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Abstract

We consider unitary graphs attached to Z2 using an analogue of the Eu-
clidean distance. These graphs are shown to be integral when 7 is odd or the
dimension d is even.

1 Introduction

Let I be an additive group. For SC I',0 € Sand S-! = {—s:s € S} = S, the
Cayley graph G = C(T, S) is the undirected graph having vertex set V(G) =T’
and edge set E(G) = {(a,b) : a — b € S}. The Cayley graph G = C(T', S)
is regular of degree |S|. For a positive integer n > 1, the unitary Cayley graph
Xn = C(Zn,Zr) is defined by the additive group of the ring Z,, of integers
modulo n and the multiplicative group Z;, of its units. So X, has vertex set
V(Xn) =%, ={0,1,...,n — 1} and edge set

E(X,) = {(a,b) : a,b € Zpn,ged(a - b,n) = 1}.

The graph X, is regular of degree |Z;,| = ¢(n), where ¢(n) denotes the Euler
function. Unitary Cayley graphs are highly symmetric and have some remarkable
properties connecting graph theory and number theory. More information about
the unitary Cayley graphs can be found in Berrizbeitia and Giudici [3], Dejter and
Giudici [5], Fuchs [6, 7], and Klotz and Sander [8].
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In this paper we study higher dimensional unitary Cayley graphs over Z2 us-
ing an analogue of the Euclidean distance. Precisely, we define for positive inte-
gers n and d the unitary Euclidean graph T with vertex set V(T,(,d)) =73 and
edge set

d
B(T{®) = {(a, b) s d(a,b) =Y (a— b)* € z,:} .

i=1
Note that the Euclidean graph E}f) (r) over a finite ring R, r € R, is the Cayley
graph with vertex set V(ES)(r)) = R? and the edge set

d
E(EQ (1)) = {(a, b):d(a,b) =) (@i —b;)* = r} :
t=1

In [12], Medrano, Myers, Stark and Terras studied the spectrum of the Eu-
clidean graphs over finite fields and showed that these graphs are asymptotically
Ramanujan graphs. In [13], these authors studied the same problem for the Eu-
clidean graphs over rings Z, for an odd prime power g. They showed that over
rings, except for the smallest case, the graphs (with unit distance parameter) are
not (asymptotically) Ramanujan.

In [2], Bannai, Shimabukuro and Tanaka showed that the Euclidean graphs
over finite fields are always asymptotically Ramanujan for a more general setting
(i.e. they replace the Euclidean distance by nondegenerated quadratic forms).
Vinh recently applied these results to several interesting combinatorial problems,
for example to tough Ramsey graphs (with P. Dung) [15], Szemeredi-Trotter type
theorem and sum-product estimate [17] and the Erd6s distance problem [16].

The main purpose of this paper is to study the spectrum of unitary Euclidean
graphs. We will show that the spectrum of unitary Euclidean graphs consists en-
tirely of integers when n is odd or the dimension d is even. A graph is called
integral, if its spectrum consists entirely of integers. This property seems to be
amazingly widespread among Cayley graphs on abelian groups. One of the first
papers in this direction is due to L. Lovész [9], who proved that all Cayley graphs,
(cube-like) graphs, on Z$ are integral where Z,, is the ring of integers modulo n.
See also W. So {14] for related results.

The rest of this paper is organized as follows. In Section 2 we summarize
preliminary facts that will be used throughout the paper. In Section 3 we prove
the main theorem of this paper stating that unitary Euclidean graphs are integral if
n is odd or the dimension d is even. We conjecture that the result is also true for
the odd dimensional case.

2 Preliminaries

We define the following conventions which will be used throughout the paper.
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o The notation (P) where P is some property, means that it’s 1 if P is satis-
fied, O otherwise.

For any k € Z! we define I,(k) to be the unique element I,,(k) € Z,

satisfying
kIo(k)=1 modn.

For any integer k£ and z = (z1,...,Z4) € Zﬁf, k| z if and only if k | z; for
alll £i<d.

The exponential:
en(z) = exp{2miz/n}.

We write n = p7* ... p;* for the prime decomposition of the positive integer
n. For any nonempty subset I C {1,...,t}, set py = ILigsrp; and np =
n/p;. We define the integral square root of a positive integer n to be the
largest integer d such that d | = for any z satisfying n | z2. It is easy to
show that if n = p7* tt then d = L= 1= We define 7,
=p; ...p; thena = pg v Py . we define n; to
be the integral square root of ny and p’, =n/ n', It is clear that py | p} and

n|np; for any nonempty subset I of {1,...,t}.

In the following discussion, we will need to consider Gauss, Ramanujan and

Gauss character sums over rings. For ¢ € Z;, define the Gauss sum

Gn(c) = Z en(ck?). 2.1
k€Z,
If n odd, then
Gr(1) = env/n, 2.2
where
e =1 ifn=1( mod4)
"7 1 ¢ ifn=3( mod 4).
If (¢,n) = 1 and n odd, then
Ga(e) = (=) Gal), 23)

here the Jacobi symbol (£) is defined as follows:

e If n = pis prime then

(c) {1 pte, cissquare modp

-1 pte, cisnonsquare modp
p 0 »ple
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e Ifn=pi'...p;* is the prime decomposition of n then

©-G) -G

If (¢,n) =1landn =2 mod 4, then
Gn(c) =0. 2.4)

If (c,n) =1andn =0 mod 4, then
Gnlc) = (%) (1 +i%)Vn. 2.5)

For more information about the Gauss sums, we refer the reader to Section 1.5 in

(4.

For ¢ € Zy, define the Ramanujan sum

ren)= ) en(ke). (2.6)

(k,n)=1

For positive integers n, 7, Ramanujan sums have only integral values. Precisely,
we have (cf. Corollary 2.4 of [11])

r(e,n) = u(tc)%, @

where . = a";’;‘j. Here p denotes the Mobius function.
For ¢ € Z,, define the Gauss character sum for the quadratic character by

Galxi0)= ) (g) en(ck). (2.8)

k€Z,

Then it can be shown that
c
Cn(x:0) = (Z) Calx, 1) 29)
If n is square-free and (¢, n) = 1 then
Gn(c) = Gn(x; ). (2.10)

In general we have the following relation for the Gauss character sum and the
Gauss sum.

Lemma 2.1 For any odd positive integernand c € Z,, we haven | G, (1)Grn(x, ).
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Proof From (2.9), it is sufficient to assume ¢ = —b? for some b € Z},. We have

Z en(bz + kz?) = Z en(bz) Z en(z%k)

k€Zn ,xEZn TE€EZy keZ,
= ) en(bz)8(nlz?)n
xezn
= nA,

for some integer A. Thus, by the Inclusion-Exclusion principle, we have

nA = ) en(bz+ka?)
keZnﬂ:eZn
= Y enlbz+ka®)— Y (=) Y eq(bz +prsz?)
(kn)=1 Ic{1,...,t} SEZLn,
TE€EZn 2EZLn
= Y en(k(z + In(2k)b)? — I (4k)b?)
(k,n)=1
€Dy
Y. (=)Vlnr 37 b(nrla®)eq(be)
IC{1,..,t} Z€%n
= ) ek - L@k — D (=1)ln; Y ep(bs)
(kn)=1 IC{1,...,t} €2,
Iezn
= Y Ga(klea(—L.(4R) - > (-1)'lns6(p}lb)p}
(k,n)=1 IC(1,...,t}
= > G,,(1)( )en(—ln(4k)b2)—nB
(k,n)=1
HRDS (I n(4k) ) (—In(4K)b2) —
(k,n)=1

= Ga(1)Ga(x,) ~nB

for some integer B because n|nrp}. The lemma follows. O

3 Unitary Euclidean graphs

Let
Sa(n) := {z = (z1,...,za) € Z%|d(z,0) = Zx €z} (3.1)
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Then the unitary Euclidean graph T is the Cayley graph C(Z2, S4(n)). Recall
that the eigenvalues of Cayley graphs of abelian groups can be computed easily in
terms of the characters of the group. This result, described in, e.g., [10], implies

that the eigenvalues of the unitary Euclidean graph T are all the numbers
=Y ea(*ba), (3.2)

T€Sqa(n)

where b € Z4. We will show that )\, is an integer for any b € Z2 if n is odd or d
is even.
For positive integers n1,ng,n and b € Z¢ ,, , we define

fry n2 (b) = Z €nyns (‘b.x + nlk‘z.x)
kezng ,zezg‘,’"a
fa(d) = > en(’bx+k'z.3)
kezn.zezﬂ

Z en(tb.z + kz.x).
(kn)=1,z€Zd

gn(b)

We first need some lemmas.

Lemma 3.1 For any n,,ng positive integers and b € Zf,mz we have

Frs,na (b) = 8(ma [b)n] fs (), (3.3)
where ¢ € Z2, satisfies b = nc given that 5(n,|b).

Preof We can write £ = ngz; 4+ z2 uniquely where z; € Zﬁl and 2o € Z‘flz.
Then

fra na (b) = Z €ning (tb.:t +ny kt:z:.x)
k€Zn, €24

ninz

= t t ¢
= Z en, (*b.21)en, ny (*b.22 + nyk*xo.22)
kEZn, ,1‘162;{‘ ,=2ez;“2

= Smlb)nf D eniny(bzz +mik'za.zs)
kezng @2623{2

= 6(n1 |b)’ntlifng (C)

This completes the proof of the lemma. O
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Lemma 3.2 Supposethatn = p{* ...p;" is the prime decomposition of a positive
integer n. Then

@) =gn®) = D (1) fpr, (0)- (3.4)
IC{1,...,t}
Proof By the Inclusion-Exclusion principle, we have
fa(d) = Z en(b.z + k'z.2)
k€Z,,x€Zd
E en(®b.z + kiz.2)

(k,n)=1,2€Z2

_ Z (-nin Z en(*b.z + prs'z.z)

IC{1,..,t} 8€Zn, ,c€22
= gn(b) - Z ("l)lllfpx.m(b)x
IC{1,...t}
completing the lemma. a

Lemma 3.3 Supposethatn = pi* ...p:" is the prime decomposition of a positive
integer n. For any b € Z% then

-l
(=) 8(ns|b)né fp; (b).

(3.5)

Ap = > en(*b.3) = 8(nlb)nt+ >

2€Z%:ged(tz.x,n)=1 IC{1,...,t}

Proof By the Inclusion-Exclusion principle, we have

o= Y e(bz)+ Y. (DN en(ha)

z€zd IC{1,....t} ¢2.2€p1 Tm,
= &(n|b)n?
(=pH ¢ ¢
+ Z {T E en(*b.x + h(*z.z — prk))
IC{1,...,t} k€Zpn; h€Zn,z€Z2
= &(n|b)n?
+ > {(";)m Y (e (*bz+hizz) Y e (—hk))}
n nl 0. . ny
IC{1,...,t} T€Z3 RELy k€Zn;

R (=M e
= §(n|b)n® + Z o z en(*bz + hiz.z) ).

IC{1,..ut} z€Z8 heniZyp,
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From Lemma 3.1, it follows that

: (=
A = (njb)n®+ Z Srr,p1 ()
ity P!
~1)Hl
= st Y Esulbnis ).
ic{t.gy PI
This concludes the proof of the lemma. O

If n is odd, we can write gy, (b) in terms of the Gauss and Ramanujan sums.

Lemma 3.4 a) For any odd positive integer n we have

(Gn(1))%Gn(x, —tb.b) dodd

) ={ (G den GO

b) Furthermore, n. | gn(b) for all odd integers n.

Proof a) We have

Z en(*bz + kiz.z)
(k,n)=1
zeZ?

Y en(k(z + In(2k)b).(z + In(2k)b) — In(4k)*b.b)
(k,n)=1,z€Z3

= D en(k'z.a — In(4k)'b.b)
(k,n)=1,2€2d

= > Gi(k)en(—In(4k)'b.b)
(kym)=1

d
= (G.())? ) (g) en(—I.(4k)tb.b)

(kyn)=1

d
- @ ¥ (PED) e-ranyon

(k,n)=1

= G Y (g)den(—‘b.bk)

(k,n)=1

_ {(Gn(l))dG’n(x,—‘b.b) d odd
| (Gn(1))¥r(—tbb,n)  deven

This completes the first part of the lemma.
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b) We have

_ | (Gn(1))%Gn(x,—*bb) dodd
) = {(Gn(l))dr(—ffa.b,n)) doven

ed-1n(d-1/2G, (1)G,(x, —*b.b) dodd
edn/2r(—tb.b,n) d even

Part b) follows immediately from Lemma 2.1 and the fact that the Ramanujan
sums have only integral values. O

We also can write g, (b) in form of the Gauss sums when n is even.
Lemma 3.5 a) Suppose that n is a squarefree even integer and b = {b;}} € Z2,

then
there exists © such that 2|b;

9n<b)={ Xk my=1 an(—Lan(k)10.5)(Gan(k)/2)* 24 b for all .

b) Suppose that 2 | d. For any squarefree even integer n and any vectorb € Z2
we haven | gn(b).

Proof a) We have
gn(b) = Z Z en(b.z + k'z.2)

(kn)=12€Zd

> f[ ( Y enlbiz+ kzz)) .

(k,n)=1i=1 \z€Z,

Suppose that there exists 7 such that 2|b;. If we write b; = 2c then

Y enlbiz+ka?) = Y enlk(z+ cla(k))? - L(k)c?)
TE€EZn x€Zn
en(—In(k)c?)Gn (k)
= 0,
where the last line follows from (2.4). Thus, g,,(b) = 0 if there exists  such that
2|b;. Now, suppose that 2 { b; forall 1 < ¢ < d. We have

gn(b) = Y eam(dtbaz + dk'z.x)
(k,n)=1,ze23

> ean(k (22 + Ion(k)b).(22 + Lin (k)b) ~ Iin(k)*b.0)
(k,n)=1,z€24

d
= Y eun(—Iin(k)'b.b) {]’[ ( Y ean(k(2z+ I4,.(k)b,-)"’) } .

(k,n)=1 i=1 \z€Z,
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Let a; = I, (k)b;, then a; is odd. Set

Si= Y en(k(2z +a:)?). (3.7)
TE€EZn

Substitute £ = z + n into S;, we have

S = % Y eanlk(@z+a:)?)

T€Z2n
1
ol ( Z eqn(kz?®) — Z e4,,(k:z:2))
T€Z4n €223
1
= § (G4n(k) — Z en(sz))
T€Zan

1 1
= -2-(G4,,(k) —2G,(k)) = §G4n(k),
because Gy, (k) = 0 for n = 2 mod 4 and (k, n) = 1. Therefore, we have

gn(®) = Y ean(—Ian(k)b.b)(Gan(k)/2)%.
(k,n)=1

This concludes the proof of part a).

b) If there exists ¢ such that 2|b; then from part a), g,(b) = 0. Suppose that
2 ¢ b; for all 5. Substitute (2.5) into part a). Note that k odd so (1 + i¥)? = 2%
and (1 + i*)* = —4. We consider two cases.

Case 1: Suppose that d = 4d,;. Since 2 { b; for all ¢, we have 4 |* b.b.

g(b) = Z e4ﬂ(‘1471(]‘7)tb'b)(1'{'ik)“xnzdl
(k,n)=1

-tbb
= (-4)hn2 " e,.( 1 I,.(k))
(kyn)=1
= (—4)%n2hpr(-th.b/4,n). (3.8)

Case 2: Suppose that d = 4d; + 2. Since 2 t b; for all 4, we have —tb.b = 2¢
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for some odd c. Let n = 2m for some m odd. We have
gn(b) = Z: e2n(I2'n(k)c)(1 + ik)4d1+2n2dl+1
(kyn)=1
(_l)dx (2n)2d1+1 Z ezn(l2n(k)c)ik
(k,n)=1

(—1)2@nY?A+ N eqm((Lum (k)c)ilem®)
(k,2m)=1

(-—].)d1 (2n)2d‘+1 Z e4m(I4m(k)(c + m))
(k,2m)=1

(D)% @n)24 N epm(Lm(k)(c +m)/2)
(k,2m)=1
= (-1)%"@2n)*2*'7((c +m)/2,n) (3.9
since Iym (k) = k mod 4 and Iy, (k) = Iom (k) mod 2m.

Part b) follows immediately from (3.8), (3.9) and the fact that Ramanujan sums
have only integral values. O

We are now ready to prove the main result of the paper.

Theorem 3.6 Suppose that n is an odd integer or d is an even integer then all
eigenvalues of the unitary Euclidean graph T,(‘d) are integers.

Proof We consider two cases.

Case 1: Suppose that n is odd. From Lemmas 3.1, 3.2 and 3.4, we can show by
induction that n | f,(b) for any positive odd integer » and for any vector b € Z2.
Together with Lemma 3.3, we have Ap’s are integral for all b € Z2.

Case 2: Suppose that d is even. From Lemmas 3.2, 3.4 and 3.5, we can show
by induction that n | f,(b) for any squarefree positive integer n and for any vector
b € Z2. Since p; is squarefree forall I C {1,...,n}, from Lemma 3.3, we have
Ap’s are integral for all b € Z2. This completes the proof of the theorem. a

We conjecture that the same result also holds for odd dimensional cases.

Conjecture 3.7 For any positive integers n. and d all eigenvalues of the unitary
Euclidean graph TED are integers.

From Theorem 3.6, the remaining open case is: n even and d odd.
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