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Abstract

A graph is a cactus if any two of its cycles have at most one
common vertex. In this paper, we determine the graph with the
largest spectral radius among all connected cactuses with n vertices
and edge independence number g.
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1. Introduction

Let G = (V, E) be a simple graph with vertex set V(G) = {v1,v2,...,n}
and edge set E(G). Let A(G) be a (0, 1)-adjacency matrix of G. Since
A(G) is symmetric, its eigenvalues are real. Without loss of generality,
we can write them as A\ (G) > A(G) = -+ > A,(G) and call them the
eigenvalues of G. The characteristic polynomial of G is just det(A] — A(G)),
and is denoted by P(G;A). The largest eigenvalue A\;(G) is called the
spectral radius of G, denoted by p(G). If G is connected, then A(G) is
irreducible and by the Perron-Frobenius theory of non-negative matrices,
p(G) has multiplicity one and there exists a unique positive unit eigenvector
corresponding to p(G). we shall refer to such an eigenvector as the Perron
vector of G.

Two distinct edges in a graph G are independent if they are not adjacent
in G. A set of pairwise independent edges of G is called a matching in G,
while a matching of maximum cardinality is a maximum matching in G
denoted by M(G) or M. The cardinality |M| of a maximum matching M
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of G is commonly known as its edge independence number denoted by g.
An edge e = uv which belongs to M is called an M-saturated edge and
both u and v are called M-saturated vertices.

The investigation on the spectral radius of graphs is an important topic
in the theory of graph spectra. Recently, the problem concerning graphs
with maximal or minimal spectral radius of a given class of graphs has been
studied extensively. For related results, one may refer to [1, 3-11, 14, 15]
and the references therein.

A graph is a cactus, or a treelike graph, if any two of its cycles have at
most one common vertex. Cactuses have been studied by several authors,
for example, one may see [3, 12]. Clearly, cactuses are a generalization of
unicyclic graphs. In this paper we study the spectral radius of cactuses
with n vertices and edge independence number g, and prove the following
theorem.

Theorem 1. Letn > 8, g > 2 and G be a connected cactus with n vertices
and edge independence number q. Then

P(G) £ p(Cnyg),

and the equality holds if and only if G = C, 4, where C, 4 is the cactus
depicted in Figs. 1, p(Cn,q) is the largest root of the equation

M—nA?2-2(g-1)A+(n—2¢+1)=0.

2. Preliminaries

Denote by C, and P, the cycle and the path, respectively, each on n ver-
tices. An internal path of G as a walk vy ...v, (8 = 1) such that the
vertices v, v1,..., v, are distinct, d(vo) > 2, d(v,) > 2, and d(v;) = 2,
whenever 0 < ¢ < s. And s is called the length of the internal path. For
v € V(G), N(v) denotes the set of all neighbors of vertex v in G, and the
degree of v, written by d(v), is the cardinality |N(v)| of N(v). Let G—z or
G —zy denote the graph that arises from G by deleting the vertex z € V(G)
or edge zy € E(G). By d(z,y) we will denote the distance between vertices
z and y in G. A pendant vertex of G is a vertex of degree one. A pen-
dant edge is an edge with which a pendant vertex is incident. Denote by
C(n, q) the set of all connected cactuses with n vertices and edge indepen-
dence number ¢, and by C(n, k,q) the set of all connected cactuses with
n vertices, k cycles and edge independence number ¢. C;%; € C(n,k,q) is
depicted in Figs. 1, where s+t = k. The terminology not defined here can
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be found in [2].

n—2g+1
JPR————

Figs. 1. Cn 4 and C;’t

In order to complete the proof of our main result, we need following
lemmas.

Lemma 1 [14, 11]. Let G be a connected graph and p(G) be the spectral
radius of A(G). Letu,v be two vertices of G and d,, be the degree of vertezv.
Suppose vy,v,...,vs € NW)\N(u)(1 < s<d,) and z = (21,Z2,...,Zp)
is the Perron vector of A(G), where x; corresponds to the vertez v; (1 <
i < n). Let G* be the graph obtained from G by deleting the edges vv; and
adding the edges uv; (1 <1 < s). If z, 2 z,, then p(G) < p(G*).

By Lemma. 1, we obtain easily following Lemmas 2 and 3 which may be
regard as immediate consequences of Lemma 1.

Lemma 2 [9]. Let G be a connected graph and let e = uv be a non-pendant
edge of G with N(u) N N(v) = 0. Let G* be the graph obtained from G by
deleting the edge uv, identifying u with v, and adding a pendant edge to
u(=v). Then p(G) < p(G*).

Lemma 3 [9]. Let G,G',G" be three connected graphs pairwise disjoint.
Suppose that u, v are two vertices of G, u' is a vertex of G’ and u" is a
vertez of G”. Let G be the graph obtained from G, G', G" by identifying,
respectively, u with v’ and v with u”. Let G5 be the graph obtained from G,
G', G" by identifying vertices u,u’,u"”. Let G3 be the graph obtained from
G,G',G" by identifying vertices v,u',u”. Then either p(G,) < p(G3) or
p(G1) < p(Gs).

The following two lemmas are often used to calculate the characteristic
polynomials of graphs.

Lemma 4 [13]. Letu be a vertez of G, and let C(u) be the set of all cycles
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containing u. The characteristic polynomial of G satisfies

P(G;X) =AP(G-uN)— Y. P(G-u—v;0)—2 Y P(G\V(2);)).
vEN(u) ZeC(u)

Lemma 5 [13). Let e = uv be an edge of G, and let C(u) be the set of all
cycles containing e. The characteristic polynomial of G satisfies

P(G;A)=P(G—-eA)—P(G—u—-v;A)—2 Z P(G\V(Z); )).
ZeC(u)

Lemma 6. Letn > 8,5>0,t>1 and C::Z € C(n,k,q) be the graph
shown in Figs. 1. Then
PO > pCHE).

Proof. Applying Lemma 5 to the edges uv and ab of s‘;’i’f;l_l and C;,’ )
respectively, we have

P(CIHHLG N = P(CRIEE N - A (W2 —1)*HHP((t - 1)Py; A)
—2XY (A2 — 1)*HH1P((t — 1)Py; A),
P(CJI;N) = PCLIE N - NPCL N
—2XF2(A2 — 1)* I P((t — 1) Py; N).
When t = 1, applying Lemma 4 to the vertex v of C:I',j_ 1, We have
P(CY{; N) = PCHTI_1 N)
A£+l()\2 _ 1)9+j+1 _ )\ZP(C:,'{; : )‘) _ 2At(A2 _ 1)8+j
N2 1) 45 4+25 - 1)A3+ (25 —2)A2 = (1 —1)A + 2]
M2 =1) 7120 + 5+ 25 = 1)AZ + (25 = 2)A% = (i — 1)A + 2]
M2 - 1) 26145+ 35— 2)A2 = (i = 1)A + 2] > 0
for all A > p(Cy*{) > 2. So
P(C i) > p(C).

When t > 2, applying Lemma 4 to the vertex v of C;;’,j_ 1» We have

[V

P(Cy{; )= P(C i )

= A - )THP((E - 1)y A) - PGy A)
—2XI (A2 = 1)*H P((t — 1)Py; ))

= A2 -1)"H1(A1 = 3A2 + 1)2F(N).
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where

fQ) = (@s+2t+i+35—3)A7T+ (2842t —4)A®

—(6s + 4t + 4i + 35 — 8)A5 — (6s + 2t — 10)1*

+(2s+2t+4i+5—6)A3+ (25 =8N = (i—1)A+2

7(2s + 2t +i + 5 — 3)A° + 7(2s + 2t — 4)A?

—(65 + 4t + 45 + 35 — 8)A° — (65 + 2t — 10)A*

+(25+2t+4i+5—6)A3+ (25~ 8)AZ— (i —1)A +2

= (88410t +3i+ 45 — 13)A° 4 (8s + 12t — 18)\*
+(28+ 2 +4i4+35—6)A3+ (25 —8)AZ— (i —1)A+2

> (585 + 72t + 25i + 295 — 97)A3 4 (58s + 84t — 134)\2
—(Et-1)A+2>0

for all A > p(C:,’,j ) > V7. So

-
p(C i) > p(ChY).

v

This completes the proof.

3. The Proof of Theorem 1

The proof of Theorem 1 follows immediately from the following theorem
and the fact that the spectral radius strictly increases if we add an edge to

a connected graph.

Theorem 2. Letn > 8, ¢ > k > 1 and G be a connected cactus with n
vertices, k cycles and edge independence number q. If n =2k + 1, then

1+V/8kF1
L —_—
p(G) € ——5——,

and the equality holds if and only if G =Cy'3. If n# 2k +1, then
p(G) < p(CE™ T,

and the equality holds if and only if G = C,':,;zq"'l’q—k'l, where
p(C,:329+1"’_k_1) is the largest root of the equation

M_o(n—gq+k+1))A2-2k2+(n—-2¢+1)=0.

Proof. Choose G € C(n,k,q) such that the spectral radius of G is as
large as possible. Denote the vertex set of G by {vy,vs,...,vs } and the
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Perron vector of G by z = (z1,z3,...,Z,), Where z; corresponds to the
vertex v; (1 £ 1 < n). Assume that M is 2 maximum matching in G. Then
|M| = ¢ and there are three cases for a non-pendant edge e = uv in G: (1)
e = uv is an M-saturated edge; (2) e = uv has exactly one M-saturated
vertex; (3) e = uv is not M-saturated but both « and v are M-saturated
vertices. In the following, we will first prove some facts.

Fact 1. Each edge e = uv of case (1) or case (2) in G is a pendant edge
unless e belongs to a cycle of length three. There exists no internal path of
length greater than one in G unless the path belongs to a cycle of length
three.

Proof of Fact 1. If there exists a non-pendant edge e = uv of case (1) or
case (2) in G such that e = uv does not belong to any cycle in G or belongs
to a cycle of length greater than three, then N(u) N N(v) = 0. Carrying
out the transformation described in Lemma 2, we can transform G into a
graph G* € C(n,k, q) such that edge e = uv is a pendant edge. by Lemma
2, we have p(G) < p(G*). This contradicts the definition of G.

If there exists an internal path of length greater than one in G such that
the path does not belong to any cycle of length three, then there exists a
non-pendant edge of case (1) or case (2) in the path, a contradiction.

Fact 2. There exists a maximum matching of G such that any M-saturated
edge e = uv belonging to a cycle C3 = uvwu of length three has d(u) =
d(v) = 2.

Proof of Fact 2. For any M-saturated edge e = uv belonging to a cycle
C3 = wvwu of length three, by Lemma 3, at most one of v and v has degree
greater than two. Assume that d(u) > 3. If w is a M-saturated vertex,
then d(w) > 3. Applying Lemma 3 to vertices w and u, we can obtain a
graph G* € C(n, k, g) such that p(G*) > p(G), a contradiction. If w is not
M-saturated, then d(w) = 2. Otherwise, applying Lemma 3 to vertices w
and u, we derive a contradiction similarly. Let

M=M-{uw}+{wv}

then M’ is also a maximum matching of G and d(v) = d(w) = 2.
Fact 3. All cycles of the graph G have exactly one common vertex.

Proof of Fact 3. We first prove that any two cycles of the graph G have
one common vertex. Assume, on the contrary, that there are two disjoint
cycles Cp and C,. Let vivs ...y be a shortest path joining the cycles Cp
and C; of length I — 1, where | > 2, the vertex v; belongs to the cycle C,
and the vertex v; belongs to the cycle C,. Note, any path joining the cycles
C, and C, starts from v, and ends to v; (in the opposite case G is not a
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cactus). Without loss of generality we may assume that z; > z;. Denote
by vi41 and vy the neighbors of v; which belong to C,. By Fact 1 and
Fact 2, neither vjvj4+; nor vvi4o is M-saturated. Let

G* =G — { vy, vve2} + {vivig, vivige }

Then G* € C(n, k,q) and by Lemma 1 we have p(G*) > p(G), a contradic-
tion. Hence, any two cycles have one common vertex.

Secondly, we prove that any three cycles have exactly one common
vertex. In the opposite case the graph G is not a cactus, because there
exist cycles which have more than one common vertex.

From the above arguments, we have that all cycles of the graph G have

exactly one common vertex.

Fact 4. In the graph G, any tree T attached to a vertex v of one of the
cycles consists of only some pendant edges and pendant paths of length
two. '

Proof of Fact 4. In the opposite case, there exists a tree T with root
v; € C, such that T does not consist of only some pendant edges and
pendant paths of length two. Then there exists a vertex v; of T' such that
d(vi,v;) = 1 and d(v;) > 3. Otherwise, there exists an internal path of
length greater than one in T, a contradiction. Furthermore, there exists an
M-saturated pendant edge at v; and v;, respectively. Otherwise, v;v; is a
non-pendant edge of case (1) or case (2). Denote by v;v;4+1 and vjv;4; the
two M-saturated pendant edges. Let

N i) \ {vivj, vivi1} = {viz1,..., viza}

and
Nwi)\ {vjvi,vjvi01} = {vign, ..., v}

If z; > z;, let

G" =G —{vyr,-.., v } + {viy1,...,vive }.
If z; < zj, let

G* =G —{vzy,...,vi%a } + {vjz1,...,VTa }.

Then G* € C(n,k,q). By Lemma 1, we have p(G) < p(G*), a contradic-
tion.

Fact 5. Let v; be the common vertex of all cycles in G. Then any pendant
edge which is not M-saturated and any pendant path of length two is
attached to v;.
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Proof of Fact 5. In the opposite case, by Lemma 3 we can obtain a graph
G* € C(n,k,q) such that p(G) < p(G*), a contradiction.

Fact 6. All cycles of G have length three.

Proof of Fact 6. Suppose, on the contrary, that there exists a cycle Cp, of
length p > 4. Let Cp = v1v2... vpv; and let wy, wa, ..., w; € N(v1)\V(Cp).
Then there exists an M-saturated pendant edge at v; and v, respectively.
Otherwise v1v, is a non-pendant edge of Case 1 or Case 2, a contradiction.
Let vyw; and vyv, be the M-saturated pendant edges. Applying Lemma
1 to vertices v; and vy, similarly to the proof of Fact 4, we can obtain a
graph G* € C(n, k, g) such that p(G) < p(G*), a contradiction.

By Facts 1-6, we have G = C;}. If n = 2k + 1, then ¢ = k and
i=j=t=0, namely G = 02;3. Applying Lemma 4 to the vertex v of
C,?:g , we have

P(CRSi A) = (A +1)(A2 = X — 2k)(A% — 1)+,

and so

1+vBE+1
pG) = —F—

If n # 2k + 1, by Lemma 6 we further have G = C‘,':’"Oz"*l“"k'l.

Applying Lemma 4 to the vertex v of C ,’:'32‘”'1' 9-k-1 we have

P(C;B2q+1,?—k-1; )\) = An—zq(AZ - l)q_zf(A)’

where
FO) =M —(n—q+k+1)N2 -2kA+n—-2¢+1.

So p(C,’:’32q+1’q_k'l) is the largest root of the equation
M_o(n—g+k+1)A2-2kA+n—-29+1=0.
This completes the proof.

Let £ = 1. By Theorem 2 we have the following corollary which is one
of the main results of [9] and [15].

Corollary 1. Let n > 8, ¢ > 2 and G be a unicyclic graph with n vertices
and edge independence number q. Then

p(G) < p(CT* 72,
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and the equality holds if end only if G = C?,o_z"“’q_z, where p(CT g2atha=2)
is the largest root of the equation

M-(n-g+2)A2-2A+n-29+1=0.
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