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Abstract

A k-container C(u,v) in a graph G is a set of k internal vertex-
disjoint paths between vertices u and v. A k*-container C(u,v) of
G is a k-container such that C(u,v) contains all vertices of G. A
graph is globally k*-connected if there exists a k*-container C(u,v)
between any two distinct vertices u and v. A k-regular graph G
is super k-spanning connected if G is i*-connected for 1 < i < k.
A graph G is 1-fault-tolerant hamiltonian if G — F is hamiltonian
for any F C VUE and |F| = 1. In this paper, we prove that
for cubic graphs, every super 3-spanning connected graph is glob-
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ally 3"-connected and every globally 3*-connected graph is 1-fault-
tolerant hamiltonian. We present some examples of super 3-spanning
connected graphs, some examples of globally 3*-connected graphs
that are not super 3-spanning connected graphs, some examples of
1-fault-tolerant hamiltonian graphs that are globally 1*-connected
but not globally 3*-connected, and some examples of 1-fault-tolerant
hamiltonian that are neither globally 1*-connected nor globally 3*-
connected. Furthermore, we prove that there are infinitely many
graphs in each such family.

Keywords: hamiltonian, connectivity, Menger Theorem.

1 Definitions and notations

For the graph definition and notation we follow [3]. The connectivity of
G, k(G), is the minimum number of vertices whose removal leaves the
remaining graph disconnected or trivial. Let G = (V| E) be a graph with
connectivity £(G). It follows from Menger’s Theorem [11] that there are
k internal vertez-disjoint paths joining any two vertices v and v for any
k < k(G). A k-container C(u,v) in a graph G is a set of k internal vertex-

disjoint paths between u and v.

Albert, Aldred, and Holton (2] introduced a very interesting family of
graphs, called globally 3*-connected graphs. A globally 3*-connected graph
G is defined to be a cubic graph such that there exists a 3-container between
any two different vertices of G that spans all vertices of G. Lin et al. [10]
extended this concept by introducing the k*-container. C(u,v) is called a
k*-container of G if C(u,v) is a k-container between u and v such that it
spans all vertices of G. A graph G is globally k*-connected if G contains a
k*-container C(u, v) between any two distinct vertices v and v of G. (Thus,
a globally k*-connected graph might not be a regular graph under the new
definition. We shall refer the globally 3*-connected graphs proposed by
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Albert, Aldred, and Holton as cubic globally 3*-connected graphs.) Obvi-
ously, a graph G is globally 1*-connected if and only if it is hamiltonian
connected. Moreover, a graph G is globally 2*-connected if and only if it is
hamiltonian. In addition, all globally 1*-connected graphs except K; and
K, are globally 2*-connected. By considering the 3*-container between two
adjacent vertices, it is easy to see that every globally 3*-connected graph

is globally 2*-connected.

A graph G is super spanning connected if G is k*-connected for any &
with 1 < k < A(G). Since k(G) < §(G) < A(G), any super spanning
connected graph is a regular graph. A k-regular super spanning connected
graph is called a super k-spanning connected graph. Recently, several fami-
lies of graphs are proved to be super spanning connected [6, 10, 14]. Graph
containers do exist in engineering design, information/telecommunication
networks, and biological neural systems (see (1, 4] and their references).
Thus the study of super spanning connected graphs plays a vital role in
design and implementation of parallel routing and in efficient information
transmission of large scale network systems. From the applicational point of
view, k*-containers can be used in multipath communication. The fact that
graph connectivity and hamiltonicity are two really interesting problems in
graph theory makes the spanning connectivity interesting as well. Recently,
Lin et al. [10] prove that those graphs G with 1‘129- +1<46(G) <n(G)-2
are k*-connected for 1 < k < 26(G) — n(G) +2 . Moreover, G — T is
k*-connected for 1 < k < 26(G) — n(G) +2 — |T| if T is a vertex subset
with |T| < 26(G) — n(G) — 1.

From our observation, super k-spanning connected graphs is closely

303



related to (k — 2)-fault tolerant hamiltonian graphs. Let G = (V,E) be a
graph and let V/ C V and E' C E. We use G — V' to denote the subgraph
of G induced by V — V', and G — E’ the subgraph obtained by removing
E’ from G. Faults can be in the combination of vertices and edges. Let
F CVUE. We use G — F to denote the subgraph induced by V — F and
deleting the edges in F' from the induced subgraph.

If G — F is hamiltonian for any F C VUFE and |F| = k, then G is
called a k-fault-tolerant hamiltonian graph. An n-vertex k-fault-tolerant
hamiltonian graph is optimal if it contains the least number of edges among
all n-vertex k-fault-tolerant hamiltonian graphs. Obviously, every k-fault-
tolerant hamiltonian graph has at least k43 vertices. Moreover, the degree
of each vertex in a k-fault-tolerant hamiltonian graph is at least k& + 2.
The similar concepts and their connection with fault-tolerance for bipartite

graphs are recently published by Kao et al. [8].

There are numerous interesting problems we can ask about super k-
spanning connected graphs. For example, we suspect whether every super
k-spanning connected graph is (k — 2)-fault-tolerant hamiltonian because
all examples we have indicate that the statement is true [5, 7, 13]. The
other question is the existence of any graph that is globally k*-connected
but not globally (k — t)*-connected for some 1 <t < k — 1. To answer the

latter question, we begin with k¥ = 3 by finding examples.

In 2], it is proved that every globally 3*-connected graph is 1-fault-
tolerant hamiltonian graph. Thus, every super 3-spanning connected graph

is 1-fault-tolerant hamiltonian. Moreover, every 1-fault-tolerant remains
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hamiltonian after the removal of any edge. Therefore, every 1-fault-tolerant
hamiltonian is hamiltonian and hence is globally 2*-connected. It is known
that every hamiltonian connected graph except K; and K is hamiltonian.
Thus, every cubic globally 1*-connected graph is globally 2*-connected. In
Figure 1, we use Venn diagram to illustrate the relation among cubic glob-
ally 1*-connected graphs, cubic globally 2*-connected graphs, cubic globally

3*-connected graphs, and cubic 1-fault-tolerant hamiltonian graphs.

We consider the existence of graphs for all the possible regions in Fig-
ure 1. It is proved that there exist infinitely many graphs in regions 5 and 6
in [9]. In Sections 3,4,5 and 6, we will present some examples of graphs in
regions 1,2,3 and 4, respectively. Furthermore, we prove that there exist

infinite graphs in regions 2,3 and 4.

2 Preliminaries

Theorem 1 Every super 3-spanning connected graph is globally 3*-connected.

Every globally 3*-connected graph is 1-fault-tolerant hamiltonian.

Proof. By definition, every super 3-spanning connected graph is globally

3*-connected.

Suppose that G is a globally 3*-connected graph. Let F be a subset
of VUE with |F| = 1. Suppose that e = (z,y) is an edge in F. Since
G is globally 3*-connected, there are three disjoint paths, P;, P2, and P
joining z to y. Note that G is cubic. One of P;, P;, and P, say Pj, is
{(z,y). Obviously, P, UP; forms a hamiltonian cycle of G —e. Suppose that

v is a vertex in F. Let z and y be two distinct neighbors of v. Since G is
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Hamiltonian graphs
(Globally 2*- connected ) 1~ fault tolerant
Hamiltonian graphs

Hamiltonian connected graphs Globally 3*- connected graphs

(Globally 1*- connected ) Super 3-spanning
connectedgraphs

Figure 1: The set of cubic globally 1*-connected graphs corresponds to
regions 1, 3 and 6; the set of cubic globally 2*-connected graphs corresponds
to regions 1,2,3,4,5 and 6; the set of cubic globally 3*-connected graphs
corresponds to regions 1 and 2; the set of cubic 1-fault-tolerant hamiltonian
graphs corresponds to regions 1,2,3 and 4; the set of super 3-spanning
connected graphs corresponds to region 1.
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globally 3*-connected, there are three disjoint paths, P, P, and P; joining
z to y. Note that G is cubic. One of Py, P, and P, say P, is (z,v,y).
Obviously, P, U P, forms a hamiltonian cycle of G —v. Thus, every globally

3*-connected graph is 1-fault-tolerant hamiltonian. ]

Lemma 1 FEvery I-fault-tolerant hamiltonian graph is non-bipartite.

Proof. Assume that G is a 1-fault-tolerant hamiltonian graph. Since
G — e is hamiltonian for any edge e of G, G contains a cycle of length
|V(G)|. Since G — v is hamiltonian for any vertex v in G, G contains a
cycle of length |V(G)| — 1. Obviously, G contains a cycle of odd length.
Hence, G is non-bipartite. (m]

Lemma 2 Assume that G is a cubic globally 1*-connected graph. Let u
and v be two distinct vertices in G with d(u,v) = 2. Then either G — u or

G — v is hamiltonian.

Proof. Let w be the common neighbor of u and v. Since G is globally
1*-connected, there exists a hamiltonian path P between u and v. Then P
can be written as either (u,w, P;,v) or (u, Py, w,v). If P = (u,w, P;,v),
then (w, Py, v, w) forms a hamiltonian cycle of G — u. If P = (u, P2, w, v),

then (u, P2, w,u) forms a hamiltonian cycle of G — v. a

Let G and G be two graphs with V(G,)NV(G3) = 0. Let z € V(G,)
with degg, (z) = 3 and y € V(G;) with degg,(y) = 3. Let N(zx) =
{z1,z2,23} be an ordered set of the neighbors of z and N(y) = {y1,¥2,¥3}
an ordered set of the neighbors of y. The 3-join of G; and G2 at = and y, de-
noted by J(G;, N(z); G2, N(y)), is the graph with V' (J(G,, N(z); G2, N(y))) =
(V(G1) — {z}) U(V(G2) — {y}) and E(J(G1,N(z); G2, N(v))) = (E(G1) -
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{(z,2:) |1 < <ZHU(E(G2)~{(v,v:) | 1 €3 < 3PU{(zs,w) [1 <4< 3}
A graph G is called a 3-join of Gy and G; if G = J(G1, N(z); G2, N(y)) for
some vertices £ € V(G1) and y € V(G2) with degg, (z) = degg,(y) = 3.
We note that a different ordering of N(z) and N(y) generates a different
3-join of G; and G; at z and y. See Figure 2 for an illustration. In partic-
ular, let G = (V, E) be a graph with a vertex z of degree 3. The 3-verter
ezpansion of G, is the graph J(G, N(z); K4, N(y)) where y € V(K,). Any
vertex in J(G, N(z); K4, N(y)) — V(G) is called an ezpanded vertez of G at

z. We have the following theorem.

Theorem 2 [15] Assume that G; and G2 are two cubic graphs. Let G be
a 3-join of Gy and Gy. Then G is a I-fault-tolerant hamiltonian graph if

both G, and G are 1-fault-tolerant hamiltonian graphs.

Let G be a cubic graph and z be a vertex of G with N(z) = {z1, 29, z3}.
We say that z is nice in G if it satisfies the following properties:
(1) G = (z,z;) is hamiltonian for all i € {1,2,3} ; (2) for any i € {1,2,3}
and for any vertex u of G with u ¢ {z,z;}, there erists a hamiltonian path

of G — (z,x;) joining u to z;.
Theorem 3 (2] Assume that both G, and G, are cubic graphs, T is a vertex
in Gy, and y is a vertez in Go. Then J(Gy, N(x); G2, N(y)) is globally 3*-

connected if and only if both Gy and Gy are globally 3*-connected.

Theorem 4 (9] Assume that Gy is a globally 1*-connected graph with a
nice vertez z. Let K4 be the complete graph defined on {y,y1,v2,y3} and

308



(a) (b)

Figure 2: The graphs (a) G, (b) K4 and (c) J(G, N(z); K4, N(y)).

G = J(G1,N(z); K4, N(y)) for some N(z) and N(y). Then G is globally

1*-connected. Moreover, y,,y2 and y3 are nice vertices of G.

Theorem 5 (9] Assume that Gy is a graph with a degree 8 vertez z and
two distinct vertices a and b such that a # = and b # z. Let G2 be a
graph with a degree 3 vertez y such that G, — (y,y;) is hamiltonian for all
¥i € N(y). Let G = J(G1, N(z); G2, N(y)) for some N(z) and N(y). Then
there exists a hamiltonian path of G joining a to b if and only if there exists

a hamiltonian path of G, joining a to b.

3 Examples of super 3-spanning connected
graphs

In this section, we present three families of super 3-spanning connected
graphs. Throughout this section, we use @ and © to denote addition and

subtraction in integer modular n, Z,.
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(a) (b)

Figure 3: The ladder graphs (a) L(3) and (b) L(4).

(a)
Figure 4: The projective cycle graphs (a) PJ(3) and (b) PJ(4).

3.1 The ladder graphs

Assume that n and k are two positive integers with n = 2k and k > 2. The
ladder graph L(k) is the graph with the vertex set {0,1,...,2k—1} and the
edge set {(4,2k—1) |1 < i <k}U{(%i®1)|0<7<2k—-1}U{(0,k)}. The
ladder graphs L(3) and L(4) are shown in Figure 3. It is proved that any
L(k) is globally 1*-connected [12]. Moreover, it is proved that any L(k) is
globally 3*-connected [2]. We have the following theorem.

Theorem 6 Any L(k) is super 3-spanning connected.
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3.2 The projective cycle graphs

Assume that n and k are two positive integers with n = 2k and k > 2. The
projective cycle graph PJ (k) is the graph with the vertex set {0,1,...,2k—
1} and the edge set {(i,k+1) |0 <i<k}U{(i,i®1)|0< i< 2k}. The
projective cycle graphs PJ(3) and PJ(4) are shown in Figure 4. It is easy
to see that PJ(k) is a bipartite graph if and only if &k is odd. By Lemma
1, any PJ(k) is not super 3-spanning connected if k is odd. It is proved
in [12] that any PJ(k) with an even integer k is globally 1*-connected.
The following theorem can be obtained by showing that PJ(k) is globally
3*-connected if &k is even. Readers can easily construct the 3*-container

between any given pair of different vertices of PJ(k) by brute force.
Theorem 7 PJ(k) is super 3-spanning connected if and only if k is even.

3.3 The generalized Petersen graph P(n,1)

The generalized Petersen graph P(n,k) is the graph with the vertex set
{t10<i<n}uU{i|0<1i< n} and the edge set {(i,i®1) |0 < i<
nfU{(,7) | 0<i<n}U{(¥,i®k))|0<i<n}. Itis easy to see that
P(n,1) is bipartite if and only if  is even. By Lemma 1, any P(n, 1) is not
super 3-spanning connected if n is even. It is proved in (2] that P(n,1) is
globally 3*-connected if n is odd. Moreover, it is proved in [12] that P(n,1)
is globally 1*-connected if n is odd. We have the following theorem.

Theorem 8 P(n,1) is super 3-spanning connected if and only if n is odd.
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Figure 5: The graph T.

4 Examples of cubic 1-fault-tolerant hamilto-
nian graphs that are globally 3*-connected
but not globally 1*-connected

Let T be the graph in Figure 5. Obviously, T is obtained from PJ(4) by a
sequence of 3-vertex expansion of PJ(4). More precisely, T is obtained by
a 3-vertex expansion on vertex v of the graph in Figure 2(c). Since PJ(4)
is super 3*-connected, it is globally 3*-connected. Since K is isomorphism
to PJ(2), K4 is globally 3*-connected. With Theorem 3, T is globally

3*-connected.
Lemma 3 There ezxists no hamiltonian path between v and v in T.
Proof. Suppose that T has a hamiltonian path, P, between u and v.

Case 1 P contains (u,u1). Then {(u,us),(u,u3)} ¢ P, and P contains
(u,u1,u2,8) and {(w,us, z,t,v1). Hence, (z,v3) € P, and (v2,v3,v) € P.
Therefore, (v1,w) € P. Thus, P contains a cycle (w,us, z,t,v;,w), which

is impossible.
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Case 2 P contains (u,u2). Then {(u,u;),(u,u3)} ¢ P, and P contains
(u,uz,u1,t) and (z,us, w,s,vs). Since (w,v1) € P, {t,v1,v) C P. Then
(v,v3) € P, and (v, v3, 2) € P. Thus, P contains a cycle (z, us, w, s, v, v3, 2),

which is impossible.

Case 3 P contains (u,u3). Then {(u,u),(u,u2)} ¢ P and P contains

(s,ug,ul,t).

(3.1) P contains (ug,w). Then (¢, z,v3) € P. Since (¢,v1) & P, (w,v1,v) €
P. Therefore, {(v,v2), (v,v3)} ¢ P and (s,v,v3) € P. Thus, P has a cycle

(s, ug,u1,t, z,v3,v2,s). This is a contradiction.

(8.2) P contains (us, z). Then (u3,w) € P and P contains (v, w, s). Since
(s,v2) € P, P contains (v,vs,v3,2) and (vy,t) € P. Thus, P has a cycle

(s, ug,u1,t,v1,w, s). This is a contradiction.
The lemma is proved. 0.

With Lemma 3, T is not globally 1*-connected. Hence, T is a graph

that is globally 3*-connected, but not super 3-spanning connected.

Let w be the vertex of T shown in Figure 5. With Lemma 3 and
Theorem 5, there exists no hamiltonian path between vertices © and v
in J(T, N(w); K4, N(y)). Thus, J(T, N(w); K4, N(y)) is not globally 1*-
connected. Now, we recursively define a sequence of graphs as follows:
Let Gy = T, z; = w and G2 = J(G1,N(z1); K4, N(y)). Suppose that
we have defined G, Gy, ...,G; with i > 2. Let z; be any expanded vertex

of Gi_1 at z;_;. We define Gy, as J(G;, N(z;); K4, N(y)). Recursively
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(a) (b)

Figure 6: The graphs (a) Q and (b) Qs.

applying Theorems 5 and 3, G; is globally 3*-connected but not hamiltonian
connected for i > 2. With Theorem 1, G; is 1-fault-tolerant hamiltonian

for 7 > 2. Hence, we have the following theorem.

Theorem 9 There are infinite cubic I-fault-tolerant hamiltonian graphs

that are globally 3*-connected but not globally 1*-connected.

5 Examples of cubic 1-fault-tolerant hamilto-
nian graphs that are globally 1*-connected
but not globally 3*-connected

Let Q be the graph as in Figure 6(a). By brute force, we can check that
Q is 1-fault-tolerant hamiltonian and globally 1*-connected. (See Fact 1 in
Appendix.) It is obvious that @ can be obtained from the 3-dimensional
hypercube Q3 by a sequence of 3-vertex expansions of Q3. Note that Q3
is bipartite. By Lemma 1, Q3 is not 1l-fault-tolerant hamiltonian. By

Theorem 1, Qs is not globally 3*-connected. With Theorem 3, @Q is not
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(a) (b)
Figure 7: The graphs (a) M and (b) P(8,2).

globally 3*-connected.

Let z be the vertex 1 of Q shown in Figure 6(a). By brute force, we
can check that z is nice in Q. (See Fact 2 in Appendix.) Moreover, by
Theorem 4, any expanded vertex of @ at 1 is nice. Now, we recursively
define a sequence of graphs as follows: Let G; = Q, z; = z and G =
J(G1,N(z1); K4, N(y)). Suppose that we have defined G;, Ga, ..., G; with
i > 2, Let z; be any expanded vertex of G;_; at z;_;. We define G,
as J(Gi, N(z;); K4, N(y)). Recursively applying Theorems 2, 4, and 3, G;
is 1-fault-tolerant hamiltonian and globally 1*-connected but not globally

3*-connected for < > 2. Hence, we have the following theorem.

Theorem 10 There are infinite cubic 1-fault-tolerant hamiltonian graphs

that are globally 1*-connected but not globally 3*_connected.
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6 Examples of cubic 1l-fault-tolerant hamil-
tonian graphs that are neither globally 1*-
connected nor globally 3*-connected

Let M be the graph as in Figure 7(a). Obviously, M can be obtained
from P(8,2), shown in Figure 7(b), by a sequence of 3-vertex expansions of
P(8,2). It is proved in [2] that P(8,2) is not globally 3*-connected. Using
Theorem 3, M is not globally 3*-connected. Yet, it is proved in [9] that M

is 1-fault-tolerant hamiltonian but not globally 1*-connected.

Let z, a, and b be three distinct vertices of M shown in Figure 7(a).
It is proved in [9] that there exists no hamiltonian path between a and
b in J(M,N(z); K4, N(y)). Thus, J(M,N(z); K4, N(y)) is not globally
1*-connected. Let G1 = M, z; = = and G2 = J(Gy, N(z1); K4, N(v)).
Suppose that we have defined Gy, Go, ..., G; with ¢ > 2. Let x; be any ex-
panded vertex of G;_ at z;—;. We define G;;, as J(G;, N(z;); K4, N(v)).
Recursively applying Theorems 2, 5 and 3, G; is a 1-fault-tolerant hamilto-
nian graph that is neither globally 1*-connected nor globally 3*-connected

for every ¢ > 2. Hence, we have the following theorem.

Theorem 11 There are infinite cubic 1-fault-tolerant hamiltonian graphs

that are neither globally 1*-connected nor globally 3*-connected.

7 Conclusion

In this paper, we prove that for cubic graphs, every super 3-spanning
connected graph is globally 3*-connected and every globally 3*-connected

graph is 1-fault-tolerant hamiltonian. We present some examples of su-
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per 3-spanning connected graphs, some examples of globally 3*-connected
graphs that are not super 3-spanning connected graphs, some examples of
1-fault-tolerant hamiltonian graphs that are globally 1*-connected but not
globally 3*-connected, and some examples of 1-fault-tolerant hamiltonian
that are neither globally 1*-connected nor globally 3*-connected. Further-
more, we show that there are infinitely many graphs in each such family.
We fail to find a planar globally 3*-connected graph that is not globally
1*-connected. We conjecture that every 1-fault-tolerant hamiltonian graph
that is globally 3*-connected but not globally 1*-connected is obtained from

T by a sequence of 3-vertex expansions.

References

[1] S.B. Akers, and B. Krishmamurthy, A group-theoretic model for sym-
metric interconnection networks, IEEE Transactions on Computers,

38 (1989) 555-566.

[2] M. Albert, E.R.L. Aldred, D. Holton, and J. Sheehan, On globally 3*-
connected graphs, Australasian Journal of Combinatorics, 24 (2001)
193-207.

[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications,
North-Holland, New York, 1980.

[4] D.F. Hsu, On container width and length in graphs, groups, and net-
works, IEICE Transaction Fundamentals, E-77A (1994) 668-680.

[5] H.C. Hsu, Y.L. Hsieh, J.M. Tan , and L.H. Hsu, Fault Hamiltonicity
and Fault Hamiltonian Connectivity of the (n,k)-Star graphs, Net-
works, 42(4) (2003) 189-201.

317



[6] H.C. Hsu, C.K. Lin, H.M. Huang, and L.H. Hsu, The spanning connec-
tivity of the (n, k)-star graphs, International Journal of Foundations
of Computer Science, 17(2) (2006) 415-434.

(7] C.N. Hung, H.C. Hsu, K.Y. Liang and L.H. Hsu, Ring embedding
in faulty pancake graphs, Information Processing Letters, 86 (2003)
271-275.

(8] S.S. Kao, H.C. Hsu, and L.H. Hsu, Globally bi-3*-connected graphs,
J. Discrete Mathematics, Accepted March 2008. (Available online.)

[9] S.S. Kao, K.M. Hsu, and L.H. Hsu, Cubic planar hamiltonian graphs
of various types, J. Discrete Mathematics, 306 (2006) 1364-1389.

[10] C.K. Lin, H.M. Huang, and L.H. Hsu, On the Spanning Connectivity
of Graph, J. Discrete Mathematics, (307, Issue 2) 2007 285-289.

[11] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math., 10 (1927)
95-115.

[12] J.W. Moon, On a problem of Ore, Math. Gaz., 49 (1965) 40-41.

[13] C.H. Tsai, J.M. Tan, Y.C. Chuang and L.H. Hsu, Hamiltonian prop-
erties of faulty recursive circulant graphs, Information Processing Let-

ters, 91 (2004) 293-298.

(14] C.H. Tsai, J.M. Tan, and L.H. Hsu, The super-connected property
of recursive circulant graphs, Journal of Interconnection Networks, 3,

Nos. 3 & 4 (2002) 273-289.

318



(15] J.J. Wang, C.N. Hung, J.M. Tan, L.H. Hsu, and T.Y. Sung, Con-
struction schemes for fault tolerant hamiltonian graphs, Networks, 35

(2000) 233-245.

319



8 Appendix

Fact 1 Q is I-fault-tolerant hamiltonian and globally 1*-connected.

Proof. We first check Q is 1-fault-tolerant hamiltonian.

With the symmetric property of Q, we can verify that Q is 1-fault-
tolerant hamiltonian by showing that Q — f has a hamiltonian cycle for

f e {1,(1,2),(1,11)}. The corresponding hamiltonian cycles are listed

below.
Q-1 Hamiltonian cyclein Q= f
Q-1 {2,4,5,6, 16,17, 18, 21, 20, 19, 9, 7, 8, 10, 11, 12, 22, 23, 24, 15, 14, 13, 3, 2)
-(1,2) (1,11, 10, 12, 22, 23, 24, 15, 13, 14,17, 16, 18, 21, 20, 19, 9,8,7,5,6,4, 2,3, 1}
Q—(1,11) (1,3, 13, 14, 15, 24, 23, 22,12, 11, 10, 8,7, 9, 19, 20, 21, 18, ,6,5,4,2,1

In the following, we check that @ is globally 1*-connected. With the sym-
metric property of @, we only need to find a hamiltonian path between

1 and z for any z # 1. The corresponding hamiltonian paths are listed

below.

H

Hamiltonian path between 1 and z

15, 24, 23, 22, 12, 11, 10, 8, 7, 9, 19, 20, 21, 18, 17, 16, 6, 5, 4,

=] 4] ] 1] pmad mt] gt | ] o)

0] o] ~3] &} Oy | |

15, 24, 22, 23, 20, 19, 21, 18, 17, 16, 6,4, 5,7, 9, 8, 10, 12, 11

5
4
5,14,17,18,186,6,4,5,7,8, 9, 19, 21, 20, 23, ,12,11,10
4
4
6

, 15, 24, 22, 23, 20, 19, 21, 18,17, 16,6, 4,5, 7,9, 8,10, 11, 12
,16, 17, 18, 21, 20, 19, 9, 7, 8, 10, 11, 12, 22, 23, 24, 15, 14, 13

»19,21, 18, 16, 17, 14,13, 1

i
, 21,19, 20, 23, 24, 22,12, 11, 10, 8,9, 7,5, 4, 6, 16

,20,19,9,7, 8,10, 11, 12, 22, 23, 24, 15, 13, 14, 17,

,12,11,10,8,9,7,5, 4,6, 16,17, 18, 21, 20, 19

2
2,12,11,10,8,9, 4,6,16,17, 18,21, 19, 20) |

2, 22, 24, 23, 20, 19, 21

]
4

1
1
1 7,5,4,

s 1 0,11, 12,

, 14, 15, 24, 23, 20,19, 21, 18,17, 16,6,4,5,7,9, 8,10, 11,12,

, 14, 16, 24, 22,12, 11, 10, 8,9, 7,5, 4, 6, 16, 17, 18, 21, 19, 20, 23
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=] 1] ] 1| et ] ] ] et ms] 1] pt] 1] 1] o]
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,6,5,7,9,8,10, 11, 12, 22, 23, 20, 19, 21, 18, 16, 17, 14, 13, 15, 24
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Fact 2 The vertez 1 is nice in Q.

Proof. First, we prove that Q — (1,z;) is hamiltonian for any z; € N(1).

The corresponding hamiltonian cycles are listed below.

Q-(1,z) The hamiltonian cycles of Q — (1,zi).

Q- (1,11) (1, 3,13, 14, 15, 24, 23, 22,12, 11, 10, 8,7, 9, 19, 20, 21,18,17,16,6,5,4,2,1
Q-(1, 1,11,12, 10, 8,7,9, 19, 21, 20, 23, 22, 24, 15, 13, 14, 17, 18, 16, 6,5, 4,2, 3,1
Q-(,3 1,11,12,10,8,9,7,5, 4,6, 16, 17, 18, 21, 19, 20, 23, 22, 24, 15, 14, 13,3, 2, 1) _

In the following, we list all hamiltonian paths between u and z; in
Q — (1,x;) for any u € V(Q) — {1,z:} and z; € N(1). The corresponding

hamiltonian paths are listed below.

u, 11 The hamiltonlan paths between u and 11 in Q — (1, 11} for any u € {1, 11}.
3,11 2,1, 3, 13, 14, 15, 24, 23, 23, 20, 19, 21, 18, 17, 16, 6, 4,5, 7, 9, 8, 10, 12, 11;
3,11 3,1,2,4,6,5,7,8,9,19,20, 21, ,16 17,14, 13, 16, 24, 23, 22, 12,10, 11
4,11 4,2,1,3,13, 14, 15, 24, 22, 23, 20, 19, 21, 18,17, 16, 6,5, 7, , 10,
5,11 {5,7,8,9,19, 20, 21, 18,17, 16, 6,4, 2, 1,3, 13 14, 15, 24, 23, f 2,12, 10, 11
6,11 {6,16,18,17,14,15,13,3,1, 1,2, 4,5,7,8,9,19, 21, 20, 23, 24,22, 12,10, 11
7,11 7,8, 9, 19, 20, 21, 18, 17,16 6,5,4,2,1,3,13, 14.15 24, 23,2 22,12, 10, 11
8,11 8,9, 7,5,6.4.2 1,3,13, 15, 14, 17, 16, 18, 21, 19, 20, 23, 24, f' 2,12,10,1
9,11 9,8,7,5,6,4,2,1, 3,13, 15, 14,17, 16, 18, 21, 19, 20, 23, 24,§, 12,10, 11
10,11 10, 8, ,7,5,8.4,2 1,3,13, 15, 14, 17, 16, 18, 21, 19, 20, 23, 54, 32,12, 11
12,11 11, 10,8,9, 7,5, 6, 4, 2, 1, 3, 13, 16, 14, 17, 16, 18, 21, 19, 20, 23, 24, 22, 12
13,11 11,12, 10,8, 7, 9, 19, 21, 20, 23, 22, 24, 15, 14, 17, 18, 16, 6, 5, 4, 2, 1,3, 13
14,11 11,12,10,8,9,7, 5, 6, 4,2, 1,3, 13, 15, 24, 22, 23, 20, 19, 21, 18, 16, 17, 14)
15,11 11,12,10,8,9,7,5,6,4, 2, 1, 3,13, 14,17, 16, 18, 21,19, 20, 23, 22, 24, 1B}
16,11 (11,12,10,8,9,7,5,6, 4,2, 1, 3, 13, 14, 15, 24, 22, 23, 20, 19, 21, 18,17, 16
17,11 11,12,10,8,9,7,5,6,4, 2,1, 3,13, 14, 15, 24, 52 23,20, 19,21, 18, 16, 17,
18,11 11,12,10, 8, 7,9,19,21,25,§§ 22, 24,15, 14,13,3,1, 2, 4,5,6,16,17,18
19,11 11, 10, 12, 22, 24, 23, 20, 21, 18, 16,17, 14, 15,13,3,1, 2, 4 6,6,7,8,9,19
{20, 11 11,12,10,8,7,9,19, 21, 18,17, 16,6, 5, 4, 2, 1, 3, 13, 14, 15, 24, 22, 23, 20
_:2_1,11 ~(11,12,10,8,7,9,19, 20, 23, 22, 24, 15,14, 13,3,1,2,4,5,6, 16, 17,18, 21
22,11 11,12,10,8,9,7,5,6,4,2,1, 3,13, 15, 14, 17, 16, 18, 21, 19, 20, 23, 24,22
23,11 11,12,10,8,7,9,19,20,21,18,17,16,6,5, 4,2, I, 3,13, 14, 15, 24, 22, 23
24,11 11,12,10,8,9,7,5,6,4,2,1,3,13, 15, 14,17, 16, 18, 21, 19, 20, 23, 22, 24
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{u,2 The hamiltonian paths between u and 2 in Q — (1, 2) for any u & {1, 2}.
3,2 2,4,6,5,7,8,9, 19, 20, 21, 18, 16, 17, 14, 13, 15, 24, 23, 22, 12,10, 11, 1, 3)
y 2 2,3,1,11,12,10,8, 7,9, 19, 21, 20, 23, 22, 24, 15,13, 14, 17,18, 16, 6, 5, 4)
5,2 2,3,1,11,12, 10,8 7,9,19,21, 20, 23, 22, 24, 15, 13, 14, 17, 18, 16, 6,3.55
6,2 2,3, 1, 11,10, 12, 22, 23, 24, 15, 13, 14, 17, 16, 18, 21, 20, 19, 9, 8, 7, 5, 4, 6;
7,2 2,3,1,11,12,10,8,9, 19, 21, 3,22, 24,15, 13,14, 17,18, 16, 6,4, 5, 7
8,2 2,4,5,6,16,18,17, 14, 15,13, 3, 1,11, 10, 12, 22, 24, 2; 20. 21,19,9,7, BE
9,2 2,3,1,11,12,10,8,7,5, 4,6, 16, 18,17, 14, 13, 15,24 , 19,
10,2 2,4,5,6,16,18,17, 14,15,13,3,1, 11,12, 2 7 24,23, 20, 21 19,9 7 8, 10
11,2 {2,4,6,5,7,9, 8,10, 12, 22, 24, 23, 20, 19, 21, 18, 16, 17, 14 15,13,3,1,11
12,2 2,4,6,5,7,9,8,10,11, 1, 3,13, 15, 14, 17, 186, 18, 21, 19, 20, 23, 24 72. 12
13,2 2,3,1,11,12,10,8,9, 7,5, 4,6, 16,17, 18, 21, 19, 20, 23, 22, 24, 15, 14, 13
14,2 2,3,1,11,12,10,8,9,7,5, 4,6 16,17, 18, 21, 19, 20, 23, ﬁ—4, 15,13, 14
15,2 2,3,1,11,10,12, 232, 24, 23, 20, 21, 19,9, 8,7,5, 4,6, 16, 18,17, 14, 13, 15
6, 2,3,1,11, 10, 12, 22, 23, 24, 15, 13, 14, 17, 18, 21, 20, 19,9,8,7,5, 4,6, 16
17,2 2,3,1,11,12,10,8,9, 7,5, 4, 6, 16, 18, 21, 19, 7—23 22,24,15,13,14,17
18,2 2,3,1,11,12,10,8,9,7,5,4,6,16,17, 14, 13, 15, 24, 22, 23, 20, 19, 21, 18
19, 2 2,3,1,11,12,10,8,9, 7,5, 4, 6, 16, 18, 17, 14, 13, 15, 24, §§ 53 §0 21,19
_%,2 2,3,1,11,10,12,22, 23, 24, 15,13, 14, 17, 18, 16, 6,4, 5, 7, 8,9, 19, 21, 20) |
21,2 2,3,1,11,12,10,8,9,7,5,4,6,16, 18,17, 14, 13, 15, 2472T,2'372' , 19, 21
[{22,2 2,4,6,5,7,9,8,10,12,11,1, 3,13, 15, 14, 17, 16, 18, 21, 19, 20, 23, 24, 22) |
23,2 2,3,1,11,10, 12, 22, 24, 15, 13, 14,17, 18, 16, 6, 4,5, 7, 8,9, 19, 21, 30, 23
24,2 2,3,1,11,10, 12, 22, 23, 20,21, 19, 9,8,7,5, 4, 6, 16, 18,17, 14,13, 15, 24
u, 3 The hamiltonian paths between u and 3 in @ — (1, 3) for any u € {1,3}.
2,3 2,1,11,12,10,8,9, 7,5, 4,6, 16, 17, 18, 21, 19, 20, 23, 22 24,15,14,13,3
4,3 3,2,1,11,12,10,8, 7,9, 19, 21, 20, 23, 22, 24, 15, 13, 14,17, 18, 16, 6, 5, 4
5,3 3,2,1,11,12,10,8,7,9, 19, 21, 20, 23, 22, 24, 15, 13, 14,17, 18, 16,6, 4,5
6,3 3,2,1,11, 10, 12, 22, 23, 24, 15,13,14,17, 16, 18, 21, 20, 19,9, 8,7,5,4,6
7,3 3,2,1,11, 12,10, 8, 9, 19, 21, 20, 23, 22, 24, 15, 13, 14, 17,18, 16,6,4,5, 7
8,3 3,13, 14, 15, 24, 23, 22,12, 10,11, 1, 2, 4, 5, 6, 16, 17, 18, 21, 20, 19,9, 7, 8
9,3 3,92,1,11,12,10,8,7,5, 4, 6, 16, 18, 17, 14, 13, 15, 24, 22, 23, 20, 21,19, 9
10,3 3,13, 14, 16, 24, 23, 22, 12,11, 1, 2, 4, 5, 6, 16, 17, 18, 21, 20, 19, 9, 7, 8, 10
11,3 3,13, 14, 15, 24, 23, 22,12, 10,8, 7, 9, 19, 20, 21, 18, 17, 16, 6, 5,4, 2, 1, 11
12,3 3,13, 15, 14, 17, 18, 16, 6, 5, 4, 2, 1, 11, 10, 8, 7, 9, 19, 21, 20, 23, 24, 22, 12
13,3 3,2,1,11,12,10,8,9,7,5,4,6,16,17, 18,21, 19, 26, §3, 22,24,15,14,13
14,3} | (3,2,1,11,12,10,8,9,7,5,4,6,16,17, 18, 21, 19, 20, 23, 22, 24, 15, 13, 14
15,3 (3,2,1,11, 10, 12, 22, 24, 23, 20, 21, 19, 9,8, 7, 5,4, 6, 16, 18,17, 14, 13, 152
16,3 3,2,1,11, 10,12, 22,23, 24, 15, 13, 14,17, 18, 21, 20, 19, 9,8, 7, 5,4, 6,
17,3 3,2,1,11,12,10,8,9, 7,5, 4, 6, 16, 18, 21, 19, 20, 23, 22, 24, 15, 13, 14, 17,
18,3 3,2,1,11,12,10,8,9,7,5,4, 6,16, 17, 14, 13, 15, 24, 22, 23, 20, 19, 21, 18
—»1-9’3 - (3,2,1,11,12,10,8,9,7,5, 4, 6,186, 18,17, 14, 13, 15, 24, 22, 2. § 20,21,19
20,3 (3,2,1,11, 10, 12, 22, 23, 24,15, 13, 14, 17, 18,16, 6,4,5,7, 8,9, 19, 21, 20
| {21,3 3,2,1,11,12,10,8,9, 7,5, 4,6, 16, 18,17, 14, 13, 15, 24, §2 2_5_ §§, 1§,21§
22,3 3,13,15,14,17,18,16,6,5,4,2,1,11,12,10, 8, 7,9, 19, 21, 20, 23, 24
23,3 3,2,1,11,10,12, 22, 24, 15, 13, 14, 17, 18, 16, 6, 4,5, 7, 8, 9, 19, 21, 20, 23)
24,3 3,2,1,11,10, 12, 22, 23, 20, 21, 19,9, 8,7, 5, 4, 6, 16, 18, 17, 14, 13, 15, 24)
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