Groups PSL(n,q) and 3-(v,k,1) designs *

Jianxiong Tang^{a,b}, Weijun Liu^a, Jinhua Wang^c

- a. School of Mathematics and Statistics, Central South University,
 - Changsha, Hunan, 410075, P. R. China
- b. Department of Education Science, Hunan First Normal University, Changsha, Hunan, 410002, P. R. China
- c. School of Science, Nantong University, Nantong, Jiangsu, 226007, P. R. China

Abstract

Let T = PSL(n,q) be a projective linear simple group, where $n \ge 2$, q a prime power and $(n,q) \ne (2,2)$ and (2,3). We classify all 3 - (v,k,1) designs admitting an automorphism group G with $T \le G \le Aut(T)$ and $v = \frac{q^n-1}{q-1}$.

2000 Mathematics Subject Classification: 05B05, 20B25 Keywords: t-designs, Group of automorphisms, Projective linear groups

1 Introduction

Let t, k, v and λ be integers such that $0 < t \le k \le v$ and $\lambda > 0$. Let X be a v-set and $P_k(X)$ denote the set of all k-subsets of X. A $t-(v,k,\lambda)$ design is a pair $\mathcal{D} = (X, \mathcal{B})$ in which \mathcal{B} is a collection of elements of $P_k(X)$ (called blocks) such that every t-subset of X appears in exactly λ blocks. If B has no repeated blocks, then it is called simple. If every t-subset of X is in fact a block, i.e., the number of blocks is $b = {v \choose k}$, the binomial coefficient, then the design is called trivial. Here we are concerned only with simple and non-trivial designs. An automorphism of \mathcal{D} is a permutation σ on X such that $\sigma(B) \in \mathcal{B}$ for each $B \in \mathcal{B}$. An automorphism group of \mathcal{D} is a group whose elements are automorphisms of \mathcal{D} . Let G be a finite group acting on X. For $x \in X$, the orbit of x is $G(x) = \{gx | g \in G\}$ and the stabilizer of x is $G_x = \{g \in G | gx = x\}$. It is well known that $|G| = |G(x)||G_x|$. Sometimes we use also x^G to denote the orbit of x under G. Orbits of size |G| are called regular and the others are called non-regular. If there is an $x \in X$ such that G(x) = X, then G is called transitive on X. The action of G on X induces a natural action on $P_k(X)$. If this latter action is transitive, then G is called k-homogeneous. The flags of $\mathcal D$ are the order pairs (x, B), where x is a point and B is a block containing x. A group is flag-transitive if it is transitive on the set of flags; this is equivalent to the assertion that the group is transitive on blocks (points) and the subgroup

^{*}Supported by the NSFC (Grant No. 11271208 and 61272424) and the Research Foundation of Education Bureau of Hunan Province of China (No. 08c021).

[†]Corresponding author: wjliu6210@126.com

fixing a block (point) is transitive on the points of that block (the blocks through that point).

All 3-(v,k,1) designs which admit a flag-transitive automorphism group were classified by M. Huber in [9]. The most interesting examples which occur have an almost simple group with socle PSL(2,q) as group of automorphisms. Moreover, In [8], M. Huber discussed the case where there is an almost simple groups with socle PSL(n,q) acting on a 3-(v,4,1) design. As a continuation of his works, in this paper, we consider the case where there is an almost simple group with socle PSL(n,q) acting on a 3-(v,k,1) design. We get the following theorem:

Theorem 1.1 Let $\mathcal{D} = (X, \mathcal{B})$ be a nontrivial simple 3 - (v, k, 1) design and $G \leq \operatorname{Aut}(\mathcal{D})$. If $PSL(n, q) \leq G \leq \operatorname{Aut}(PSL(n, q))$ and $v = \frac{q^n - 1}{q - 1}$ with $q = p^f$, where p is a prime and f a positive integer, then one of the following occurs:

- 1. If G is block-transitive, then G is flag-transitive, and
 - (a) \mathcal{D} is isomorphic to a $3-(p^f+1,p^m+1,1)$ design whose points are the elements of the projective line $GF(p^f) \cup \{\infty\}$ and whose blocks are the images of $GF(p^m) \cup \{\infty\}$ under $PGL(2,p^f)$ (resp. $PSL(2,p^f)$ with f/m odd), and $PSL(2,p^f) \leq G \leq P\Gamma L(2,p^f)$, where m|f,
 - (b) \mathcal{D} is isomorphic to a 3-(q+1,4,1) design whose points are the elements of the projective line $GF(q)\cup\{\infty\}$ with $q\equiv 7\pmod{12}$ and whose blocks are the images of $\{0,1,\varepsilon,\infty\}$ under PSL(2,q), where ε is a primitive sixth root of unity in GF(q), and $PSL(2,q)\leq G\leq P\Sigma L(2,q)$,
- 2. If G is not block-transitive, then $p^f \equiv 1 \pmod{4}$, and \mathcal{D} is isomorphic to a $3-(p^f+1,p^m+1,1)$ design with 2m|f, and $PSL(2,p^f) \leq G \leq P\Sigma L(2,p^f)$, $\mathcal{B} = \Gamma \cup \Gamma'$, where $\Gamma = \{GF(p^m) \cup \{\infty\}\}^{PSL(2,p^f)}$ and $\Gamma' = B^{PSL(2,q)}$, where B is a k-subset of $GF(p^f) \cup \{\infty\}$ with $P_3(B) \cap \{0,1,\infty\}^G = \emptyset$.

The second section contains some preliminary results about PSL(2,q) and t-designs. In the third section we give the proof of the main theorem.

2 Preliminary Results

Let $\mathcal{D} = (X, \mathcal{B})$ be a $t - (v, k, \lambda)$ design, and $G \leq Aut(\mathcal{D})$. Let b denote the number of blocks of \mathcal{D} , and r the number of blocks that is incident with a fixed point of \mathcal{D} . Now, we introduce the following results which play an important role in the proof of the main theorem.

Lemma 2.1 ([6]) Let $\mathcal{D} = (X, \mathcal{B})$ be a $t - (v, k, \lambda)$ design. Then the following holds:

1. bk = vr;

2.
$$r = \frac{\lambda(v-1)...(v-t+1)}{(k-1)...(k-t+1)}$$
;

3.
$$b = \frac{\lambda v \dots (v-t+1)}{k \dots (k-t+1)}.$$

Lemma 2.2 ([2]) If $\mathcal{D} = (X, \mathcal{B})$ is a non-trivial Steiner t-design, then $v - t + 1 \ge (k - t + 2)(k - t + 1)$ for t > 2. If equality holds, then (t, k, v) = (3, 4, 8), (3, 6, 22), (3, 12, 112), (4, 7, 23) or (5, 8, 24).

From now on, we let $X:=GF(q)\cup\{\infty\}$ with $q=p^f$, where p is a prime and f a positive integer. The set of all mappings of the form: $x\mapsto \frac{ax+b}{cx+d}$ with $a,b,c,d\in GF(q),\ ad-bc$ being a square in GF(q) constitutes the projective special linear group, PSL(2,q) on X. Let π be a mapping of the form: $x\mapsto x^p$, $x\in X$. Then we use the notation $P\Sigma L(2,q)$ to denote $PSL(2,q)\rtimes\langle\pi\rangle$. The action of $P\Sigma L(2,q)$ induces a natural action on $P_k(X)$. It is well known that this action is transitive on $P_3(X)$ if and only if $q\equiv 3\pmod{4}$. But in the case where $q\equiv 1\pmod{4}$, $P\Sigma L(2,q)$ is not transitive on $P_3(X)$. In this case, we start with a simple observation which is quite straightforward to verify: any 3-subset of X belongs to $\Delta_1=G(\{0,\infty,1\})$ or $\Delta_2=G(\{0,\infty,\theta\})$, where $G=P\Sigma L(2,q)$ and θ is a primitive root of unity in GF(q).

The following lemma and perspective come from [5].

Lemma 2.3 Let k be a positive integer and consider the action of G := PSL(2,q) on $P_k(X)$. If Γ is an orbit for this action then so is $\theta\Gamma$, where θ is a primitive root of unity in GF(q). Moreover, $\theta^2\Gamma = \Gamma$.

Remark 2.4 There is a more general perspective by Lemma 2.3 as follows. Fix k > 4 and consider the induced action of PSL(2,q) on $P_k(X)$. The set $P_k(X)$ is partitioned into orbits Γ_i , i = 1, ..., m for some m, so that we have

$$P_k(X) = \bigcup_{i=1}^m \Gamma_i.$$

Let $\mathcal{F} = \{\Gamma_1, \Gamma_2, \dots, \Gamma_m\}$. Then the group $GF(q)^*$ acts on \mathcal{F} as

$$\gamma \cdot \Gamma = \gamma \Gamma$$
, $for \gamma \in GF(q)^*$, $\Gamma \in \mathcal{F}$.

Thus we can write

$$\mathcal{F}=\bigcup_{i}\mathcal{F}_{i},$$

where each \mathcal{F}_i is an orbit of \mathcal{F} under $GF(q)^*$. Furthermore, since the map $x \mapsto \alpha^2 x$ is an element of PSL(2,q), it follows that $|\mathcal{F}_i| = 1$ or 2. Hence each orbit for the action described above gives us a simple 3-design with PSL(2,q) acting as a group of automorphisms.

The results contained in the following lemma are established in [7] and [11].

Lemma 2.5 Let $q = p^f$ with p a prime and f a positive integer, and d = (2, q - 1). Then the subgroups of PSL(2, q) are as follows:

- 1. Cyclic subgroups of order z where $z|\frac{q\pm 1}{d}$;
- 2. Dihedral subgroups of order 2z where $z|\frac{q\pm 1}{d}$;
- 3. A_4 when p > 2 or p = 2 and f even;
- 4. S_4 when $q^2 1 \equiv 0 \pmod{16}$;
- 5. A_5 when p = 5 or $q^2 1 \equiv 0 \pmod{5}$;
- 6. The semidirect product of the elementary abelian subgroup of order p^m and the cyclic group of order z where $m \leq f$, $z | \frac{g-1}{d}$, $z | (p^m 1)$ and z may be 1;
- 7. Subgroups $PSL(2, p^m)$ with m|f, and subgroups $PGL(2, p^m)$ with 2m|f.

We state that the sizes of orbits from the action of subgroups of PSL(2,q) on the projective line X as follows. When $q \equiv 3 \pmod 4$, P. J. Cameron, H. R. Maimani, G. R. Omidi and B. Tayfeh-Rezaie has determined the sizes of orbits in [3]. In [10], M. Huber have determined the sizes of orbits with all cases. The main techniques involve Cauchy-Frobenius-Burnside Lemma and the fact that if $H_1 \leq H_2 \leq G$ then the orbit of H_2 is a union of orbits from the action of H_1 . In the following lemmas we suppose that H is a subgroup of PSL(2,q) and N_l denotes the number of orbits of size l.

Lemma 2.6 ([10]) Let H be the cyclic group of order c > 1 and d = (2, q - 1),

- 1. if c|(q+1)/d, then $N_c = (q+1)/c$,
- 2. if c|(q-1)/d, then $N_1 = 2$ and $N_c = (q-1)/c$,
- 3. if c = p, then $N_1 = 1$ and $N_c = q/c$.

Lemma 2.7 ([10]) Let H be the dihedral group of order 2c with $c|(q \pm 1)/d$ and d = (2, q - 1), where c > 1. Then

- 1. for $q \equiv 1 \pmod{4}$
 - (a) if c|(q+1)/2, then $N_c = 2$ and $N_{2c} = (q-2c+1)/(2c)$,
 - (b) if c|(q-1)/2, then $N_2 = 1$, $N_c = 2$ and $N_{2c} = (q-2c-1)/(2c)$, unless c = 2, in which case $N_2 = 3$ and $N_4 = (q-5)/4$.
- 2. for $q \equiv 3 \pmod{4}$
 - (a) if c|(q+1)/2, then $N_{2c} = (q+1)/(2c)$,
 - (b) if c|(q-1)/2, then $N_2 = 1$ and $N_{2c} = (q-1)/(2c)$;

- 3. for $q \equiv 0 \pmod{2}$
 - (a) if c|(q+1), then $N_c = 1$ and $N_{2c} = (q-c+1)/(2c)$,
 - (b) if c|(q-1), then $N_2 = 1$, $N_c = 1$ and $N_{2c} = (q-c-1)/(2c)$.

Lemma 2.8 ([10]) Let H be isomorphic to A_5 , and $q \equiv 1 \pmod{4}$. Then

- 1. if $q = 5^e$, $e \equiv 1 \pmod{2}$, then $N_6 = 1$ and $N_{60} = (q 5)/60$,
- 2. if $q = 5^e$, $e \equiv 0 \pmod{2}$, then $N_6 = 1, N_{20} = 1$ and $N_{60} = (q 25)/60$,
- 3. if 15|(q+1), then $N_{30}=1$ and $N_{60}=(q-29)/60$,
- 4. if 3|(q+1) and 5|(q-1), then $N_{12}=1$, $N_{30}=1$ and $N_{60}=(q-41)/60$,
- 5. if 3|(q-1) and 5|(q+1), then $N_{20}=1$, $N_{30}=1$ and $N_{60}=(q-49)/60$,
- 6. if 15|(q-1), then $N_{12}=1$, $N_{20}=1$, $N_{30}=1$ and $N_{60}=(q-61)/60$,
- 7. if 3|q and 5|(q+1), then $N_{10}=1$ and $N_{60}=(q-9)/60$,
- 8. if 3|q and 5|(q-1), then $N_{10}=1$, $N_{12}=1$ and $N_{60}=(q-21)/60$.

Lemma 2.9 ([10]) Let H be the elementary Abelian group of order p^m with $1 \le m \le f$, then $N_1 = 1$, and other orbits are regular.

Lemma 2.10 ([10]) Let H be a semidirect product of the elementary Abelian group of order p^m and the cyclic group of order z > 1 where $1 \le m \le f$, $z|(p^m-1)$ and z|(q-1)/d with d=(2,q-1), then $N_1=1$, $N_{p^m}=1$ and other orbits are regular.

Lemma 2.11 Let H be $PSL(2, p^m)$ where m|f, then

- (i) if f/m is odd, then $N_{p^m+1}=1$ and other orbits are regular;
- (ii) if f/m is even, then $N_{p^m+1} = N_{p^m(p^m-1)} = 1$ and other orbits are regular.

Moreover, the orbit of size $p^m + 1$ is $GF(p^m) \cup {\infty}$.

Proof. (i) and (ii) come from [10]. Since $N_{p^m+1}=1$ and $PSL(2,p^m)$ acts transitively on $GF(p^m)\cup\{\infty\}$, it follows that the orbit of size p^m+1 is $GF(p^m)\cup\{\infty\}$.

Lemma 2.12 Let H be $PGL(2, p^m)$ where 2m|f, then $N_{p^m+1} = N_{p^m(p^m-1)} = 1$ and other orbits are regular. Moreover, the orbit of size p^m+1 is $GF(p^m)\cup\{\infty\}$.

Proof. The proof is similar to that of Lemma 2.11.

The following lemma is useful in the proof of Theorem 1.1.

Lemma 2.13 Let S_n be a symmetric group on the set X with |X| = n, and H a subgroup of S_n . If |H| = n(n-1)(n-2) or n(n-1)(n-2)/2 with $3 \le n \le 5$, then H is transitive on X. If n = 6, then $H \cong S_5$ or A_5 , where A_n denotes the alternating group on X.

Proof. When n=3 and 4, the lemma is obvious. If n=5 and |H|=n(n-1)(n-2), then $H\cong A_5$. If H is a subgroup of S_5 of order 30, then clearly H is not a subgroup of A_5 since A_5 is simple. So H must contain an odd permutation and it can easily be shown that $|H\cap A_5|=|H|/2=15$ which is impossible. Thus $H\cong A_5$, and so the conclusion holds. If n=6 and |H|=n(n-1)(n-2)=120, then H must contain odd permutations since A_6 has no any subgroups of order 120 by [4], and so $H\cong S_5$. Note that the subgroups of order 60 of S_6 are isomorphic to A_5 , and so if |H|=n(n-1)(n-2)/2=60 then $H\cong A_5$. Thus the conclusion holds. \square

3 The Proof of Main Theorem

Let \mathcal{D} be a non-trivial simple 3-(v,k,1) design, and $T \leq G \leq Aut(T)$ with a projective linear simple group T=PSL(n,q), where $n\geq 2$, q a prime power and $(n,q)\neq (2,2), (2,3)$. We consider the natural action of G on the projective space $PG(n-1,q), v=\frac{q^n-1}{q-1}$.

Lemma 3.1 Let $\mathcal{D}=(X,\mathcal{B})$ be a non-trivial simple 3-(v,k,1) design, and $T=PSL(2,q),\ v=q+1.$ If $T \leq G \leq Aut(T)$ is 3-homogeneous on X and $G \leq Aut(\mathcal{D})$, then G is flag-transitive, and

- 1. D is isomorphic to a $3-(p^f+1,p^m+1,1)$ design whose points are the elements of the projective line $GF(p^f) \cup \{\infty\}$ and whose blocks are the images of $GF(p^m) \cup \{\infty\}$ under $PGL(2,p^f)$ (resp. $PSL(2,p^f)$ with f/m odd), and $PSL(2,p^f) \leq G \leq P\Gamma L(2,p^f)$, where m|f,
- 2. D is isomorphic to a 3-(q+1,4,1) design whose points are the elements of the projective line $GF(q) \cup \{\infty\}$ with $q \equiv 7 \pmod{12}$ and whose blocks are the images of $\{0,1,\varepsilon,\infty\}$ under PSL(2,q), where ε is a primitive sixth root of unity in GF(q), and and $PSL(2,p^f) \leq G \leq P\Sigma L(2,p^f)$.

Proof. If G is 3-homogeneous, then in particular G is block-transitive by the definition of design. If $q \equiv 0$ or $3 \pmod 4$, then PSL(2,q) and PGL(2,q) are all 3-homogeneous on X. If $q \equiv 1 \pmod 4$, then PGL(2,q) is 3-homogeneous but $P\Sigma L(2,q)$ is not that on X. Thus if $q \equiv 0$ or $1 \pmod 4$, then we may assume that G = PGL(2,q), and if $q \equiv 3 \pmod 4$, then we may assume that G = PSL(2,q). Since G = PGL(2,q) is 3-transitive on X, the Lemma is true by [12]. Thus we assume that $q \equiv 3 \pmod 4$ and G = PSL(2,q). By Lemma 2.1 we have

$$\frac{(q+1)(q-1)q}{k \cdot (k-1) \cdot (k-2)} = \frac{|G|}{|G_B|}.$$
 (1)

Therefore, $|G_B| = |PSL(2,q)_B| = k(k-1)(k-2)/2$. Note that the representation $G_B \to Sym(B) \cong S_k$ is faithful. Thus we may suppose that $G_B \leq Sym(B)$. If k=4 or 5, then, by Lemma 2.13, G_B is transitive on B, and so G is flagtransitive since G is block-transitive. The assertion comes from [9]. If k = 6, then by Lemma 2.13, $G_B \cong A_5$. If A_5 acts transitively on B, then G is flag transitive, and the assertion comes from [9]. Assume that A_5 is not transitive on B. By [4], A_5 has no subgroups of orders 30, 20 and 15, and so it has no orbits of sizes 2, 3 and 4. This deduces that A_5 has an orbit of size 1 on B, say α . Thus $A_5 \leq G_{\alpha}$, and so $G_{\alpha,B}$ contains a subgroup A_4 . Note that A_4 has no any subgroup of order 6. Thus A_4 has no orbits of size 2. Moreover, A_4 is not transitive on $B \setminus \alpha$ since $5 \nmid |A_4|$. Therefore, A_4 has an orbit of size 1, say $\beta \in B \setminus \alpha$, which implies that A_4 fixes two points of X. On the other hand, the stabilizer of two point in G is cyclic by [11], a contradiction as A_4 is not cyclic. Now let $k \geq 7$, and so $|G_B| \geq 105$. It follows that G_B is isomorphic to a subgroup of type 1, 2, 6 or 7 in Lemma 2.5. Set s = k(k-1)(k-2)/2. Suppose that G_B is a subgroup of type 1, that is, a cyclic subgroup of order s. Note that B is a union of some orbits of G_B on X. Hence by Lemma 2.6, we have $k \ge |G_B| = k(k-1)(k-2)/2$, which is absurd. If G_B is a subgroup of type 2, that is, a dihedral subgroup of order s, then by Lemma 2.7 we have $k \geq s/2 = k(k-1)(k-2)/4$, which is also absurd since $k \geq 7$. If G_B is a subgroup of type 6, then by Lemmas 2.9 and 2.10 we have $k \geq p^m$, and so

$$p^{m}(p^{m}-1) \ge p^{m}z = |G_{B}| \ge s \ge p^{m}(p^{m}-1)(p^{m}-2)/2.$$

It follows that $p^m \leq 4$ and $|G_B| \leq 12$. This implies that $k \leq 4$, contrary to $k \geq 7$. If G_B is a subgroup of type 7, then

$$k(k-1)(k-2)/2 \leq |G_B| \leq p^m(p^m-1)(p^m+1),$$

and so $k < p^m(p^m - 1)$ (recall here $k \ge 7$). Hence, by Lemmas 2.11 and 2.12, we have $k = p^m + 1$ and $B = GF(p^m) \cup \{\infty\}$. If $G_B \cong PGL(2, p^m)$ then $\mathcal{B} = B^{PGL(2,p^f)}$, and if $G_B \cong PSL(2,p^m)$ with f/m odd, then $\mathcal{B} = B^{PSL(2,p^f)}$. It follows that G_B is transitive on B, and so G is flag-transitive. Therefore, by [9], we get a $3 - (p^f + 1, p^m + 1, 1)$ design whose points are the elements of the projective line $GF(p^f) \cup \{\infty\}$ and whose blocks are the images of $GF(p^m) \cup \{\infty\}$ under $PGL(2, p^f)$ (respectively, $PSL(2, p^f)$ with f/m odd), where m|f. \square

Lemma 3.2 Let $\mathcal{D}=(X,\mathcal{B})$ be a non-trivial simple 3-(v,k,1) design, and T=PSL(2,q) and v=q+1 with $q=p^f$. If $T \subseteq G \subseteq Aut(T)$ is not 3-homogeneous on X and $G \subseteq Aut(\mathcal{D})$, then $p^f \equiv 1 \pmod{4}$, and

- 1. if G is block-transitive, then G is flag-transitive, and D is isomorphic to a $3-(p^f+1,p^m+1,1)$ design whose points are the elements of the projective line $GF(p^f)\cup\{\infty\}$ and whose blocks are the images of $GF(p^m)\cup\{\infty\}$ under $PSL(2,p^f)$, and $PSL(2,p^f)\leq G\leq P\Sigma L(2,p^f)$, where m|f; otherwise
- 2. \mathcal{D} is isomorphic to a $3-(p^f+1,p^m+1,1)$ design with 2m|f, and $PSL(2,p^f) \leq G \leq P\Sigma L(2,p^f)$, $\mathcal{B} = \Gamma \cup \Gamma'$, where $\Gamma = \{GF(p^m) \cup \{\infty\}\}^{PSL(2,p^f)}$ and $\Gamma' = B^{PSL(2,q)}$, where B is a k-subset of $GF(p^f) \cup \{\infty\}$ with $P_3(B) \cap \{0,1,\infty\}^G = \emptyset$.

Proof. By hypothesis, we have the case $q \equiv 1 \pmod{4}$ and $PSL(2,q) \leq G \leq P\Sigma L(2,q)$. Since G and PSL(2,q) are both 2-transitive on X, we may restrict ourselves to the case G = PSL(2,q). In this case, The 3-subsets of X under PSL(2,q) are split in exactly two orbits Δ_1 and Δ_2 of equal length.

If G is transitive on B, then there exists a k-subset $B \in P_k(X)$ such that $\mathcal{B} = B^G$. By Theorem 1 of [13], we have $|P_3(B) \cap \Delta_1| = |P_3(B) \cap \Delta_2| = k(k-1)(k-2)/12$. Note that $\frac{|G|}{|G_B|} = |B^G| = b = \frac{(q+1)q(q-1)}{k(k-1)(k-2)}$. Thus $|G_B| = k(k-1)(k-2)/2$. By the proof of Lemma 3.1, we get (1) of Lemma 3.2.

Assume that G is not transitive on \mathcal{B} , and B_1^G, \ldots, B_G^G are ρ distinct orbits of G on the set of blocks with $\rho > 1$. Thus for any two distinct blocks B_i and B_j above, we know that one is empty set and the other one nonempty set in $\Delta_l \cap P_3(B_i)$ and $\Delta_l \cap P_3(B_j)$, where l=1 and 2. Otherwise, both $P_3(B_i)$ and $P_3(B_j)$ are contained in the same orbit of 3-subsets, and so there is an element $g \in G$ such that $S_i^g = S_j$, where $S_i \in P_3(B_i)$ and $S_j \in P_3(B_j)$. By the definition of design, we have $B_i^g = B_j$, which conflicts with $B_i^G \neq B_j^G$. Hence $\rho = 2$ and $\mathcal{B} = B_1^G \cup B_2^G$. Let $u_{ij} = |\Delta_i \cap P_3(B_j)|$ where i, j = 1, 2. Then $u_{11} = u_{22} = {k \choose 3}$ and $u_{12} = u_{21} = 0$ or $u_{11} = u_{22} = 0$ and $u_{12} = u_{21} = {k \choose 3}$. Moreover, by Theorem 1 of [13], we have

$$\frac{u_{i1} \cdot |B_1^G|}{|\Delta_i|} + \frac{u_{i2} \cdot |B_2^G|}{|\Delta_i|} = 1, \text{ where } i = 1, 2.$$

Note that $|\Delta_1| = |\Delta_2| = (q+1)q(q-1)/12$. Therefore, we have $|B_1^G| = |B_2^G|$. Set $B = B_1$. It follows that

$$|\mathcal{B}| = 2|B^G| = \frac{2|PSL(2,q)|}{|G_B|} = \frac{q(q+1)(q-1)}{|G_B|}.$$

On the other hand, $|\mathcal{B}| = \frac{(q+1)q(q-1)}{k\cdot(k-1)\cdot(k-2)}$ by Lemma 2.1. Comparing the two expressions, we get $|G_B| = k(k-1)(k-2)$. If k=4, then the design is example 3 in [8] (There exists an error in [8], $\{0,1,a,\infty\}$ is replaced by $\{0,-a,a,\infty\}$ there). If k=5, then by Lemma 2.13 $G_B\cong A_5$. Since B is a union of some orbits of G_B acting on X, we have $|B|=k\geq 6$ by Lemma 2.8, a contradiction. Hence $k\geq 6$ and $|G_B|\geq 6\cdot 5\cdot 4=120$. Considering the orders of subgroups, we have G_B is isomorphic to a subgroup of type 1, 2, 6 or 7 in Lemma 2.5.

Therefore, by using the same method as in Lemma 3.1, we have $k=p^m+1$ and $B=GF(p^m)\cup\{\infty\}$. Therefore, $G_B=PGL(2,p^m)$ with 2m|f. If we set $B_2=B$ above, then we can get $B_2=GF(p^m)\cup\{\infty\}$ and $G_{B_2}=PGL(2,p^m)$. Let $\Gamma=(GF(p^m)\cup\{\infty\})^G$. If $x\mapsto ax$ is an automorphism of $\mathcal D$ for some nonsquare element $a\in GF(q)\backslash GF(p^m)$, then $\mathcal B=\Gamma\cup a\Gamma$. Otherwise, $\mathcal B=\Gamma\cup \Gamma'$, where $\Gamma'=B_2^G$ with $P_3(B_2)\cap\Delta_1=\emptyset$, Γ and Γ' belong to different $\mathcal F_i$ in Remark 2.4. Note that here $PGL(2,p^m)\leq PSL(2,q)$ and $PGL(2,p^m)$ acts 3-homogeneous on $B_1=GF(p^m)\cup\{\infty\}$. Thus $P_3(B_1)\subset\Delta_1$. By Theorem 1 of [13], we get a $3-(p^f+1,p^m+1,1)$ design. \square

The result contained in the following lemma is established in [9].

Lemma 3.3 ([9]) Let T = PSL(n,q) with $n \ge 3$, $v = \frac{q^n-1}{q-1}$. Then $T \le G \le Aut(T)$ cannot act as a group of automorphisms on any 3 - (v, k, 1) design.

Proof of the Theorem 1.1. The result is obtained by putting together Lemmas 3.1, 3.2 and 3.3. □

References

- [1] W. O. Alltop, 5-designs in affine spaces, Pac. J. Math. 39(1971), 547-551.
- [2] P. J. Cameron, Parallelisms of Complete Designs, London Math. Soc. Lecture Note Ser., vol. 23, Cambridge Univ. Press, Cambridge, 1976.
- [3] P. J. Cameron, H. R. Maimani, G. R. Omidi, B. Tayfeh-Rezaie, 3-Designs from PSL(2,q), Discrete Mathematics 306(2006) 3063-3073.
- [4] J. H. Conway, R. T. Curtis, R. A. Parker, R. A. Wilson, and S. P. Norton, "An Atlas of Finite Groups," Oxford Univ. Press, London, 1985.
- [5] N. Balachandran, D. Ray-Chaudhuri, Simple 3-designs and PSL(2,q) with $q \equiv 1 \pmod{4}$, Des. Codes Cryptogr. 44(2007), 263-274.
- [6] T. Beth, D. Jungnickel and H. Lenz, Design theory, Second edition, Cambridge University Press, Cambridge, 1999.
- [7] L. E. Dickson, Linear groups with an exposition of the Galois field theory, Dover Publications, Inc., New York, 1058.
- [8] M. Huber, Almost simple groups with socle $L_n(q)$ acting on Steiner quadruple systems, J. Combin. Theory Ser. A, 117(2010), 1004-1007.
- [9] M. Huber, The classification of flag-transitive Steiner 3-designs, Adv. Geom. 5(2005), 195-221.
- [10] M. Huber, A census of highly symmetric combinatorial designs, J. Algebr Comb. 26(2007), 453-476.