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ABSTRACT. In this paper, we prove a fixed point theorem for weakly
compatible mappings satisfying a general contractive condition of
operator type. In short, we are going to study mappings A4, B, S,T :
X — X for which there exists a right continuous function % :
R+ — R+, ¢(0) = 0 and ¥(s) < s for s > 0 such that for each
z,y € X one has O(f;d(Sz, Ty)) < ¥(O(f; M(z,y))), where O(f;")
and f are defined in the first section. Also in the first section, we
give some examples for O(f;-). The second section contains the main
result. In the last section, we give some corollaries and remarks.

1. INTRODUCTION

Branciari [10] obtained a fixed point result for a single mapping satis-
fying an analogue of Banach’s contraction principle for an integral type
inequality. The authors in [4], [7], (8], [9], [13], [19], [25] and [27] proved
some fixed point theorems involving more general contractive conditions.
The authors in [5] have improved the concept of contractive condition of
operator type and proved a fixed point theorem for single mapping using
this type condition. In this paper, we establish a fixed point theorem for
weakly compatible maps satisfying a general contractive inequality of op-
erator type. This result substantially extends the theorems of the above
work.

Sessa [21] generalized the concept of commuting mappings by calling
self-mappings A and S of metric space (X, d) a weakly commuting pair if
and only if d(ASz,SAz) < d(Az,Sz) for all € X, and he and others
proved some common fixed point theorems of weakly commuting mappings
[20]-[23]). Then, Jungck [14] introduced the concept of compatibility and he
and others proved some common fixed point theorems using this concept
[14)-(17), [26).
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Clearly, commuting mappings are weakly commuting and weakly com-
muting mappings are compatible. Examples in [21] and [14] show that
neither converse is true.

Recently, Jungck and Rhoades [16] defined the concept of weak compat-
ibility.
Definition 1 ([16], [24]). Two maps A,S : X — X are said to be weakly
compatible if they commute at their coincidence points.

Again, it is obvious that compatible mappings are weakly compatible.
Examples in [16] and [24] shows that neither converse is true. Many fixed
point results have been obtained for weakly compatible mappings (see (3],
(6], [8], [9), [11],(12],[16],[18] and [24]).

Let F([0,00)) be class of all function f : [0,00) — [0,00] and let O be
class of all operators

0(.;'): F([0,00)) - F([0,00))
- O(fi)

satisfying the following conditions:
(i) O(f;t) >0 for t > 0 and O(f;0) =0,
(i) O(f;t) < O(f;s) for t < s,
(1) limn—co O(f; tn) = O(f; liMnsco ta),

(iv) O(f; max{t, s}) = max{O(f;1), O(f; 5)}
for some f € F([0,00)).

Now we give some examples for O(f;-).

Example 1. If f : [0,00) — [0, 0] is a Lebesque integrable mapping which
is finite integral on each compact subset of [0,00), non-negative and such
that for each t > 0, fot f(8)ds > 0, then the operator defined by

ousit) = [ seyds
satisfies the conditions (3)-(iv).

Example 2. If f : [0,00) — [0,00) non-decreasing, continuous function
such that f(0) =0 and f(t) > 0 fort > 0, then the operator defined by

O(f;t) = f(t)

satisfies the conditions (i)-(wv).
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Example 3. If f : [0,00) — [0,00) non-decreasing, continuous function
such that f(0) = 0 and f(t) > 0 for t > 0, then the operator defined by

f(t)
O(f;t) = ——
V0= 155
satisfies the conditions (i)-(iv).
Example 4. If f : [0,00) — [0,00) non-decreasing, continuous function
such that f(0) = 0 and f(t) > 0 for t > 0, then the operator defined by

o f(t)
Ot = T ma + 7))

satisfies the conditions (i)-(3v).

2. MAIN RESULT

Now we give our main theorem.
Theorem 1. Let A,B,S and T be self-maps defined on a metric space
(X,d) satisfying the following conditions:

(a) S(X) € B(X), T(X) € A(X),

(b) for allz,y € X, there exists a right continuous function ¢ : R* — R*,
¥(0) = 0 and ¥(8) < s for s > 0 such that

O(f;d(Sz,Ty)) < ¥(O(f; M(z,y)))
where O(e;-) € O and
M(:Z:, y) = max{d(A:c, By)) d(sz’ Ax)) d(Ty, By)1

2.1 82, By) +dTy,Az),

If one of A(X), B(X),S(X) or T(X) is a complete subspace of X, then

(1) A and S have a coincidence point, or
(2) B and T have a coincidence point.

Further, if S and A as well as T and B are weakly compatible, then
(3) A,B,S and T have a unique common fized point.

Proof. Let zo € X be an arbitrary point of X. From (a) we can construct
a sequence {y,} in X as follows:

Yon+1 = STon = BTonyy and Yons2 = TZons1 = ATonyo

for all n = 0,1, .... Define d,, = d(yn,Yn+1). Suppose that dz,, = 0 for some
n. Then yon = yont1; ie., Txon—1 = ATy = Sz, = Bzopy1, and A and
S have a coincidence point.
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Similarly, if don41 = 0, then B and T have a coincidence point. Assume
that d, # 0 for each n.

Then, by (b),
(2.2) O(f;d(Szan, Tz2n+1)) < Y(O(f; M(z2n, T2n+1)))
where
M(z2n,Ton41) = max{d(Azzq, Bzoni),

d(Sz2n, AT2n), d(T'Z2n41, BT2n+1),
d(sx2na Bm2n+1) + d(Tx2n+1, Ax2n) }
2
= max{dan,d2n41}

Thus from (2.2) we have

(2.3) O(f; dan+1) < ¥(O(f; max{dzn, dzn+1}))-

Now, if don41 > don for some n, then, from (2.3) we have
O(f;dzn+1) £ ¥(O(fid2n+1)) < O(f;d2n41)

which is a contradiction. Thus da, > d2,41 for all n, and so, from (2.3) we
have

O(f; d2n+1) < ¥(O(f;d2n)).
Similarly,
O(f;d2n) < Y(O(f; d2n-1))-
In general, we have for all n =1,2,...,
(2.4) O(fidn) < ¥(O(f;dn-1))-
From (2.4), we have
O(fidn) < %(O(f;dn-1))
< $*O(f; dn—2))

¥"(O(f; do)),

IA

and, taking the limit as n — oo
Jim O(f;dn) < lim 9™(O(f; do)) =0,
which, from (i) and (iii), implies that

(2.5) lim dn = nlingo d(yn, yn+1) = 0,

n—oc

We now show that {y,} is a Cauchy sequence. For this it is sufficient to
show that {y2.} is a Cauchy sequence. Suppose that {y2,,} is not a Cauchy
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sequence. Then there exists an € > 0 such that for each even integer 2k
there exist even integers 2m(k) > 2n(k) > 2k such that

(2.6) d(Yon(k), Yom(k)) = €.

For every even integer 2k, let 2m(k) be the least positive integer exceeding
2n(k) satisfying (2.6) such that

(2.7) d(Y2n(k)> Yom(k)—2) < €.
Now
0 < 6:=0(f;¢)

< O(f;d(yan(k), Y2m(k)))

< O(f; d(yan(x) Yam(k)—2) + dom(k)—2 + dom(k)-1)-
Then by (2.5), (2.6) and (2.7) it follows that
(2.8) Jim O(f; d(Yzn(k): Yamy)) = 6.
Also, by the triangular inequality,

|d(¥2n(k)» Yom(k)~1) — A(¥a2n(k)s Yam(r))| < dam(r)—1

and
|2(¥2n(ky+1, Yem(k)—1) — A¥2n(k) Yomz))| < dom(k)=1 + d2nk)
and so
O(f; |dw2n(k), Yamiry—1) — AW2n(k) Yom@iy)|) < O(F; damry—1)s
and

O(f; |d(yan(ky+1, Yam(r)-1) — ¥2n(k)s Y2mer))|) < O(F; dam@ky—1 + donqk))-
Using (2.8), we get

(2.9) O(f; d(Yan(k)» Yom(k)-1)) — &
and
(2.10) O(f; d(Yan(k)+1>Yom(k)-1)) = 8

as k — oo. Thus

dan(k) + A(Yon(k)+1: Yom(k))

d(Yon(k)s Yom(r)) <
< donky + d(SZn (k) TTom(k)—1)s

and so
O(f; d(Yzn(k)s Yom(x))) < O(f; don(ky + A(SZan(ky, TTom(k)-1))-
Letting k — 0o on both sides of the last inequality, we have

6 < kli.“:oO(f;d(S$2n(k)aTx2m(k)—l))
(2.11) < kEn;¢(O(f;M(zzn(k),xzm(k)—l))),
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where
M(Zon(ky Tamk)-1) = maxX{d(Yan(k)s Yom(k)=1)s D2n(k)s D2m(k)=1+

d(Y2n(k)+1> Yom(xk)-1) + A(Y2n(k)s Yom(k)) }
> .

Combining (2.5), (2.6), (2.7), (2.8), (2.9) and (2.10), yields the following
contradiction from (2.11):

d <¥(d) <6
Thus {y2n} is a Cauchy sequence and so {y,} is a Cauchy sequence.
Now, suppose that A(X) is complete. Note that the sequence {y2,} is
contained in A(X) and has a limit in A(X). Call it u. Let v € A~'u. Then

Av = u. We shall use the fact that the sequence {y2n—1} also converges to

u. To prove that Sv = u, let r = d(Sv,u) > 0. Then taking £ = v and
Y = T2a-1 in (b),
O(7;d(5v,y2q)) O(f; d(Sv, Tz2n-1))

S "/}(O(f; M(’U, x2n-1))))
where

M(va x2n—1) = maX{d(u, Yo2n-1 )) d(S‘U, u): d(yZ'ny Yoan—1 )a
d(sv’ y2n—l) + d(y2n’ u’) }
5 .
Since limy,, d(Sv, y2n) = 7, limy, d(u, y2n-1) = limp d(y2n, y2n—1) = 0 and
lim, [d(Sv,y2n-1) + d(y2n,u)] = 7, we may conclude that
O(f;r) < ¥(O(f;7)) < O(f;r)
which is a contradiction. Hence from (i), Sv = u. This proves (1).
Since S(X) C B(X), Sv = u implies that u € B(X). Let w € B~ lu.
Then Bw = u. By using the argument of the previous section it can be
easily verified that Tw = . This proves (2).

The same result holds if we assume that B(X) is complete instead of
A(X).

Now if T'(X) is complete, then by (a), u € T(X) C A(X). Similarly if
S(X) is complete, then u € S(X) € B(X). Thus (1) and (2) are completely
established.

To prove (3), note that S, A and T, B are weakly compatible and

(2.12) u=5v=Av=Tw= Bw
then
(2.13) Au= ASv = SAv = Su
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and
(2.14) Bu = BTw =TBw = Tu.
If Tu # u then, from (b), (2.12), (2.13) and (2.14)
O(f; d(u, Tu)) O(f;d(Sv,Tu))
Y(O(f; M(v,u)))
Y(O(f; d(u, Tu)))
O(f; d(u, Tu))

which is a contradiction. So Tu = u. Similarly Su = u. Then, evidently
from (2.13) and (2.14), u is 2 common fixed point of 4, B, S and T.

A i

A

The uniqueness of the common fixed point follows easily from condition

(b).

3. FINAL REMARKS

Remark 1. Theorem 1 is a generalization of Main Theorem of [5].

If we combine Example 1 and Theorem 1, we have the following corollary,
which is Theorem 2.1 of [9).

Corollary 1. Let A,B,S and T be self-maps defined on a metric space
(X, d) satisfying the following conditions:

(a) 5(X) € B(X), T(X) € A(X),

(b) for allz,y € X, there ezists a right continuous function ¢ : R — R*,
¥(0) = 0 and ¥(s) < s for s > 0 such that

d(Sz,Ty) M(z,y)
/ Fls)ds < % / f(s)ds)
0 0

where f : [0,00) — [0,00] is a Lebesque integrable mapping which is finite
integral on each compact subset of [0,00), non-negative and such that for
each t > 0, fot f(s)ds > 0 and
M(z,y) = max{d(Az,By),d(Sz, Az),d(Ty, By),
d(Sz, By) + d(Ty, Az) }
5 .
If one of A(X), B(X),S(X) or T(X) is a complete subspace of X, then

(1) A and S have a coincidence point, or
(2) B and T have a coincidence point.
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Further, if S and A as well as T and B are weakly compatible, then
(3) A,B,S and T have a unique common fized point.

Remark 2. Corollary 1 is a generalization of Theorem 2.1 of {10], Theorem
2 of [19] and Theorem 2 of (27].

Remark 3. Theorem 1 is a generalization of Theorem 2.1 of [24], in fact
letting f = I (identity map) and O(f;t) = f(t) =t in (b) (it is obvious
that O(f;:) € O) one has

d(Sz, Ty) = O(f;d(Sz, Ty)) < ¥(O(f; M(z,y))) = »(M(z,y)),
thus the contraction of Theorem 2.1 of (24] also satisfies (b).

Now we give an example to illustrate Theorem 1.

Example 5. Let X = {1 : n € N} U {0} with Euclidean metric and
S,T, A, B are self maps of X defined by

(1 . (1 .
T if n is odd e if n is even
S()={ _1 Td)={ _1
n ) ifn is even n 2 ifn is odd
| 0 ifn=o00 | 0 ifn =00

A(%) - B(%) - % for alln € N'U {oo}.

Clearly S(X) C B(X), T(X) € A(X), A(X) is a complete subspace of X
and A, S and B,T are weakly compatible.
Now we claim that the mappings S,T, A and B satisfy the condition (b)

of Theorem 1 with O(e;-) € O defined by O(f;t) = f(; f(s)ds, f € F([0,00))
defined by f(t) = max{0,t73[1 ~ logt]} for t > 0 and f(0) = 0 and
¥ : Rt - R* defined by ¢(s) = ;. That is, we claim that the following
inequality is satisfies:

(3.1) (d(Sz, Ty) T < 2 (M(z,y)) 7w )

for all z,y € X, since O(f;t) = fot f(s)ds = tt for any t € (0,e). Since
the function t — tt is nondecreasing, we show sufficiently that

(32) (d(S2,Ty)) =75 < 2 ((d(,v)) ™)

instead of (3.1). Now using Ezample 4 of 27], we have (8.2), thus the
condition (b) of Theorem 1 is satisfied.

296



Now suppose that the contractive condition of Corollary 3.1 of [11] is
satisfied, that is, there exzists h € [0,1) such that

(3.3) d(Sz,Ty) < hM(z,y)
for all z,y € X. Therefore, for x # y, we have
d(Sz,Ty)
h
My "<
. di Sg:,Ty _ .. wye
but since :\;EW = 1 one has a contradiction. Thus the condition (3.8)

s not satisfied.

If we combine Example 2 and Theorem 1, we have the following corollary.

" Corollary 2. Let A,B,S and T be self-maps defined on a metric space
(X, d) satisfying the following conditions:
(a) S(X) € B(X), T(X) € A(X),

(b) for allz,y € X, there exists a right continuous function v : Rt — R¥,
¥(0) =0 and ¥(s) < s for s > 0 such that

f(d(Sz,Ty)) < $(f(M(z,y))),

where
f :[0,00) — [0,00) non-decreasing,
(3.4) continuous function such that
f(0) =0 and f(t) >0 fort > 0,
and

M(z,y) = max{d(Az, By),d(Sz, Az),d(Ty, By),
d(Sz, By) + d(Ty, Az) }
3 .
If one of A(X), B(X),S(X) or T(X) is a complete subspace of X, then
(1) A and S have a coincidence point, or
(2) B and T have a coincidence point.

Further, if S and A as well as T and B are weakly compatible, then
(8) A,B,S and T have a unique common fized point.

Remark 4. Note that if f is absolutely continuous in Corollary 2, then
we have Corollary 1. Indeed, if we consider Theorem 39.15 in (1], i.e. ” A
Junction f : [a,b] — R is absolutely continuous if and only if f' € L1([a, b))
and

f@) - 1@ = [ £
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holds for each = € [a,b] ”, then we have

&(Sz,Ty)
Fd(Sz, Ty)) = /0 " p)de < ]0

Nevertheless, f has not to be absolutely continuous in Corollary 2. Thus
Corollary 2 is a generalization of Corollary 1. The Ezercise 8 in [1, Page
383] and Problem 39.8 in (2, Page 386} shows that there ezist some functions
f which are not absolutely continuous but continuous and satisfying the
other condition of (3.4).

M(zy

)
f(t)dt) = $(f(M(z,9)))-

Remark 5. Remark 4 shows that operator type contraction is more general
then integral type contraction.

Remark 6. We can have new resulls, if we combine Theorem 1 and some
examples of O(f;-).
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