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Abstract

In this paper we prove that there exists one type of connected cubic graph,
which minimizes the number of spanning trees over all other connected cubic
graphs of the same order n, n> 4.
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1. Imtroduction

The problem of identifying connected graphs that maximize/minimize the
number of spanning trees over other connected graphs for a given number of
vertices and edges has been extensively studied in the literature [1-3,5-7]. For
regular graphs Kelmans and Chelnokov [6] showed that complete graph K, with
removed n nonadjacent edges maximizes the number of spanning trees. In
addition, Cheng [3] proved that a complete multipartite graph maximizes the
number of spanning trees. Subsequently, Boesch [2] conjectured that regular
graphs of maximum girth maximize the number of spanning trees.

If the above conjecture holds, then for cubic graphs the attention shifts to
finding out if there exists one type of connected cubic graph that maximizes the
number of spanning trees over the set of all connected cubic graphs of the same
order. We know that the Petersen-graph, Mobius Ladder and Kj; ; maximize the
number of spanning trees among connected cubic graphs of order /0, 8 and 6
respectively. However, the above conjecture would also imply the identification
of 3-cages, which by itself is a challenging problem.

In this paper we consider simple undirected cubic graphs and focus our
attention on the opposite (i.e., minimization) type of problem. That is, we will
characterize a certain type of connected cubic graph, and prove that such a graph
minimizes the number of spanning trees over the set of all connected cubic
graphs of the same order. In fact, Valdés characterized the 2-connected cubic
graphs for which the number of spanning trees is minimum [8]. So, in this work
we extend Valdés’s result to all connected cubic graphs, which cannot be
derived from his work in a straightforward way. Note, it’s not even obvious that
there exists one type of l-connected cubic graph for which the number of
spanning trees is minimum in respect to 1-connected cubic graphs.

Let G, denote a connected cubic graph of order n with V(G,) vertices and
E(G,) edges. Let #(G,) denote the number of spanning trees in G,. We say that
- G, minimizes the number of spanning trees over all connected cubic graphs of

the same order if for any connected cubic graph H, t(H,) = #(G,). Let K,_,
denote a complete graph of order 4 with a single edge removed, and let K;_;
denote a complete graph of order 5 with three (two adjacent and one
nonadjacent) edges removed. In addition, we denote a subgraph H of G by H(G).

For n = 2 (mod 4) we define Q, as a cubic graph that consists of two Kj._;
components and & X,.; components connected together with edges, where &k > 0.
Clearly, there is only one unique type of such a graph and it is illustrated in
Figure 1. O, can be constructed for n > 10. Let n=4k-2, for k > 3. The number of
spanning trees for K;_; equals 24, and for K,., equals 8. Hence, the number of
spanning trees in O, equals t(Q,) = 3°8*/.
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Figure 1 - Q, for n = 2 (mod 4)

For n = 0 (mod 4) we define 0, as a cubic graph that consists of three Kj._;
components and & K, ., components connected together with edges, where k> 0.
In this case O, can be obtained from Q,.s as follows. Let x;x; be an edge in O,.4
that does not belong to a cycle. Then, replace x;x; with x,x,x. and connect the
vertex of degree 2 of K;_; with the edge to x,. O, can be constructed for n > /6.
If n=4k and k > 4 then the number of spanning trees in O, equals #(Q,) = 3°8*’.
Note, here O, is not unique because it depends on an edge being chosen for
replacement in Q.

In the next section we prove that O, minimizes the number of spanning
trees over all connected cubic graphs of order n, n > 14.

2. Connected Cubic Graph with Minimum Number of
Spanning Trees.

We first prove two simple Lemmas.

Lemma 2.1 Q, minimizes the number of spanning trees over all cubic graphs of
ordern=14or 16.

Proof: We executed a computer program based on Depth-first search that
generated all cubic graphs for n=14, 16. For every generated cubic graph G, we
verified using Matrix-Tree Theorem [4] that #Q,) <¢(G,), 1(Q;¢) $t(G)¢). ©

Lemma 2.2 For given Q,, n> 14, the relation t(Q,.,)/ t(Q,) < 3 is satisfied.

Proof: Let k be an integer and k > 4. If n = 4k-2 then #(Q,.,)/ 1(Q,) = (3°8°)/
(3°8%!) =3. 1f n = 4k then ¢(Q,. )/ 1(Q) = (378" (3°8%") = 8/3. o

Basic strategy in proving next main theorem is based on showing the
following contradiction. If there exists G, such that G, # Q,, #(G,) < #(Q,) and n
is minimized then there exists G,.x # On Such that ¢(G,.y) < 1(Q,.¢), where k > 2.
We now present our main result.
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Thorem 2.3 Q, minimizes the number of spanning trees over all connected
cubic graphs of order n, where n 214,

Proof: Suppose that there exists G, such that G, # @, and #G,) < ¢(Q,). By
Lemma 2.1 G, exists if n > 18. Without loss of generality assume that G,

represents a graph of mmlmum order n (n > 18), which satisfies #(G,) < Q).

Consider first a subgraph G'(G,) with a triangle that is not a subgraph of
K;.3(G,) (Figure 2). Suppose G! (G,) exists.

A

C B
Figure 2 — Subgraph G'(G,).
Suppose vertices 4,B,C are pairwise distinct in G,. Thus we can transform

G'(G,) = H'( G,.5) as follows:

A A

C B C B
G H
Figure 3 - Transformation G'(G,) —» H'( G,

where H' replaces G’ in G, inducing simple cubic graph G,,.,. In this case we
have 3t(G,.o) <4(G,) < {{Qn) and by Lemma 2.2 t(Q,) < 3¢(Q,.). This implies
t(Gp.3) < t(Qn.z), Which is a contradiction.

The above case implies that 4,B,C cannot be paxrwnse distinct in G'(G,).
Suppose vertices 4,B,C are not panrwnse distinct in G'(G,). So, without loss of
generality assume B=C. Because G'(G,) is not a subgraph of K;_; then we have
A # B = C. Consider the following two cases.
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Case I: Vertex A not adjacent to vertex B in G,
Then we can transform G'(G,) — H*(G,.,) as follows:

Gl H2
Figure 4 — Transformation G'(G,) » H'(G,.))

where H’ replaces G’ in G, inducing simple cubic G,.,. Then, 8t(G,.) <(G,) <
HOn) and 810,y = t(Q,). This implies #G,, < #Q,,, which is a
contradiction.

Case 2. Vertex A adjacent to vertex B in G,
Then G'(G,) implies G’( G,) in Figure 5, and we can transform G*( G,) —
H’(G,.,) as follows:

Figure 5 — Transformation G’(G,) » H°( G,.))
where H’replaces G in G, inducing simple cubic G,.,.

If ’th spanning tree in graph G induces a spanning tree in subgraph R of G
then such a spanning tree in G we denote by T;(G,R). Otherwise, i'th spanning
tree in G we denote by F;(G,R). Let ¥, be a subgraphs of G, induced by vertex
set {4, A', A", B, B, B”}. Similarly, let ¥ be a subgraph of G,., induced by {4,
A’, B, B'’}. For every spanning tree of G,., we will identify globally unique
spanning trees of G, with identical edges, except for the edges implied by W,
and W,. So, for every spanning tree 7; (G5, H(G,.y)) in G, there are three
distinct spanning trees in G,, which can be identified as follows:
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1. T; ,(G,,, G’(G,,)) contains edges A'A, A”A, B'B, B"B,
2. T,(G. G*(G,)) contains edges 4’4, AB, B'B, B"B,
3. Ti(G» G’(G,)) contains edges A'A, A”A, AB, B'B.

Each T,(G,, G*(G,)) also contains edges E(Ti(Gp.5, Wy)) - E(Wy),for32j21.In

addmon for every spanning tree F; (G,., H“’(GM)) in G,.; there are three sub-
cases with three globally distinct spanning trees each in G,. They can be
identified as follows.

Case 2.1: F, (G5 H(G,.) includes edges 4’4, B'B.

Then corresponding unique %, (G,, G*(G,)) is identified by
1. #,(G, G*(G,) contains edges A’A, A4, B'B, B"B,
2. ﬂz(G,,, G*(G,)) contains edges 4’4, AB, B'B, B"B,
3. #,(G, G°(Gy) contains edges A'A, A”4, AB, B'B.

In addition, each T,j(G,,, G*(G,)) contains edges E(T(G,.,, W) — {A’A,B’B}, for
3zjz1.

Case 2.2: F, (Gn.;, H'(G,.3)) includes edge A’A and doesn’t include edge B'B.
Then corresponding unique 7, (G,, G*(G,)) is identified by

1. £,(Gn G*(G,)) contains edges 4’4, 4”4, BB,
2. F.(G, G*(G,)) contains edges 44, 4”4, B"B,
3. F,(G, G’(G,)) contains edges A'A, A", AB.

In addition, each T,j(G,, G*(G,)) contains edges E(T(G,.,, W) — {A'A}, for 3>
=1

Case 2.3: F, (Gns H(G,.;)) includes edge B'B and doesn’t include edge 4 'A.
Then corresponding unique 7, (G,, G*(G,)) is identified by

l. F,(Gn G’(G,)) contains edges B'B, B"B, A'A,
2. ?,-2(6,,, G*(G,)) contains edges B'B, B”B, A" 4,
3. (G, G’(G,) contains edges B'B, B"B, AB.

In addition, each T,~j(G,, G*(G,)) contains edges E(Ty(G,,, W) — {B'B}, for 3 >
21
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So, by Lemma 2.2 it follows that t(G J S(1/3)4(G,) < (1/3)t(Q,,) < {0On2),
which is a contradiction. Consequently, G! (G,) cannot exist.

If a cycle of G, has an edge in common with Kj_3(G,) then it must be
completely included in K;.;(G,). Otherwise, a cycle of G, is excluded from
K. 3(G,). Let Cp = vyv,...vyv, be a shortest cycle in G,, which is not included in
K;.3(G,). Let G*(G,) be a subgraph of G,, (i.e., G*(G,) =G, ), such that V(G,) =
{ViVa s Vi UpUy, ., U}, ViV€E(GY), Vv, €E(Gy), v eE(G)), for k> i2 1,
k>j 2 1. For analysis assume v, =4’ v; =B, vs;=C’,vy=D" andu; = A, u,
= B, u3 = C, u; = D. Suppose G°(G,) exists. Then we have two subsequent cases
to consider.

Case 3: Cycle C; is of length k=4.
We can transform G*(G,) — H'(G,.,) as follows:

Figure 6 - Transformation G*(G,) - H'( G,.»)

where H’ replaces G° in G, inducing G,.,. Furthermore, because G'(G,) cannot
exist, vertices 4, D are distinct and so are vertices B,C. This in turn assures that
induced cubic graph G,.,is simple. Let W, be a subgraphs of G, induced by {4°,

B’, C', D'}, Similarly, let W, be a subgraph of G, , induced by {4’, B’}. For
every spanning tree of G,., we will identify globally unique spanning trees of G,

with identical edges, except for the edges implied by #; and W,. In particular,

for any spanning tree 7)(G,.,, W) in G,.; there are four distinct spanning trees of
type T)(G,, W) in G,, which can be identified as follows:

11 (G, W)) contains edges 4°B’, B'C’, C'D’ € E(W)),
T,I(G,,, W) contains edges B'C’, C’D’, D'A’ € E(W)),
Ti(G,, W) contains edges C'D’, D'A’, A'B’ € E(W)),
7}4(6,,, W) contains edges D’4’, A’B’, B'C’ € E(W)).

el
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In addition each T;J_(G,,, W) contains edges E(T\(G,.;, Wo)) —E(Wy),for4>j> 1.
Spanning trees are assured in above four scenarios because otherwise a cycle in
T(G,.;, W) is implied.

Consider now F(G,.;, W>). Clearly, Fi(G,.;, W) does not include edge 4°B".
So, by definition of spanning tree there exists exactly one corresponding path
P43 (G,.) from vertex 4’ to vertex B’ in G,.; that includes exactly two edges
from H'( G,.2). So, we have four cases to consider.

Case 3.1: Pyg (Gny) =A’A ...BB’.
Corresponding path in G, is defined by P, (G,) = A’A ...CB’. Then
corresponding unique spanning trees in G, are identified as follows:

1. (G, G’(G,) contains edges 4'D’, B'C’ € E(W)),
2. £,(G, G’(G,) contains edges B'C’, C'D’ € E(W)),
3. #,(G, G’(G,) contains edges 4°D’, C'D’ € E(W)).

In addition each ’z",j(G,., W;) contains edges E(Fi(G,, W), for 4 2 j = 1.
Spanning trees are assured in above three scenarios because in each case every
combination of two edges does not create a cycle together with P, 5. (G,).

Case 3.2: P4g(Gp.y)) =A'A ...CB".
Corresponding path in G, is defined by P45 (G,) = A'A ...CC". Then
corresponding unique spanning trees in G, are identified as follows:

Fi,(Gn G*(G,)) contains edges A’D’, B'C’ € E(W)),
T,z(G,‘, G*(G,)) contains edges B'C’, C'D’ € E(W)),
?}3(G,., G3(G,J) contains edges A'B’, A’'D’ € E(W)),
F; 4(G,,, G’(G,,)) contains edges A’'B’, C'D’ € E(W)).

W N -

In addition each T"/(G”' W) contains edges E(Fi(G,., W), for 4 = j > 1.
Spanning trees are assured in above four scenarios because in each case every
combination of two edges does not create a cycle together with P, (G,).

Case 3.3: P43(G,.3) =A’'D ...BB".
Corresponding path in G, is defined by D’D ... BB’. Then corresponding unique
spanning trees in G, are identified as follows:

1. (G, G’(G,) contains edges 4'D’, B'C’ € E(W)),
2. £,(Gn G’(G,)) contains edges A'B’, B'C’ € E(W)),
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3. £,(G» G°(Gy) contains edges 4°D’, C'D’ € E(W)),
4. F,(Gn G*(G,) contains edges A’B’, C'D’ € E(W)).

In addition each T,j(G» W) contains edges E(F(G,, W), for 4 > j > 1.
Spanning trees are assured in above four scenarios because in each case every
combination of two edges does not create a cycle together with Py5: (G,).

Case 3.4: P4g(Gp.)) =A’D ...CB".
Corresponding path in G, is defined by D'D ...CC’. Then corresponding unique
spanning trees in G, are identified as follows:

1. %(Gn G'(G,) contains edges A'D’, B'C’ € E(W)),
2. F,(G, G'(G,) contains edges A'B’, B'C’ & E(W)),
3. (G, G°(Gy) contains edges A'B’, A'D’ € E(W)).

In addition each % j(G,,, W) contains edges E(Fy(Gp.,, W), for 4 > j > I
Spanning trees are assured in above three scenarios because in each case every
combination of two edges does not create a cycle together with P45 (G,).

So, by Lemma 2.2 it follows that #(G,.;) < (1/3)1(G,) < (1/3)t(Q,) < t(Ond),
which is a contradiction. It means that G, does not contain C;, where k=4,

Case 4: Cycle Cy is of length at least k=5.
Then we can transform G*(G,) — H*(G,.) as illustrated in Figure 7.

A C
A’ D’
X v,
B g D
Us
G’ H

Figure 7 - Transformation G*(G,) — H’(G,3)
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where H’ replaces G’ in G, inducing G,.,. Dashed lines in Figure 7 represent
path vsvs ...vyv;, where £ > 5. Furthermore, because G! (G,) cannot exist, vertices
A,B are distinct and so are vertices C,D. This in turn assures that induced cubic
graph G,.; is simple.

Let W, be a subgraphs of G, induced by {4, B, B’, C, C’, D'}, and let ¥,
be a subgraph of G,.; induced by {4’, B, C, D’}. For every spanning tree of Gy,
we will identify globally unique spanning trees of G, with identical edges,
except for the edges implied by W, and ;. Edge 4°D’ (or BC) does not exist in
G, because it would imply a cycle 4’B'C'D’A’ (or BCC'B’B) of length 4 — a
contradiction. Edge 4 ’C (or D’B) does not exist in G, because it would imply a
cycle A’B’C’CA’ (or D'C’B'BD’) of length 4 — a contradiction. So, based on the
transformation illustrated in Figure 7, W, consists of edges E(W,) = {A’B,CD’}.
Hence, there are four cases to consider.

Case 4.1: Fi(G,.,, W) contains neither 4'Bnor CD’,
Then corresponding unique spanning trees in G, are identified as follows:

¥ I(G,,, W) contains edges A 'B’, B'C’ € E(W)),
T’z(G”’ W) contains edges BB',B'C’ € E(W)),
Fi,(Gn W) contains edges B'C",CC" € E(W)),
¥ (G» W) contains edges B'C',C'D’ € E(W)).

LN -

In addition each ?}/G,,, W) contains edges E(F(Gp., W), for42j>1.

Case 4.2: Ti(G,.;, W) contains 4 'B and does not contain CD".
Then corresponding unique spanning trees in G, are identified as follows:

1. %G, W) contains edges A’B’,BB',B'C’ € E(W)),
2. 7,(Gn, W) contains edges A'B',BB",CC’ € E(W),
3. ¥#,(G, W) contains edges 4'B',BB’,C'D’ € E(W)).

In addition each ’ﬂj(G,,, W) contains edges E(Fi(Gn.2, W))) —{A'B},for3>j=1.

Case 4.3: F(G,.,, W,) contains CD’ and does not contain A4 'B.
Then corresponding unique spanning trees in G, are identified as foliows:

1. %,(Gn W) contains edges CC',C'D",C'B’ e E(W)),
2. T,»z(G,,, W) contains edges CC',C'D", BB’ € E(W,),
3. ?}S(G,‘, W) contains edges CC',C’D',A'B’ € E(W,).
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In addition each T,-J.(G,., W) contains edges E(F{(Gp.;, W) — {CD '}, for3=>j>1.

Case 4.4: T(G,.,, W) contains 4'Band CD’,
Corresponding unique spanning trees in G, are identified as follows.

1. %, (G, W,) contains edges 4B’ BB’,CC",C'D’ € E(W,).

If we remove either CC' or C'D’ from ¥; ,(Gn W) then an induced graph /, must

consist of two components, which are trees. In addition, vertices C,D’ must
belong to two different components in J,. This means that either vertices C, 4’ or
vertices D’, 4’ belong to two different components in either case. If vertices C, 4’
belong to two different components then we obtain

2. ﬂz(G,., W) contains edges 4 'B*,BB',B'C’,CC’ € E(W ).
Otherwise, when vertices D', 4’ belong to two different components we obtain
2. F,(Gn W) contains edges 4A'B".BB',B'C",C’'D’ € E(W)).

If we remove either A°B’ or BB’ from F; (G W)) then an induced graph /, must

also consist of two components, which are trees. In addition, vertices 4’,B must
belong to two different components in I, This means that either vertices 4°,D’
or vertices B,D’ must belong to two different components in either case. If
vertices 4, D’ belong to two different components then we obtain

3. i",’(G,,, W) contains edges A 'B’,B°C',CC",C'D"' € E(W)).
Otherwise, when vertices B,D’ belong to two different components we obtain
3. ?}3(6,,, W) contains edges BB’ B’C",CC',C’D"’ € E(W,).

In addition each EJ(G"’ W) contains edges E(F(G,,, Wj) — {A’B, CD'}, for 3>
izl

So, by Lemma 2.2 it follows that 1(G,.;) < (I/3)4G,) < (1/)Q,) <
(O, 2), which is a contradiction. It means that G, does not contain C;, where
k>=35.

Hence, based on Cases 1,2,3,4 every edge which belongs to a cycle in G,
must also belong to a subgraph X_.; of G,. This implies that G, must contain at
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least four K;.; subgraphs. Otherwise, G, = O, that implies a contradiction.
Consequently, G, must contain G’ (Figure 8), where AC and BC do not belong
to any cycle. But then we can transform G*(G,) — H’(G,.,) as illustrated in
Figure 8.

A
®—<
C A :‘: B
e B A

Figure 8 - Transformation G*(G,) — H°(G,.,)

Since 1(G'(G,)) = 24 and t(H*(G,.;)) = 8, it follows from our assumption that
HG,.0) = (1/3)(G,) < (1/3)t(Qy) < t(Qn.2) - a contradiction. u]

Finally, generalization of the result obtained for cubic graphs in this paper
to all regular graphs (with possible strict inequality) would be a more
challenging goal.
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