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Abstract

In this study, we obtained lower and upper bounds for the Euclid-
ean norm of a complex matrix A of order n x n. In addition, we
found lower and wupper bounds for the spectral norms
and Euclidean norms of Hilbert matrix, its Hadamard
square root, Cauchy-Toeplitz and Cauchy-Hankel matrices in the
forms H = (1/ (i +3 = 1)} ;o , HOV? = (1/ (i + 5~ )*)} jo0, T =
(1/(g+ (i = R, j=, and Hn = [1/(g + (i + 5)R)]7,-, , respectively.

Keywords: Hilbert matrix; Cauchy-Toeplitz matrix; Cauchy-Hankel
matrix; Norm; Lower and Upper bounds.

1 Introduction and Preliminaries

Let A = (ai;) be an n X n symmetric matrix with all positive entries. Then
the Hadamard inverse of A is defined by A°(-1) = (1/ay;)};_, , and the

Hadamard square root by 4°/2 = (a;j/ z)zfj:l [6].
The matrix
H=(1/G+7-1))7j= (1.1)

is well known as Hilbert matrix. Hence the Hadamard square root of
Hilbert matrix is denoted by

HOYV2 = (1/(Gi+35 —- 1)V?)7,.,. (1.2)
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Let C = [1/(z: — yj)|}j=1(zi # ¥;) be a Cauchy matrix and T,, =
[t,-_g]:";:lo be a Toeplitz matrix. In generally Cauchy-Toeplitz matrix is
being defined as

1 n
Th=|———— 1.3
= (3
where h # 0, g and h are any numbers and g/h is not integer. Toeplitz
matrices are precisely those matrices that one constant along all diagonals
parallel to the main diagonal, and thus a Toeplitz matrix is determined by
its first row and column.
On the other hand, let H, = [hi4;]7;2, be a Hankel matrix. Every
n x n Cauchy-Hankel matrix is of the form

o= [ 04

where h # 0, g and h are any numbers and g/h is not integer. Hankel
matrices are symmetric.

Recently, there have been several papers on the norms of Cauchy-
Toeplitz matrix and Cauchy-Hankel matrix [1,2,4,5]. Refs. [4,5] are
related to the spectral norm of Cauchy-Toeplitz matrix. In [5], a lower
bound for the spectral norm of Cauchy-Toeplitz matrix was obtained by
Tyrtyshnikov taking g = 1/2 and h = 1 in the (1.3). Parter proved that
singular values could be related to eigenvalues of certain Hermitian Toeplitz
matrices corresponding to Laurent-Fourier series [4]. Gungor [9] obtained
_lower bounds for the spectral norm and Euclidean norm of Cauchy-Toeplitz
and Cauchy-Hankel matrices in the forms (1.3) and (1.4) by taking g = 1/2
and h =1 [8]. Solak, Turkmen and Bozkurt (7] obtained upper bounds for
the I, norm of the Hilbert matrix and its Hadamard square root.

In this paper, firstly, we have established lower and upper bounds for
the Euclidean norm of a complex matrix A of order n x n using B matrix
defined as in [8]. In Section 3, we have obtained upper and lower bounds
for Euclidean norms of the Hilbert matrix and its Hadamard square root.
In Section 4, we have established upper and lower bounds for Euclidean
norms of Cauchy-Toeplitz and Cauchy-Hankel matrices in the forms (1.3)
and (1.4) by taking g = 1/2 and h = 1. In Section 5, we have found upper
bounds for spectral norms of the Hilbert matrix and its Hadamard square
root. In Section 6, we have obtained upper bounds for spectral norms of
Cauchy-Toeplitz and Cauchy-Hankel matrices in the forms (1.3) and (1.4)
by taking g = 1/2 and h =1 . Consequently, we have given an example
related to all of these bounds which are found.

Now, we give some preliminaries related to our study. Let A be an
n x n complex matrix. Let o;(A4)s (¢ = 1,...,n) such that o, (A) >
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02 (A) > ... > o, (A) be the singular values of A . Its well known Euclidean
norm of matrix A is

IAlE = 0% (A) + 0% (A) + ... + o2 (A) (1.5)

and also the spectral norm of the matrix A is

- ({AH
4l = , [ mex (47 4), (16)

where ); is an eigenvalue of A” A and A¥ is conjugate transpose of matrix

A
A function ¥ is called a psi (or digamma) function if

¥(z) = ;z(% {log[T(z)]}

where

[~}
I(z) = / 14t
0
The n th derivate of a psi function is called a polygamma function, i.e.
¥ 9) = 52 (V6) = g {5 (nir@) | 15

If n = 0 then ¥(n,z) = ¥(z) = & {In[['(z)]}. On the other hand, if a > 0
and b are any numbers and n is a positive integer, then

nllnéo\ll(a,n +b) =0 [3].
Euler-Mascheroni constant, v, is defined by

n~—00
k=1

To minimize the numerical round-off errors in solving the system Az =
b, it is normally convenient that the rows of A be properly scaled before
the solution procedure begins. One way is to premultiply by the diagonal

matrix i { o o } o
SN @ (A T (A [ '

where 7; (A) is the Euclidean norm of the i—th row of A and a;, ay, ..., ap
are positive real numbers such that

n
v = lim (Z% ~In (n)) = 0.577215664901533....

aZ+al+..+a2=n. (1.8)
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Clearly, the Euclidean norm of the coefficient matrix B = DA of the

scaled system is equal to \/n and if &) = a3 = ... = @, = 1 then each row

of B is a unit vector in the Euclidean norm. Also, we can define B = AD,
. (23] 27} Qp

D=dia, , yeeny , 1.9

oot atn) (19)

where ¢; (A) is the Euclidean norm of the i—th columm of A. Again,
IBllg = vn and if &y = a2 = ... = an = 1 then each column of B is
a unit vector in the Euclidean norm.

Since the matrices PA, AP and A have the same singular values for
any permutation matrix P, we assume, without loss of generality, that the
rows and columns of A are such that

1 (4) <72 (A) £... < (4), (1.10)

c1(A) <c(A) £...<¢cn(4), (1.11)

and a;’s in (1.8) are ordered in such a way that
0<ap<..<a2<q. (1.12)

Let A = (a;;) and B = (b;;) be n x n matrices. The Hadamard product
of A and B is defined by Ao B = (a;;b;;). Let A, B and C be m x
n matrices. If A = B o C then

llAllz < 7a (B)en(C) . [11]

Theorem 1 [10] Assume that A and B are two arbitrary n x n matrices
with the singuloar values

on(A)<..<01(A), op(B)<...<01(B).
Then the singular values
on(AB) £..<0,(AB)
of the matriz AB satisfy
0i (AB) = 6,0, (A) = n;0:(B), 0n(B) £6; < 01(B), on(4) <n; < 01(4)
and

i (AB) = wi\/0i(A) 0:(B), V/on(A)0on(B) S wi < vo1(4)01(B)

where 1 <i< n.
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2 Lower and upper bounds for the Euclidean
norm of a complex matrix

Theorem 2 Let A be an n x n complez matriz. Let a;’s and r; (A) s
(ci(A) ’s) be as in (1.12) and (1.10),(1.11), respectively. Then

\/n.max{c'i(lA), 3 (A)} < Allg < vn.min{c2 (4), r2 (A)}. (2.1)

Qn

Proof. Firstly, we can write Theorem 1(a) in the form
i (AB) = 0,0 (A) = n;0:(B)
where 0, (B) <80; <01(B), on(A) <n; < 01(A), 1 <i< n. Hence, we

obtain -
on(B)oi(A) £ 0i(AB) < 01(B)o;(A) (2:2)

nd
; on(A)oi(B)<0i(AB) < 0,(A)0o;(B). (2.3)

By applying B = AD and B = DA matrices to (2.2) and (2.3),
respectively, we have

on(D)oi(A) L 0i(B) Lo1(D)o;(4).
Hence, (2.1) is obvious. =

Corollary 3 Let A be ann xn complez matriz. Let a;’s and r;(A) s
(ci(A)’s) be asin (1.12) and (1.10)((1.11)), respectively. Then

max {c} (4), ¢ (A
Proof. Since ]
7 lAllg < 1I4ll,, (2.5)

then we obtain (2.4) from (2.1) . =

3 Lower and upper bounds for norms of the
Hilbert matrix and its Hadamard square
root

Theorem 4 Let the matriz H and a;’s be as in (1.1) and (1.12), re-
spectively. Then

N TS DEST6ND) Vr(-¥@n+1)+ 2

< < .
- <IHlls < — (31)
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Proof. Let the matrix H be as in (1.1). We have
a(H)=n (H) = \/-—\I’ (1,271.) +‘Il(1,'n.)

and

2
en (H) =rn (H) = \ﬁ‘l’(l,n-* 1)+ %-
By applying these equalities to (2.1), we obtain (3.1).
Corollary 5 Let the matric H and ;’s be as in (1.1) and (1.12) , respec-

tively. Then
-¥(1,2n)+¥(1,n
QI ICD < A, (2)

=
Proof. The proof is obvious from (2.5) and (3.1). m

Theorem 6 Let the matriz H°Y/2 and oy ’s be as in (1.2) and (1.12), re-
spectively. Then

VaUDERIQ)P
a1 -

VA +7)

- (3.3)

i,

Proof. For the matrix H°}/2 in (1.2) we have

a (H°1/2) =r (H°1/2) =+1/¥(2n) — ¥ (n)

en (H01/2) =r, (Hol/2) - \/W

These equalities substitute in (2.1), then we obtain (3.3). m

and

Corollary 7 Let the matriz H°Y/? and o;’s be as in (1.2) and (1.12), re-
spectively. Then
VI (2n) - T (n) <
531

Proof. The proof is obvious from (2.5) and (3.3). =

H°1/2||2 . (3.4)

4 Lower and upper bounds for the Euclid-
ean norms of Cauchy-Toeplitz and Cauchy-
Hankel matrices

We substitute ¢ = 1/2 and h =1 in T, and H, matrices in the forms
(1.3) and (1.4).
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Theorem 8 Let the matric T, and a;’s be as in (1.3) and (1.12),
respectively. Then

b, i dd
o< | Tallg < { c, 5{ : ec;)en (41)
where
V(@ (L3+n) +2)
a= - ,
,_ V(YLD e (L3)
= .
and

v e )

Qn

Proof. For the matrix 7,, in (1.3) we have

Cmin (Tn) = Tmin (Tn) = \/(\I' (l,% +n) + %2)

If n is odd, the equality become

o (Ti) = Timax (Tr) = \/ (-v(3)+e (1))

If n is even, we have

cmax (Tn) = Tmax (Th) = \/ (—w (1, "T“) + ¥ (1, 1—;_1‘))

These equalities substitute in (2.1), then we obtain (4.1). =

Corollary 9 Let the matriz T, and o;’s be as in (1.3) and (1.12),
respectively. Then

\/\11(1,%+n)+"72

Qi

STl - (4.2)

Proof. The proof is obvious from (2.5) and (4.1). m
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Theorem 10 Let the matriz H, and a;’s be as in (1.4) and (1.8), re-
spectively. Then

NG ) P \/ n(-¥(1n +§ ) g

Proof. For the matrix Hy, in (1.4) we have

e (Ha) = o (H,) = \/-\1: <1,2n+ g) +U (1,n+ g)
e (Ho) = 1o (Hy) = \ﬁw (l,n+g) -4—§+%2.

These equalities substitute in (2.1), then we obtain (4.3). ®

Corollary 11 Let the matric H, and o;’s be as in (1.4) and (1.12),
respectively. Then

V¥ (L2m+ ) +2(Ln+])

)

< [ Hll, - (4.4)

5 Upper bounds for spectral norms of the
Hilbert matrix and its Hadamard square
root

Theorem 12 Let the matriz H be as in (1.1) . Then

IHl, < V(¥(n+2) - 1+7)(T(n+1)+7). (5.1)
Proof. Let H = Ao B such that
1 r . 1 1 1 ... 1
1 7 s 1 1 1
V2 V3 ntl Vi V3 Vat
A= . . . . ) B= . . . .
1 1 ) 1 1 1 ' 1
n Vntl Ot en=1 IV = SRR s | (5.2

Since ||H||, < 72 (A4) ¢ (B) where
72 (A) = Tmax (4) = V¥(n+2) = 1+~

¢1 (B) = tmax (B) = V/¥(n+1) +~

and

we have (5.1). =
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Theorem 13 Let the matriz H°'/2 be as in (1.2). Then
| H°1/2||2 <2vm—1. (5.3)
Proof. Let H°Y/2= Ao B such that
1 v
1 1 . 1
A= Vv VB VA==t

Lo
Vva JaR T et
1 1 . 1

1

1 1

and

B= ) :
1 1 ' 1
VA= SV,
Since 3% 2= < 2y — 1 (see [12], p. 191) and [|H*Y2||, < 75 (A) e (B)
k=1

n+1 n
- — / 1 — — 1
where 13 (A) = rmax (A) = PR and ¢ (B) = ¢max (B) = TR we

have

H°1/2 < n+l 1 n 1
llz‘\;ﬁ ;_k

and

n+l 1 n 1 n 1
|H°1/2"2 < \ ZTISJZW gz_k <2vn-1.
Thus the proof is completed. m

6 Upper bounds for spectral norms of the
Cauchy-Toeplitz and Cauchy-Hankel ma-
trices

Theorem 14 Let the matriz T, be as in (1.3). Then, for n < 75 we have

de, if n odd
I T2 ll, s{ df if n even (5.4)
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where

d= %\/-4\1: (1,—% +n) +16 + 272,

e \/_1+27+41n(2)+‘1' (-3)+2(3)

f=\/—1+27+41n(2)+\11(%—g) +\II(%+§>

Forn > 75 we have

and

j-k, if n odd

"Tn”2 < { Jl, if n even (55)
where
j= %\/‘;’9‘1’ (—% +n) + 9y +181n(2),
n n
k= \/—1+2'y+41n(2)+‘11 (-3)+2(3)
and

1 n 1 n
l—\/—1+27+41n(2)+\1'(5—5) +‘I’(§+§)

Proof. We can partition the matrix T,, as in (5.2). Hence, rmax (4) =
71 (A) for n <75 and rmax (A) =72 (A4) for n > 75 where

r1 (A) = %\/—4\1: (1,—% +n) +16 + 272

ro (A) = 331-\/6-}-9\11 (-% +n) + 97+ 18In(2).

On the other hand, we obtain that if n is odd

e B) = (B)= [T 49 (D) 79 3):

and if n is even

Cmax (B) = cg+1 (B)=\/—1+2'y+4ln(2)+\ll(%—g) +\IJ(%+§)

Consequently, we complete the proof using ||Tn|l; < Tmax (A4) Cmax (B) in-
equality. ®
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Theorem 15 Let the matriz H, be asin (1.4). Then
IHall; < st (5.6)

where

5= %\/225\1: (n + %) — 690 + 225 + 4501n (2)

and

t= %\/ —465 + 2250 (n + g) + 2257 + 4501n (2)

Proof. We can separate the matrix H, as in (5.2). Hence, we find that
Tmax (A)=r1(A) and cmax (B)=c1(B) where

r(A) = 1—15- 225 (n + ;) — 690 + 225y + 4501n (2)

and

1 (B) = 1—15 —465 + 2250 (‘n + g) + 225y + 4501n (2).

Since ||Hpll; £ 71(A) ¢, (B), then we have (5.6). =

7 Numerical Results

We will take oy = a2 = ... = ap, =1 in the following examples.

Example 16 For Euclidean norm and spectral norm of the matrizx H in
(1.1), we have the following values:

n | VR(=8(L2n) + ¥ (L) [H|g Jn(-T(1n+1)+2
1 1 1 1

5 | 0.7620912678 1.580006263] 2.705190484

10 | 0.7341356330 1.785527123| 3.936708944

20 | 0.7204959276 1.969813453 5.650067686

50 | 0.712431279 2.190011373| 9.014246318

70 | 0.7109056921 2.265522786| 10.68421703

100| 0.7097637513 2.342915545] 12.78664890

150 | 0.7088769155 2.427902440 15.67620604
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n \/_\I, (1127") +\I’(1,n) "H”2
1 1 1
5 0.340817575 1.567050691
10 0.231540711 1.751919670
20 0.161107787 1.907134720
50 0.100752997 2.076296683
70 0.084969482 2.129987511
100 0.709763751 2.182696098
150 0.057879557 2.237881172

Example 17 For Euclidean norm and spectral norm of the matriz H°/?
in (1.2), we obtain the following values:

Example 18 For Euclidean norm and spectral norm of the mairiz T,

n [ /A@ED) - @) | B, [Vr@mtD+)
1 1 1 1
5 1.930848155 2.540934711 3.378855822
10 2.680991240 3.657243232 5.411994322
20 3.757135564 5.218441843 8.482617114
50 5.908350783 8.295614384 14.99867551
70 6.983637691 9.825598761 18.39289463
100 8.340584092 11.75280118 22.77581506
150 10.20894186 14.40295066 28.95992210
n [T —Tm | [E7,
1 1 1
5 0.863501546 2.533602599
10 0.847803870 3.638302962
20 0.840121052 5.180584414
50 0.835566980 8.219123246
70 0.834704357 9.730118667
100 0.834058409 11.63380279
150 0.833556611 14.25184035

in (1.3), we have the following values:

n

Q

(£

C

2

3.293982380

3.527668414

4

10

7.095575494

9.389605035

9.731864996

20

9.984780219

13.61887703

13.90666781

50

15.73976102

21.90272099

22,12421193

70

18.61279498

26.00862001

26.20825404

100

22.23691102

31.17407718

31.3522020

150

27.22536182

38.26868659

38.42448073

260




a

I Tn]l

b

3.974352763

4.636090306

5.033222957

5.066628363

6.340772176

6.726399068

15

8.661504678

11.69193376

12.00134391

25

11.15212634

15.30932629

15.57998231

55

16.50497178

22.99753429

23.21265519

75

19.26421943

26.93804649

27.13337163

105

22.78495608

31.95424116

32.12955369

n

\Z\I'(l,%+n)+1’23

1Tl

2

2.329197278

3.070367517

5

2.265865087

3.141589238

10

2.243817987

3.141592654

20

2.232664730

3.141592654

50

2.225938350

3.141592655

70

2.224654507

3.141592655

100

2.223691102

3.141592654

150

2.222041485

3.141592655

where a, b and ¢ are as in Theorem8.

Example 19 Let

e i

and

z=\/—\1'(

1,2n+g) +\I'(

3
1L,n+ E)),

S A Y O )

have the following values:

1,2n+g)+\ll(

For Euclidean norm and spectral norm of the matriz H, in (1.4), we

3
1,n+-§).

n

Z

(L8P

1

0.4

0.4

y
0.4

5

0.6141574492

0.930512018

1.318601265

10

0.6575454725

1.174318993

2.017603855

20

0.6814839896

1.404290252

2.982988539

50

0.6966457419

1.680614853

4.853491421

70

0.6996051574

1.774381680

5.775191463

100

0.7018400888

1.869665496

6.932199628

150

0.7035875505

1.973249681

8.518616380
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n

r4

&l

1

0.4

0.4

5

0.2746595610

0.928688586

10

0.2079341358

1.167692602

20

0.1523844526

1.387415415

50

0.0985205856

1.639373809

70

0.0836188099

1.720877333

100

0.0701840088

1.801238715

150

0.0574476829

1.885540666

Example 20 For
following values:

spectral norm of the matriz T, in (1.3), we have the

| Tn"2

df

3.141592654

7.366097824

3.141592654

8.179833685

3.141592655

9.136873637

3.141592655

9.462565390

[Tl
2

de

2

5.564437344

5.564437344

3.141589238

6.412027625

3.141592654

7.850792583

3.141592654

8.422840878 |

3.141592655

9.230201877

3.141592655

9.527818181

[T

gl

3.141592655

8.419138280

3.141592655

8.589459599

90

3.141592655

8.662279969

100

3.141592654

8.813621669

120

3.141592654

9.075231689

150

3.141592655

9.394989966

n

"Tn"2

j.k

77

3.1415926565

8.437880157

85

3.141592655

8.580065696

95

3.141592654

8.739913278

105

3.141592655

8.883626136

125

3.141592654

9.133735532

1565

3.141592655

9.441924362

where d,e, f, 5,k and | are as in Theorem1.
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Example 21 For spectral norm of the matriz H, in (1.4), we have the
following values:

where s and t are as in Theorem 15.

n [ Hx [l 5.t

1 0.4 0.5634522484

5 | 0.928688586 | 1.342041979
10 | 1.167692602 | 1.866181652
20 | 1.387415415 | 2.464305738
50 | 1.639373809 | 3.321609166
70 | 1.720877333 | 3.647231374
100 { 1.801238715 | 3.996142247
150 | 1.885540666 | 4.396030327

Example 22 For spectral norm of the matrizx H in (1.1), we have the
Sollowing values:

n [N V(¥n+2)-1+7)(¥(n+1)+7)
3 | 1.408318927 1.409294543
5 1.567050691 1.819569546

10 | 1.751919670 2.432315074

20 | 1.907134720 3.085014086

50 | 2.076296683 3.978927375

70 | 2.129987511 4.311791100

100 | 2.182696098 4.666140608

150 | 2.237881172 5.070221639

Example 23 For spectral norm of the matriz H°Y/? in (1.2), we have
the following values:

n | [|HYZ, | 2vn-—1

3 | 1.920845897 | 2.464101616
5 | 2.533602599 | 3.472135956
10 | 3.638302962 | 5.324555320
20 | 5.180584414 | 7.944271912
50 | 8.219123246 | 13.14213562
70 | 9.730118667 | 15.73320053
100 | 11.63380279 19

150 | 14.25184035 | 23.49489743

We have seen that the bounds for a; = ap = ...

=a, =1 are

better than those for o;’s (i =1,...,n) such that o? +a2 +...+ a2 =n.
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For example, let a; = 0.5, s =09, a3 =11, oy = 13 and a5 =
V1.04. For these values, we find 0.5862240520 < ||Hl||z < 5.410380968
and 1.485267813 < || H°Y/?||; < 6.757711644 , respectively.

Acknowledgement 24 This work is supported by coordinating office of
Selcuk University Scientic Research Projects.
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