a subgroup of type 1, 2, 6 or 7 in Lemma 2.5.
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Therefore, by using the same method as in Lemma 3.1, we have k = p™ + 1
and B = GF(p™) U {oo}. Therefore, Gg = PGL(2,p™) with 2m|f. If we set
B; = B above, then we can get B; = GF(p™) U {o0} and G, = PGL(2,p™).
Let T = (GF(p™) U {oc})®. If  — az is an automorphism of D for some non-
square element a € GF(g)\GF(p™), then B=T'Ual’. Otherwise, B=I"UI", where
I" = B§ with P3(B;)NA; =0, I’ and I belong to different F; in Remark 2.4.
Note that here PGL(2,p™) < PSL(2,q) and PGL(2,p™) acts 3-homogeneous
on By = GF(p™) U {o0}. Thus P3(B;) C A;. By Theorem 1 of [13], we get a
3—(f +1,p™ +1,1) design. O

The result contained in the following lemma is established in [9].

Lemma 3.3 ((9]) Let T = PSL(n,q) withn >3, v= %45t ThenT G <
Aut(T) cannot act as a group of automorphisms on any 3 — (v, k, 1) design.

Proof of the Theorem 1.1. The result is obtained by putting together
Lemmas 3.1, 3.2 and 3.3. O
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