A FIXED POINT THEOREM FOR WEAKLY COMPATIBLE MAPPINGS SATISFYING A GENERAL CONTRACTIVE CONDITION OF OPERATOR TYPE

ISHAK ALTUN AND DURAN TURKOGLU

ABSTRACT. In this paper, we prove a fixed point theorem for weakly compatible mappings satisfying a general contractive condition of operator type. In short, we are going to study mappings $A, B, S, T: X \to X$ for which there exists a right continuous function $\psi: \mathbb{R}^+ \to \mathbb{R}^+$, $\psi(0) = 0$ and $\psi(s) < s$ for s>0 such that for each $x,y \in X$ one has $O(f;d(Sx,Ty)) \leq \psi(O(f;M(x,y)))$, where $O(f;\cdot)$ and f are defined in the first section. Also in the first section, we give some examples for $O(f;\cdot)$. The second section contains the main result. In the last section, we give some corollaries and remarks.

1. INTRODUCTION

Branciari [10] obtained a fixed point result for a single mapping satisfying an analogue of Banach's contraction principle for an integral type inequality. The authors in [4], [7], [8], [9], [13], [19], [25] and [27] proved some fixed point theorems involving more general contractive conditions. The authors in [5] have improved the concept of contractive condition of operator type and proved a fixed point theorem for single mapping using this type condition. In this paper, we establish a fixed point theorem for weakly compatible maps satisfying a general contractive inequality of operator type. This result substantially extends the theorems of the above work.

Sessa [21] generalized the concept of commuting mappings by calling self-mappings A and S of metric space (X,d) a weakly commuting pair if and only if $d(ASx, SAx) \leq d(Ax, Sx)$ for all $x \in X$, and he and others proved some common fixed point theorems of weakly commuting mappings [20]-[23]. Then, Jungck [14] introduced the concept of compatibility and he and others proved some common fixed point theorems using this concept [14]-[17], [26].

²⁰⁰⁰ Mathematics Subject Classification. Primary 54H25; Secondary 47H10. Key words and phrases. Fixed points, weakly compatible mappings, contractive condition of operator type.

Clearly, commuting mappings are weakly commuting and weakly commuting mappings are compatible. Examples in [21] and [14] show that neither converse is true.

Recently, Jungck and Rhoades [16] defined the concept of weak compatibility.

Definition 1 ([16], [24]). Two maps $A, S : X \to X$ are said to be weakly compatible if they commute at their coincidence points.

Again, it is obvious that compatible mappings are weakly compatible. Examples in [16] and [24] shows that neither converse is true. Many fixed point results have been obtained for weakly compatible mappings (see [3], [6], [8], [9], [11], [12], [16], [18] and [24]).

Let $F([0,\infty))$ be class of all function $f:[0,\infty)\to [0,\infty]$ and let $\mathcal O$ be class of all operators

$$O(\bullet;\cdot): F([0,\infty)) \rightarrow F([0,\infty))$$

 $f \rightarrow O(f;\cdot)$

satisfying the following conditions:

- (i) O(f;t) > 0 for t > 0 and O(f;0) = 0,
- (ii) $O(f;t) \leq O(f;s)$ for $t \leq s$,
- (iii) $\lim_{n\to\infty} O(f;t_n) = O(f;\lim_{n\to\infty} t_n),$
- (iv) $O(f; \max\{t, s\}) = \max\{O(f; t), O(f; s)\}$ for some $f \in F([0, \infty))$.

Now we give some examples for $O(f; \cdot)$.

Example 1. If $f:[0,\infty)\to [0,\infty]$ is a Lebesque integrable mapping which is finite integral on each compact subset of $[0,\infty)$, non-negative and such that for each t>0, $\int_0^t f(s)ds>0$, then the operator defined by

$$O(f;t) = \int_0^t f(s)ds$$

satisfies the conditions (i)-(iv).

Example 2. If $f:[0,\infty)\to [0,\infty)$ non-decreasing, continuous function such that f(0)=0 and f(t)>0 for t>0, then the operator defined by

$$O(f;t) = f(t)$$

satisfies the conditions (i)-(iv).

Example 3. If $f:[0,\infty)\to [0,\infty)$ non-decreasing, continuous function such that f(0)=0 and f(t)>0 for t>0, then the operator defined by

$$O(f;t) = \frac{f(t)}{1 + f(t)}$$

satisfies the conditions (i)-(iv).

Example 4. If $f:[0,\infty)\to [0,\infty)$ non-decreasing, continuous function such that f(0)=0 and f(t)>0 for t>0, then the operator defined by

$$O(f;t) = \frac{f(t)}{1 + \ln(1 + f(t))}$$

satisfies the conditions (i)-(iv).

2. MAIN RESULT

Now we give our main theorem.

Theorem 1. Let A, B, S and T be self-maps defined on a metric space (X, d) satisfying the following conditions:

(a)
$$S(X) \subseteq B(X), T(X) \subseteq A(X),$$

(b) for all $x, y \in X$, there exists a right continuous function $\psi : \mathbb{R}^+ \to \mathbb{R}^+$, $\psi(0) = 0$ and $\psi(s) < s$ for s > 0 such that

$$O(f; d(Sx, Ty)) \le \psi(O(f; M(x, y)))$$

where $O(\bullet; \cdot) \in \mathcal{O}$ and

(2.1)
$$M(x,y) = \max\{d(Ax, By), d(Sx, Ax), d(Ty, By), \frac{d(Sx, By) + d(Ty, Ax)}{2}\}.$$

If one of A(X), B(X), S(X) or T(X) is a complete subspace of X, then

- (1) A and S have a coincidence point, or
- (2) B and T have a coincidence point.

Further, if S and A as well as T and B are weakly compatible, then (3) A, B, S and T have a unique common fixed point.

Proof. Let $x_0 \in X$ be an arbitrary point of X. From (a) we can construct a sequence $\{y_n\}$ in X as follows:

$$y_{2n+1} = Sx_{2n} = Bx_{2n+1}$$
 and $y_{2n+2} = Tx_{2n+1} = Ax_{2n+2}$

for all n = 0, 1, Define $d_n = d(y_n, y_{n+1})$. Suppose that $d_{2n} = 0$ for some n. Then $y_{2n} = y_{2n+1}$; i.e., $Tx_{2n-1} = Ax_{2n} = Sx_{2n} = Bx_{2n+1}$, and A and S have a coincidence point.

Similarly, if $d_{2n+1} = 0$, then B and T have a coincidence point. Assume that $d_n \neq 0$ for each n.

Then, by (b),

$$(2.2) O(f; d(Sx_{2n}, Tx_{2n+1})) \le \psi(O(f; M(x_{2n}, x_{2n+1})))$$

where

$$\begin{split} M(x_{2n},x_{2n+1}) &= \max\{d(Ax_{2n},Bx_{2n+1}),\\ & d(Sx_{2n},Ax_{2n}),d(Tx_{2n+1},Bx_{2n+1}),\\ & \frac{d(Sx_{2n},Bx_{2n+1})+d(Tx_{2n+1},Ax_{2n})}{2}\}\\ &= \max\{d_{2n},d_{2n+1}\}. \end{split}$$

Thus from (2.2) we have

$$(2.3) O(f; d_{2n+1}) \le \psi(O(f; \max\{d_{2n}, d_{2n+1}\})).$$

Now, if $d_{2n+1} \ge d_{2n}$ for some n, then, from (2.3) we have

$$O(f; d_{2n+1}) \le \psi(O(f; d_{2n+1})) < O(f; d_{2n+1})$$

which is a contradiction. Thus $d_{2n} > d_{2n+1}$ for all n, and so, from (2.3) we have

$$O(f; d_{2n+1}) \le \psi(O(f; d_{2n})).$$

Similarly,

$$O(f; d_{2n}) \le \psi(O(f; d_{2n-1})).$$

In general, we have for all n = 1, 2, ...,

(2.4)
$$O(f; d_n) \le \psi(O(f; d_{n-1})).$$

From (2.4), we have

$$O(f; d_n) \leq \psi(O(f; d_{n-1}))$$

$$\leq \psi^2(O(f; d_{n-2}))$$

$$\vdots$$

$$\leq \psi^n(O(f; d_0)),$$

and, taking the limit as $n \to \infty$

$$\lim_{n\to\infty} O(f;d_n) \le \lim_{n\to\infty} \psi^n(O(f;d_0)) = 0,$$

which, from (i) and (iii), implies that

(2.5)
$$\lim_{n\to\infty} d_n = \lim_{n\to\infty} d(y_n, y_{n+1}) = 0.$$

We now show that $\{y_n\}$ is a Cauchy sequence. For this it is sufficient to show that $\{y_{2n}\}$ is a Cauchy sequence. Suppose that $\{y_{2n}\}$ is not a Cauchy

sequence. Then there exists an $\varepsilon > 0$ such that for each even integer 2k there exist even integers 2m(k) > 2n(k) > 2k such that

$$(2.6) d(y_{2n(k)}, y_{2m(k)}) \ge \varepsilon.$$

For every even integer 2k, let 2m(k) be the least positive integer exceeding 2n(k) satisfying (2.6) such that

(2.7)
$$d(y_{2n(k)}, y_{2m(k)-2}) < \varepsilon.$$

Now

$$\begin{array}{lll} 0 & < & \delta := O(f;\varepsilon) \\ & \leq & O(f;d(y_{2n(k)},y_{2m(k)})) \\ & \leq & O(f;d(y_{2n(k)},y_{2m(k)-2}) + d_{2m(k)-2} + d_{2m(k)-1}). \end{array}$$

Then by (2.5), (2.6) and (2.7) it follows that

(2.8)
$$\lim_{k \to \infty} O(f; d(y_{2n(k)}, y_{2m(k)})) = \delta.$$

Also, by the triangular inequality,

$$\left| d(y_{2n(k)}, y_{2m(k)-1}) - d(y_{2n(k)}, y_{2m(k)}) \right| \le d_{2m(k)-1}$$

and

$$|d(y_{2n(k)+1}, y_{2m(k)-1}) - d(y_{2n(k)}, y_{2m(k)})| \le d_{2m(k)-1} + d_{2n(k)}$$

and so

$$O(f; |d(y_{2n(k)}, y_{2m(k)-1}) - d(y_{2n(k)}, y_{2m(k)})|) \le O(f; d_{2m(k)-1}),$$

and

$$O(f; \left| d(y_{2n(k)+1}, y_{2m(k)-1}) - d(y_{2n(k)}, y_{2m(k)}) \right|) \le O(f; d_{2m(k)-1} + d_{2n(k)}).$$

Using (2.8), we get

(2.9)
$$O(f; d(y_{2n(k)}, y_{2m(k)-1})) \to \delta$$

and

(2.10)
$$O(f; d(y_{2n(k)+1}, y_{2m(k)-1})) \to \delta$$

as $k \to \infty$. Thus

$$d(y_{2n(k)}, y_{2m(k)}) \leq d_{2n(k)} + d(y_{2n(k)+1}, y_{2m(k)}) \leq d_{2n(k)} + d(Sx_{2n(k)}, Tx_{2m(k)-1}),$$

and so

$$O(f; d(y_{2n(k)}, y_{2m(k)})) \le O(f; d_{2n(k)} + d(Sx_{2n(k)}, Tx_{2m(k)-1})).$$

Letting $k \to \infty$ on both sides of the last inequality, we have

$$\delta \leq \lim_{k \to \infty} O(f; d(Sx_{2n(k)}, Tx_{2m(k)-1}))
\leq \lim_{k \to \infty} \psi(O(f; M(x_{2n(k)}, x_{2m(k)-1}))),$$

where

$$\begin{array}{lcl} M(x_{2n(k)},x_{2m(k)-1}) & = & \max\{d(y_{2n(k)},y_{2m(k)-1}),d_{2n(k)},d_{2m(k)-1},\\ & & \frac{d(y_{2n(k)+1},y_{2m(k)-1})+d(y_{2n(k)},y_{2m(k)})}{2}\}. \end{array}$$

Combining (2.5), (2.6), (2.7), (2.8), (2.9) and (2.10), yields the following contradiction from (2.11):

$$\delta \leq \psi(\delta) < \delta$$
.

Thus $\{y_{2n}\}$ is a Cauchy sequence and so $\{y_n\}$ is a Cauchy sequence.

Now, suppose that A(X) is complete. Note that the sequence $\{y_{2n}\}$ is contained in A(X) and has a limit in A(X). Call it u. Let $v \in A^{-1}u$. Then Av = u. We shall use the fact that the sequence $\{y_{2n-1}\}$ also converges to u. To prove that Sv = u, let r = d(Sv, u) > 0. Then taking x = v and $y = x_{2n-1}$ in (b),

$$O(f; d(Sv, y_{2n})) = O(f; d(Sv, Tx_{2n-1}))$$

 $\leq \psi(O(f; M(v, x_{2n-1}))),$

where

$$M(v, x_{2n-1}) = \max\{d(u, y_{2n-1}), d(Sv, u), d(y_{2n}, y_{2n-1}), \frac{d(Sv, y_{2n-1}) + d(y_{2n}, u)}{2}\}.$$

Since $\lim_n d(Sv, y_{2n}) = r$, $\lim_n d(u, y_{2n-1}) = \lim_n d(y_{2n}, y_{2n-1}) = 0$ and $\lim_n [d(Sv, y_{2n-1}) + d(y_{2n}, u)] = r$, we may conclude that

$$O(f;r) \leq \psi(O(f;r)) < O(f;r)$$

which is a contradiction. Hence from (i), Sv = u. This proves (1).

Since $S(X) \subseteq B(X)$, Sv = u implies that $u \in B(X)$. Let $w \in B^{-1}u$. Then Bw = u. By using the argument of the previous section it can be easily verified that Tw = u. This proves (2).

The same result holds if we assume that B(X) is complete instead of A(X).

Now if T(X) is complete, then by (a), $u \in T(X) \subseteq A(X)$. Similarly if S(X) is complete, then $u \in S(X) \subseteq B(X)$. Thus (1) and (2) are completely established.

To prove (3), note that S, A and T, B are weakly compatible and

$$(2.12) u = Sv = Av = Tw = Bw$$

then

$$(2.13) Au = ASv = SAv = Su$$

and

$$(2.14) Bu = BTw = TBw = Tu.$$

If $Tu \neq u$ then, from (b), (2.12), (2.13) and (2.14)

$$O(f; d(u, Tu)) = O(f; d(Sv, Tu))$$

$$\leq \psi(O(f; M(v, u)))$$

$$= \psi(O(f; d(u, Tu)))$$

$$< O(f; d(u, Tu))$$

which is a contradiction. So Tu = u. Similarly Su = u. Then, evidently from (2.13) and (2.14), u is a common fixed point of A, B, S and T.

The uniqueness of the common fixed point follows easily from condition (b).

3. FINAL REMARKS

Remark 1. Theorem 1 is a generalization of Main Theorem of [5].

If we combine Example 1 and Theorem 1, we have the following corollary, which is Theorem 2.1 of [9].

Corollary 1. Let A, B, S and T be self-maps defined on a metric space (X, d) satisfying the following conditions:

(a)
$$S(X) \subseteq B(X)$$
, $T(X) \subseteq A(X)$,

(b) for all $x, y \in X$, there exists a right continuous function $\psi : \mathbb{R}^+ \to \mathbb{R}^+$, $\psi(0) = 0$ and $\psi(s) < s$ for s > 0 such that

$$\int_0^{d(Sx,Ty)} f(s)ds \le \psi(\int_0^{M(x,y)} f(s)ds)$$

where $f:[0,\infty)\to [0,\infty]$ is a Lebesque integrable mapping which is finite integral on each compact subset of $[0,\infty)$, non-negative and such that for each t>0, $\int_0^t f(s)ds>0$ and

$$M(x,y) = \max\{d(Ax,By),d(Sx,Ax),d(Ty,By), \frac{d(Sx,By)+d(Ty,Ax)}{2}\}.$$

If one of A(X), B(X), S(X) or T(X) is a complete subspace of X, then

- (1) A and S have a coincidence point, or
- (2) B and T have a coincidence point.

Further, if S and A as well as T and B are weakly compatible, then (3) A, B, S and T have a unique common fixed point.

Remark 2. Corollary 1 is a generalization of Theorem 2.1 of [10], Theorem 2 of [19] and Theorem 2 of [27].

Remark 3. Theorem 1 is a generalization of Theorem 2.1 of [24], in fact letting f = I (identity map) and O(f;t) = f(t) = t in (b) (it is obvious that $O(f;\cdot) \in \mathcal{O}$) one has

$$d(Sx,Ty) = O(f;d(Sx,Ty)) \le \psi(O(f;M(x,y))) = \psi(M(x,y)),$$

thus the contraction of Theorem 2.1 of [24] also satisfies (b).

Now we give an example to illustrate Theorem 1.

Example 5. Let $X = \{\frac{1}{n} : n \in N\} \cup \{0\}$ with Euclidean metric and S, T, A, B are self maps of X defined by

$$S(\frac{1}{n}) = \left\{ \begin{array}{ll} \frac{1}{n+1} & \textit{if n is odd} \\ \\ \frac{1}{n+2} & \textit{if n is even} \\ \\ 0 & \textit{if $n=\infty$} \end{array} \right., \quad T(\frac{1}{n}) = \left\{ \begin{array}{ll} \frac{1}{n+1} & \textit{if n is even} \\ \\ \frac{1}{n+2} & \textit{if n is odd} \\ \\ 0 & \textit{if $n=\infty$} \end{array} \right.$$

$$A(\frac{1}{n}) = B(\frac{1}{n}) = \frac{1}{n} \text{ for all } n \in \mathbb{N} \cup \{\infty\}.$$

Clearly $S(X) \subseteq B(X)$, $T(X) \subseteq A(X)$, A(X) is a complete subspace of X and A, S and B, T are weakly compatible.

Now we claim that the mappings S,T,A and B satisfy the condition (b) of Theorem 1 with $O(\bullet;\cdot) \in \mathcal{O}$ defined by $O(f;t) = \int_0^t f(s)ds$, $f \in F([0,\infty))$ defined by $f(t) = \max\{0,t^{\frac{1}{t-2}}[1-\log t]\}$ for t>0 and f(0)=0 and $\psi:\mathbb{R}^+ \to \mathbb{R}^+$ defined by $\psi(s)=\frac{s}{2}$. That is, we claim that the following inequality is satisfies:

$$(3.1) (d(Sx, Ty))^{\frac{1}{d(Sx, Ty)}} \le \frac{1}{2} \left((M(x, y))^{\frac{1}{M(x, y)}} \right)$$

for all $x, y \in X$, since $O(f;t) = \int_0^t f(s)ds = t^{\frac{1}{t}}$ for any $t \in (0,e)$. Since the function $t \to t^{\frac{1}{t}}$ is nondecreasing, we show sufficiently that

$$(d(Sx, Ty))^{\frac{1}{d(Sx, Ty)}} \le \frac{1}{2} \left((d(x, y))^{\frac{1}{d(x, y)}} \right)$$

instead of (3.1). Now using Example 4 of [27], we have (3.2), thus the condition (b) of Theorem 1 is satisfied.

Now suppose that the contractive condition of Corollary 3.1 of [11] is satisfied, that is, there exists $h \in [0,1)$ such that

$$(3.3) d(Sx, Ty) \le hM(x, y)$$

for all $x, y \in X$. Therefore, for $x \neq y$, we have

$$\frac{d(Sx, Ty)}{M(x, y)} \le h < 1$$

but since $\sup_{x\neq y} \frac{d(Sx,Ty)}{M(x,y)} = 1$ one has a contradiction. Thus the condition (3.3) is not satisfied.

If we combine Example 2 and Theorem 1, we have the following corollary.

Corollary 2. Let A, B, S and T be self-maps defined on a metric space (X, d) satisfying the following conditions:

(a)
$$S(X) \subseteq B(X)$$
, $T(X) \subseteq A(X)$,

(b) for all $x, y \in X$, there exists a right continuous function $\psi : \mathbb{R}^+ \to \mathbb{R}^+$, $\psi(0) = 0$ and $\psi(s) < s$ for s > 0 such that

$$f(d(Sx,Ty)) \le \psi(f(M(x,y))),$$

where

(3.4)
$$\begin{cases} f: [0, \infty) \to [0, \infty) \text{ non-decreasing,} \\ \text{continuous function such that} \\ f(0) = 0 \text{ and } f(t) > 0 \text{ for } t > 0, \end{cases}$$

and

$$M(x,y) = \max\{d(Ax,By),d(Sx,Ax),d(Ty,By), \frac{d(Sx,By)+d(Ty,Ax)}{2}\}.$$

If one of A(X), B(X), S(X) or T(X) is a complete subspace of X, then

- (1) A and S have a coincidence point, or
- (2) B and T have a coincidence point.

Further, if S and A as well as T and B are weakly compatible, then (3) A, B, S and T have a unique common fixed point.

Remark 4. Note that if f is absolutely continuous in Corollary 2, then we have Corollary 1. Indeed, if we consider Theorem 39.15 in [1], i.e. " A function $f:[a,b] \to \mathbb{R}$ is absolutely continuous if and only if $f' \in L_1([a,b])$ and

$$f(x) - f(a) = \int_{a}^{x} f'(t)dt$$

holds for each $x \in [a, b]$ ", then we have

$$f(d(Sx,Ty)) = \int_0^{d(Sx,Ty)} f'(t)dt \leq \psi(\int_0^{M(x,y)} f'(t)dt) = \psi(f(M(x,y))).$$

Nevertheless, f has not to be absolutely continuous in Corollary 2. Thus Corollary 2 is a generalization of Corollary 1. The Exercise 8 in [1, Page 383] and Problem 39.8 in [2, Page 386] shows that there exist some functions f which are not absolutely continuous but continuous and satisfying the other condition of (3.4).

Remark 5. Remark 4 shows that operator type contraction is more general then integral type contraction.

Remark 6. We can have new results, if we combine Theorem 1 and some examples of $O(f; \cdot)$.

Acknowledgement 1. The authors thank the referees for their appreciation, valuable comments and suggestions.

REFERENCES

- C. D. Aliprantis and O. Burkinshaw, Principles of real analysis, Academic Press, San Diego, (1998).
- [2] C. D. Aliprantis and O. Burkinshaw, Problems in real analysis, Academic Press, San Diego, (1999).
- [3] M. A. Ahmed, Common fixed point theorems for weakly compatible mappings, Rocky Mountain J. Math. 33 (2003), no. 4, 1189-1203.
- [4] A. Aliouche, A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type, J. Math. Anal. Appl., 322 (2006), no. 2, 796-802.
- [5] I. Altun and D. Turkoglu, A fixed point theorem for mappings satisfying a general contractive condition of operator type, J. Comput. Anal. Appl., 9 (1), (2007), 9-14.
- [6] I. Altun and D. Turkoglu, Some fixed point theorems for weakly compatible multivalued mappings satisfying an implicit relation, Filomat, 22 (1), (2008), 13-23.
- [7] I. Altun and D. Turkoglu, A fixed point theorem on general topological spaces with a τ-distance, Indian J. Math., 50 (1), (2008), 139-148.
- [8] I. Altun and D. Turkoglu, Some fixed point theorems for weakly compatible mappings satisfying an implicit relation, Taiwanese J. Math., Accepted for publication.
- [9] I. Altun, D. Turkoglu and B.E. Rhoades, Fixed points of weakly compatible maps satisfying a general contractive condition of integral type, Fixed Point Theory Appl., Volume 2007 (2007), Article ID 17301, 9 pages, doi:10.1155/2007/17301.
- [10] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29 (2002), no. 9, 531-536.
- [11] R. Chugh and S. Kumar, Common fixed points for weakly compatible maps, Proc. Indian Acad. Sci. Math. Sci. 111 (2001), no. 2, 241-247.
- [12] Lj. B. Ćirić and J. S. Ume, Some common fixed point theorems for weakly compatible mappings, J. Math. Anal. Appl. 314 (2006), no. 2, 488-499.

- [13] A. Djoudi and A. Aliouche, Common fixed point theorems of Gregus type for weakly compatible mappings satisfying contractive conditions of integral type, J. Math. Anal. Appl., 329 (2007), no.1, 31-45.
- [14] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9 (1986), 771-779.
- [15] G. Jungck, Compatible mappings and common fixed points- II, Int. J. Math. Math. Sci., 11 (1988), 285-288.
- [16] G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29 (1998), no. 3, 227-238.
- [17] H. Kaneko and S. Sessa, Fixed point theorems for compatible multi-valued and single-valued mappings, Int. J. Math. Math. Sci., 12 (1989), 257-262.
- [18] V. Popa, A general fixed point theorem for four weakly compatible mappings satisfying an implicit relation, Filomat, No. 19 (2005), 45-51.
- [19] B. E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 2003 (2003), no. 63, 4007-4013.
- [20] B. E. Rhoades and S. Sessa, Common fixed point theorems for three mappings under a weak commutativity condition, Indian J. Pure and Appl. Math., 17 (1986), 47-57.
- [21] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math., 32 (46), (1982), 149-153.
- [22] S. Sessa and B. Fisher, Common fixed points of weakly commuting mappings, Bull. Acad. Polon. Sci. Ser. Sci. Math., 35 (1987), 341-349.
- [23] S. L. Singh, H. S. Ha and Y. J. Cho, Coincidence and fixed points of non-linear hybrid contractions, Int. J. Math. Math. Sci., 12 (1989), 147-156.
- [24] S. L. Singh and S. N. Mishra, Remarks on Jachymski's fixed point theorems for compatible maps, Indian J. Pure Appl. Math., 28 (1997), no. 5, 611-615.
- [25] D. Turkoglu and I. Altun, A common fixed point theorem for weakly compatible mappings in symetric spaces satisfying an implicit relation, Bol. Soc. Mat. Mexicana. Accepted for publication.
- [26] D. Turkoglu, I. Altun and B. Fisher, Fixed point theorem for sequences of maps, Demonstratio Math. 38 (2005), no. 2, 461-468.
- [27] P. Vijayaraju, B. E. Rhoades and R. Mohanraj, A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 2005 (2005), no. 15, 2359-2364.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ARTS, KIRIKKALE UNIVERSITY, 71450 YAHSIHAN, KIRIKKALE / TURKEY

E-mail address: ialtun@kku.edu.tr, ishakaltun@yahoo.com

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ARTS, GAZI UNIVERSITY, 06500-TEKNIKOKULLAR, ANKARA / TURKEY

E-mail address: dturkoglu@gazi.edu.tr