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Abstract

Let G be a graph, and let ¢ and b be nonnegative integers such
that 1 < a < b, and let g and f be two nonnegative integer-
valued functions defined on V(G) such that a < g(z) < f(z) < b
for each z € V(G). A spanning subgraph F of G is called a frac-
tional (g, f)-factor if g(z) < d%(z) < f(z) for all z € V(G), where
d&(z) = ¥.ep, h(e) is the fractional degree of z € V(F) with
E; = {e: e = zy € E(G)}. The isolated toughness I(G) of a graph
G is defined as follows: If G is a complete graph, then I(G) = +o0;
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else, 1(G) = min{ziZls; : § C V(G),i(G - 5) 2 2}, where i(G - 5)

denotes the number of isolated vertices in G — S. In this paper, we
prove that G has a fractional (g, f)-factor if §(G) > I(G) 2 -"Sba;ll+l.
This result is best possible in some sense.
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1 Introduction

We consider only finite undirected simple graph G with vertex set V(G)
and edge set E(G). For z € V(G), we denote by dg(z) the degreeof z in G,
by 6(G) the minimum vertex degree of G and by Ng(z) the set of vertices
adjacent to z in G. For any S C V(G), we define Ng(S) = UzesNg(z). Let
S and T be disjoint subsets of V(G). We denote by eg(S,T) the number
of edges joining S and T'. For a subset S C V(G), we denote by G[S] the
subgraph of G induced by S and by G — S the subgraph obtained from G
by deleting vertices in S together with the edges incident to vertices in S.
A vertex set S C V(G) is called independent if G[S] has no edges. For any
S € V(G), we use (G — S) to denote the number of isolated vertices of
G - S. The isolated toughness I(G) of a graph G is defined by Ma and Liu
(1] as follows.

I(G) = min{ (G! lS) S C V(G),iG-S) > 2},
if G is not complete; otherwise, I(G) = +o0.

Let g(z) and f(z) be two nonnegative integer-valued functions defined
on V(G) such that g(z) < f(z) for each £ € V(G). Then a spanning
subgraph F' of G is called a (g, f)-factor if g(z) < dp(z) £ f(z) for all
z € V(G). If g(z) = a and f(z) = b for each z € V(G), then a (g, f)-factor
of G is called an [a, b]-factor of G. If g(z) = f(z) = k for each z € V(G),
then a (g, f)-factor of G is called a k-factor of G.

Let h(e) € [0, 1] be a function defined on E(G) and dy(z) = 3. g, h(e),
where E; = {e: e = zy € E(G)}. Then d%(z) is called the fractional de-
gree of z in G. We call k an indictor function if g(z) < d(z) < f(z)
holds for each z € V(G). Let E* = {e: e € E(G),h(e) # 0} and G, be a
spanning subgraph of G such that E(Gr) = E*. We call G}, a fractional



(g, f)-factor. Similarly, we define the fractional [a, b]-factor and the frac-
tional k-factor of G, where a, b and k are nonnegative integers. The other
terminologies and notations not given in this paper can be found in [2,3].

Many authors have investigated (g, f)-factors [4-7] and [a, b]-factors(8-
10]. The following results on fractional (g, f)-factors and fractional [a, b}-
factors and fractional k-factors are known.

Theorem 1 1! Let G be a graph, and let g and f be two non-negative
integer-valued functions defined on V(G) such that g(z) < f(z) < dg(z) for
each z € V(G). If (f(z) — k)da(y) = (de(z) — k)g(y) for each z,y € V(G)
with = # y, then G has a fractional (g, f)-factor containing any k edges of
G. Where k is a non-negative integer.

Theorem 2 2 Let k > 2 be an integer, and let G be a graph of order n
such that n > 4k — 6. Then

(1) If kn is even, and bind(G) > 5%;—1_%"#312, then G has a fractional k-
factor; and

(2) If kn is odd, and bind(G) > GFREL then G has a fractional k-
factor.

Theorem 3 [1® Suppose that G is a graph with 6(G) > k and I(G) > k,
where k is a positive integer. Then G has a fractional k-factor.

Theorem 4 [1® Let G be a graph and a < b be positive integers. If the
minimum degree of G and the isolated toughness of G satisfying 6(G) 2>
I(G) > a—1+ %, then G has a fractional [a, b]-factor.

2 The Proof of Main Theorem

In this paper, we give an isolated toughness condition for a graph
to have a fractional (g, f)-factor. Our theorem is a more general form of
Theorem 3 and Theorem 4 in a certain sense.

Theorem 5 Let G be a graph, and let a and b be integers such that 1 <
a £ b, and let g and f be two nonnegative integer-valued functions defined
on V(G) such that a < g(z) < f(z) < b for each z € V(G). If §(G) >
I{G) 2 ﬂba—_ll + 1, then G has a fractional (g, f)-factor.

The proof of Theorem 5 depends on the following theorems.
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Anstee [14] obtained the necessary and sufficient condition for a graph
to have fractional (g, f)-factor by algorithm. Liu [15] proved it by graphical
methods.

Theorem 6 (1415 Let G be a graph, and let g and f be two nonnegative
integer-valued functions defined on V(G) such that g(z) < f(zx) for each
z € V(G). Then G has a fractional (g, f)-factor if and only if for any
SCV(G),

9(T) — de-s(T) < f(8),

where T = {z:z € V(G) — S,dg-s(z) < g(z)}.

Theorem 7 18 Let H be a graph and a > 1 be an integer, and let Ty, - - - ,
Ta-1 be a partition of V(H) such that dy(z) < j for Vx € T; (T; may be
empty sets), j =1,--- ,a—1. Then there erist an independent set I and a
covered set C of H such that

a—1 a-1
Y (a=de < (a-1)) (a-ij

=1 i=1

where i; =.|In7}'|r CJ‘=|C”TJ'|:J'=1,'“ ye— 1.

The proof of Theorem 5. Since §(G) > ﬂ";—ll +12b2g(z), if G
is a complete graph, then G has a (g, f)-factor, and then G has a fractional
(9, f)-factor. In the following we suppose that G is not a complete graph.

Suppose that G satisfies the assumption of theorem, but it has not a
fractional (g, f)-factor. Then, by Theorem 6, there exists a subset S of
V(G) such that

9(T) - dg-s(T) > f(5), (1)
where T = {z:z € V(G) - S, dg-s(z) < g(z)}.

We choose subsets S and T such that |T'| is minimum and S and T
satisfy (1).

Here, we prove the following claims.

Claim 1. dg_s(z)<g(z)-1<b-—1lforeachzeT.

Proof. Suppose that there exists a vertex z € T such that dg_g(z) >
g(z). Then the subsets S and T — {z} satisfy (1), which contradicts the

choice of T'.
Completing the proof of Claim 1.

Claim 2. |S]>1.
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Proof If |S| =0, then we have
9(T) - de—s(T) < £(S5).
This contradicts (1). This completes the proof of Claim 2.
Let Tj ={z:z €T, dg_s(z) = j}, and {Tj| =¢;, 5 =0,1,--- ,b—1.
Set H = G[T1UTaU- - -UTy_), we have dy(z) < j for Vz € T;. According
to Theorem 7, there exist an independent set I and a covered set C of H
such that
b—1 b-1
D ob—i)e S (b=-1)> (b - 5)is, (2)
i=1 j=1
‘where i; = |INTy|, ¢; =|CNTy], 5 =1, ,b—-1.
Let’s assume that I be a maximal independent set of H. Put W =
G-S-T,U=SUCU(Ng(I)nV(W)). Then
b—1
U< IS1+ D 44 (3)

J=1

and
b—1

G-U)2to+ ) i) (4)
Jj=1
where £y is the number of isolated vertices in T.
Here, we prove the following claim.
Claim 3. |U|2> (G -U)I(G).
Proof The proof splits into two cases.
Casel. i(G-U)>2.
According to the definition of I(G), we obtain
IU| 2 i(G - U)I(G).

Case 2. i(G-U)<1.
In view of (4), we get that
b—1
12iG-U)2to+ ) i

j=1
Thus, there exists at most an integer jo such that ¢j, = 1and 1 < jo < b—1.
Therefore, H is a complete graph. Let vg be a vertex of H. Then, we have

Ul |SUC U (Ne(I)nV(W))|
|S| + dg—-s(vo) = da(v) = 6(G)
I(G) > i(G - U)I(G).

2
2
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Completing the proof of Claim 3.
According to (3), (4) and Claim 3, we have

b—1 b—1
IS1+ D jij 2 I(G)(to + ) is)- (5)
Jj=1 j=1

According to (1) and a < g(z) < f(z) < b for each z € V(G), we

obtain
bT| - de-s(T) > g(T) — dg-s(T) > f(S) > a|8]. (6)

By (5) and (6), we get that

bto + Z(b 4)ij + Z(b j)e; > alS|

j=1 Jj=1
b-1 b—1
> aI(G)to+1(G)Y ;= is)
j=1 j=1
b—-1
= Y _(@I(G) - aj)i; + atl(G),
j=1
that is,
bto + Z(b 5)is + Z(b = d)e; > Z(af (G) - aj)is + atal(G).  (7)
i=1 j=1

Since I(G) > Y=V 1, we have aI(G) > o(¥82 1 1) > b. Then by
(7), we obtain

b—1 b-1 b—1
D (b—)i;+ D _(b—d)e; > D _(al(G) - aj)i;. (8)
j=1 j=1 j=1

In view of (2) and (8), we obtain

b—1 b-1 b—-1
BY _(b—3)i; = (b-1)D (b—i)is+ Y _(b— i)

Jj=1 Jj=1 Jj=1
b-1 b=-1
2 ) (-3 +Y (b—i)e
=1 Jj=1
b—1
> Y (al(G) - aj)i.
Jj=1
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ie., ,
-1

> (b(b - 5) — aI(G) + aj)i; > 0. (9)

=1

Let ®(j) = b(b - j) — al(G) + aj. By b > a, we have ®'(j) < 0.
Moreover, by I(G) > 221 4 1, we get ®(1) = b(b— 1) — al(G) +a < 0.
Thus, we have

@(J)SO» j=1,---,b-1

Thus, we get that

b1
> (b(b - ) - aI(G) + aj)i; < 0,
i=1

which contradicts (9).

From the argument above, we deduce the contradiction. Hence, G has
a fractional (g, f)-factor.
Completing the proof of Theorem 5.

Remark Let a = b. Then, we have g(z) = f(z) = a and I(G) > a.
In the following, let us show that the condition I(G) > a in Theorem
5 can not be replaced by I(G) > a — &, where ¢ is any positive real
number. We construct a graph H from K, ,2, K,_; and (ne + 1)K, as
follows. Let V(Kpa3) = {Z1,%2,"** ,Tnat1,* " ,Tnaz}, V((ne + 1)K;) =
{y1,92,-** s Yna+1} and V(Ko_1) = {21, 22, - , o1}, where n is any pos-
itive integer and let E(H) = E(Kpq2) U E(Ka-1) U (UR2! ziys) U {uv :
u € V(K ..1) v € (na+ 1)K1}. Set S = V(K,-1 UV (Kpa2))- Obviously,
I(H) = &‘,;'&‘fl—“ =a-— 1+1 and where n is large enough and for any given
positive real number ¢, I(H) =a— = +1 2a—e¢. Let S=V(K,_;) and
T = V((na + 1)K,). Then, we obtain

a|T|=dy-s(T) = a|T|—|T| = (a—1)|T| = (a—1)(nra+1) > a(a—1) = a|S|.

By Theorem 6, there are not any fractional a-factors in H. In the above
sense, the result in Theorem 5 is best possible.

Acknowledgments. The authors would like to express their grati-
tude to the referees for their very helpful and detailed comments in im-

proving this paper.
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