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Abstract

An H, graph is a multigraph on three points with a double edge between
a pair of distinct points and single edges between the other two pairs. In this
paper we settle the H> graph decomposition problem, which was. unfinished
in a paper of Hurd and Sarvate, by decomposing a complete multigraph 3 K:
into H» graphs recursively.

1 Introduction

A graph can be decomposed into a collection of subgraphs such that every
edge of the graph is contained in one of the subgraphs. Graph decomposition is
an important problem in combinatorial design theory and it has many applications
such as experimental designs, group testings, DNA library screening, scheduling
and synchronous optical networks [6]. Decomposing a graph into simple graphs
has been well studied in the literature. For a well written survey on the decom-
position of a complete graph into simple graphs with small number of points and
edges, see [1].

A multigraph is a graph where more than one edge between a pair of points
is allowed. The decomposition of copies of a complete graph into proper multi-
graphs has not received much attention yet, see [3, 7, 9]. A complete multigraph
AK, (A > 1) is a graph on v points with A edges between every pair of distinct
points. In this paper we study the decomposition of a 3K, (¢ > 1) into H; graphs
(defined in section 1.1). A well studied combinatorial design (BIBD, which can
also be used to find graph decompositions) is defined below. On the other hand,
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BIBD itself can be considered as a decomposition of AK, into complete graphs
K.

Definition 1 Given a finite set V of v points and integers k and A > 1, a balanced
incomplete block design (BIBD), denoted as BIBD(v, k, A\), is a pair (V, B) where
B is a collection of subsets (also called blocks) of V' such that every block contains
exactly £ < v points and every pair of distinct points is contained in exactly A
blocks.

The following definition and results from combinatorial designs are well-
known, for example, see [4, 8, 10].

Definition 2 A group divisible design GDD(g, u, k; A1, A2) is a collection of k-
subsets(blocks) of a set V' of v points such that each point appears in r blocks
(called thereplication number); the points of V' are partitioned into u subsets
(called groups) of size g each; any two points within the same group (called first
associates) appear together in A; blocks; any two points not in the same group
(called second associates) appear together in Az blocks.

If the blocks in a design can be partitioned into resolution (or parallel) classes

such that the blocks of each class partition the set V, then the design is called
resolvable. A resolvable GDD(g, u, k; 0, A) is denoted by RGDD(g, u, k; 0, A).
Note that the number of resolution classes is equal to the replication number r =
,\g'u—g!
Theorem 1 (Theorem 19.33 in [5]) A 3-RGDD (i.e., RGDD(g, u, 3; 0, 1)) of type
g* exists if and only if v > 3 and (1) g = 1, 5(med 6) and v = 3(mod 6); (2)
g = 3(mod 6) and u = 1(mod 2); (3) g = 2, 4(mod 6) and u = 0(mod 3), except
for g € {23,25}; (4) g = O(mod 6), except for g* = 63.

1.1 H, Graphs

Definition 3 An H» graph is a multigraph on three points with a double edge
between a pair of distinct points and single edges between the other two pairs of
distinct points.

If the set of points of an Hy is V' = {a, b, ¢} and the double edge is between a
and b, then we denote the Hy graph by (a, b, ¢) i, (see figure 1). An Ha(v, ) isa
decomposition of AK,, into H; graphs. In particular, an Ha(8t, 3) is a decompo-
sition of a 3K, graph into 3¢(8¢ — 1) H, graphs.

Some examples of simple constructions of such decompositions are given be-

low.
Theorem 2 If there exists a BIBD(v, 3, 1), then there exists an Hy(v, 4).

Proof: Replace each block {a,b,¢} € B of a BIBD(v,3,1) by three H,
blocks, {a, b, ) &,, {c, a,b) i, and (b,c,a)s,. O

Corollary 1 Ifv = 1, 3(mod 6), then there exists an Hy(v, 4).
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Figure 1: An H; Graph

Proof: If v = 1, 3(mod 6), then a BIBD(v, 3, 1) exists (see [4, 8, 10]). O

As a convention, we use the term friangle to denote a complete graph K.
A minimum number of four triangles are needed to construct three H» graphs
since three H; graphs have a total of 12 edges. Using triangles {a, b, ¢}, {a, b,d},
{a,c,d} and {b,c,d}, we can construct three H, graphs (a,b,d)n,, (a,¢,d)n,
and (b,c,d)y,. In other words, one can say that 2K can be decomposed into
three Hy graphs. We use this idea to prove the following theorem (although a
more general construction for an Ha(v,2) where v = 0, 1(mod 4) has been given
in [7], we use a different approach here).

Theorem 3 Ifv = 1, 4(mod 12), then an Ha(v, 2) exists.

Proof: It is known that if v = 1, 4(mod 12), then a BIBD(v, 4, 1) exists. Each
block {a, b, ¢, d} in the BIBD(w, 4, 1) can be used to construct three H> graphs (as
above). Since each edge (pair) is contained in only one block in the BIBD(v, 4, 1),
an Hy(v, 2) exists. O

1.2 Difference Sets for H,(8t, 3) Decompositions

One of the powerful techniques to construct combinatorial designs is based on
difference sets and difference families; for example, see Stinson [10] for details
and how to develop the difference sets to get the blocks of a design including the
use of (“dummy”) elements co’s (see Example 1 below).

Definition 4 Suppose (G, +) is a finite group of order v in which the identity
element is denoted “0”. Let k and A be positive integers such that 2 < k < v.
A (v, k, ) difference setin (G, +) is a subset D C G that satisfies the following
properties: 1. |D| = k, 2. the multiset [z —y : 2,y € D,z # y] contains every el-
ement in G\{0} exactly A times. A difference family is a collection [Dy, ..., D;]
of k-subsets of G such that the multiset of the differences from all sets in the
collection [Dy, ..., D] together cover all nonzero differences ) times. .

In many cases G is taken as (Z,, 4), the integers modulo v. For example, a
(7,3, 1)-difference set in (Z7,+) is D = {3,0,2}. Note 0 — 3 = 4,2 -3 =
6,3—-0=3,2-0=2,3—-2=1and0— 2 =5, hence we get every element of
Z-\{0} exactly once as a difference of two distinct elements in D.
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To connect the difference set concept to an Ha(8t, 3), we define the difference
set D = (a, b, c) corresponding to the H; graph (a, b, c) g, as the difference set
such that it gives |a — b| twice (corresponding to a double edge between a and b),
|a — ¢| once (corresponding to a single edge between a and c) and |b — c| once
(corresponding to a single edge between b and c). For example, the difference set
(3,0, 2) gives the difference 3 twice, the difference 1 once and the difference 2
once. A graphical illustration is given in Figure 2.

Figure 2: Difference set (3,0, 2) corresponding to the Hy graph (3,0,2) g,

If we label the points of 3K, as the points in V = {00,0,1,2,...,8t — 2},
then V\{oo} = (Zg¢—1,+), the integers modulo 8¢ — 1. The idea here is to con-
struct a difference family [Dy, ..., D3] where all differences in {1,2,..., 5‘2;2}
appear exactly 3 times except one difference d which occurs twice in 3¢ — 1 dif-
ference sets, and the missing difference d occurs in the difference set (d, 0o, 0).
Once we find such a difference family, we can expand the difference sets in the
difference family modulo 8¢ — 1 to obtain an H»(8t, 3) where each difference set
or base block is expanded to obtain 8¢ — 2 additional blocks. The total number of
blocks after the expansion is 3t(8t— 1), each of which corresponds to an H; graph
in the decomposition, and each edge between a pair of distinct points appears 3
times in these H graphs as required.

Example 1 For an H»(8,3), we have t = 1, so we need 3 difference sets in
a difference family where each difference in {1,2,3} appears exactly 3 times.
One such difference family is [(3,0,2), (2,0, 3), (4,00,5)]. Next, we expand the
difference sets modulo 7 to obtain an H3(8, 3).

Hurd and Sarvate [7] proved that the necessary condition for existence of an
H3(v,3), v(v—1) =0 (mod 8),i.e., v =8t or 8 + 1, for all £ > 1 is sufficient
for the existence of an H(v, 3), except possibly for the cases v = 8¢ and 24 <
v < 1680. In this paper, we resolve all these cases in the affirmative. In the
next section, we obtain difference family solutions for H»(8¢,3),t = 1,...,9
and 19. The existence of these decompositions is needed for a recursive method
developed in Section 4.

2 Initial Decompositions
According to [4], the cases for ¢t = 1,...,7 are the genuine exceptions. We

show the existence of an Hy(8t, 3) for these exceptions as well as for ¢ = 8,9 and
19 as they are needed to complete the solution.
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Example2 ¢ = 1: (2,0, 3), (3,0,2), (1, 00,0)].
Example 3 ¢ = 2: ((3,0,4), (4,0,6), (5,0,3), (6,0,7), (7,0,5), (1,00,0)].

Example 4 t = 3: [(4,0,5), (5,0,7), (6,0,9), (7,0,4), (8,0,6), (9,0, 10),
(10,0,11), (11,0,8), (2, %0, 0)).

Example 5 ¢t = 4. [(5,0, 6), (6,0, 8), (7,0,

(10,0,7), (11,0,9), (12,0,15), (13,0,14), (14,0,13), (15,0,11), (2, 0o, 0)).
0,
),

0,8), (7,
, (13,0,1
Example 6 t = 5: [(6,0,7), (7,0,9), (8,0,11), (9,0,13), (10,0, 15),
(11,0,8), (12,0,8), (13,0, 10), (14,0,12), (15,0,19), (16,0, 18),
(17,0,18), (18,0,17), (19,0,14), (3, c0, 0)].

Example 7 ¢ = 6: [(7,0, 8), (8,0, 10), (9,0,12), (10,0, 14), (11,0, 16),
(12,0,18), (13,0,7), (14,0,9), (15,0,11), (16,0,13), (17,0, 15), (18,0, 22),
(19,0,20), (20,0,23), (21,0,19), (22,0,21), (23,0, 17), (5, 00, 0)]-

Example 8 ¢ = 7: [(8,0,9), (9,0,11), (10,0,13), (11,0, 15), (12,0, 17),
(13,0,19), (14,0, 21), (15,0,8), (16,0, 10), (17,0,12), (18,0, 14), (19,0, 16),
(20,0,18), (21,0, 26), (22,0, 25), (23,0,24), (24,0,23), (25,0, 27), (26,0, 22),
(27,0, 20), (6, 0, 0)).

Example9 t = 8: [(9,0,10), (10,0,12), (11,0,14), (12,0,16), (13,0,18),
(14,0,20), (15,0,22), (16,0,24), (17,0,9), (18,0,11), {19,0,13), (20,0, 15),
(21,0,17), (22,0,19), (23,0,21), (24,0, 31), (25,0, 30), (26,0, 29), (27, 0, 25),
(28,0,27), (29,0,28), (30,0,26), (31,0, 23), {6, 00, 0)].

Example 10 ¢ = 9: [(10,0,11), (11,0,13), (12,0,15), (13,0,17), (14,0, 19),
(15,0,21), (16,0,23), (17,0,25), (18,0,27), (19,0, 10), (20,0,12), (21,0, 14),
(22,0,16), (23,0,18), (24,0,20), (25,0,22), (26,0, 24), (27,0, 35), (28,0, 34),
(29,0, 33]), (30,0,28), (31,0,32), (32,0,31), (33, 0,30), (34,0, 29), (35,0, 26},
(7,00, 0)].

Example 11 ¢ = 19: [(20,0,21), (21,0,23), (22,0, 25), (23,0,27), (24,0, 29),
(25,0,31), (26,0,33), (27,0, 35), (28,0,37), (29,0, 39), (30,0, 41), (31,0, 43),
(32,0,45), (33,0,47), (34,0,49), (35,0,51), (36,0, 53), (37,0, 55), (38, 0, 57),
(39,0,20), (40,0, 22), (41,0,24), (42,0,26), (43,0,28), (44,0, 30), (45,0, 32),
(46,0,34), (47,0, 36), (48,0,38), (49,0,40), (50,0, 42), (51,0, 44), (52, 0, 46),
(53,0,48), (54,0,50), (55,0,52), (56,0,54), (57,0,74), (58,0, 73), (59,0, 72),
(60,0,71), (61,0,70), (62,0,69), (63,0,68), (64,0, 67), (65,0, 64), (66,0, 65),
(67,0,63), (68,0,66), (69,0,75), (70,0,62), (71,0, 61), (72,0, 60), (73,0, 59),
(74,0, 58), (75,0, 56), (18, 00, 0)].

10), (8,0,12), (9,0, 5),

3 New Tools

In this section, we develop new procedures for constructing Ha(8¢, A)s.
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Procedure SPLIT({b,, b2, b3}, a): Take any triangle (or block) {b1, b2, b3}
and a new point a, we construct three H» graphs (a, by, b2) &, (@, b2, b3) i, and
{a, ba, by) . This implies that SPLIT({by, b, b3}, a) results in three H, graphs
such that each of the three pairs ({e,b1}, {a,b2}, {a,bs}) involving the new
point o appears three times and the three pairs ({41, b2}, {b2, b3}, {b1,b3}) of the
original triangle appear once. A graphical illustration of SPLIT({by, bz, b3}, a) is
shown in figure 3.

ba by a bs
b2 b3 b2 a bz ba a bi

Figure 3: SPLIT({;,b2,b3},a) results in three Hp graphs (a,b1,b2)s,,
(a,bz, 173)1-‘{2 and (a,b3,b1)]{2.

Procedure THREE-FOR-CLASS(P, A,n = 3r): Given a resolvable design
with block size k = 3, A = 1 and replication number r, let P = {P,,..., P}
be the collection of the r resolution classes, A = {aj,...,asr} be a set of new
points (so ANV = 0). Let V = {by, b2, ...,b,} and w be the number of blocks
in each class. Foreachi = 1,2,...,7,let P, = {Bi1, Bz, ..., Biw} where each
B;j (j =1,...,w) represents a block of three points from V' in F;.

Fori=1,...,rand j = 1,...,w, we perform procedures SPLIT(B;;, a:),
SPLIT(B;j, ar4:) and SPLIT(B;;, as.4:), respectively. Recall that SPLIT(B;;,
a;) produces three Hy graphs where each of the three pairs involving a; and a
point in B;; appears three times and each of the three pairs involving two points
in B;; appear once. After performing these 3wr procedures, we get a family of
9wr H, graphs where each pair of distinct points in V' appears three times since
each pair is contained in exactly one block in some resolution class (note we as-
sumed that A = 1) and it is produced three times from the three SPLIT procedures
(where each procedure produces the pair once). Furthermore, every pair {a;, b;}
(¢(=1,...,3rand j = 1,...,v) occurs three times since each a; is used in one
resolution class P; that contains every point in V exactly once.

We can see that in the procedure THREE-FOR-CLASS(P, A4, n), we intro-
duce three new points in A to the blocks in each resolution class to create Hp
graphs, thus n = 3r if there are 7 resolution classes in P. The resulting Hz
graphs contain three edges between each pair of distinct points in V' and three
edges between every pair of points where one point is from V' and the other point
is from A.

Procedure COPY({b;, b2, b3}, a): Given a triangle (or block) {b, b2, b3} and
anew point a. A graphical illustration of COPY({b1, b2, b3}, @) is shown in figure
4. This procedure constructs three Hy graphs (b1, b2, b3) H,, (b1,b3,b2) n, and



(@, bz, b3) H,. As a result each edge (or pair) of the original triangle appears three
times, and the edge between a and b, appears twice, and the edge between a and
b3 appears once and no edge is created between a and b;.

by bi b1 b b a
b2 ba b2 bs b2 ba b2 bs b2 bs b2 bs

Figure 4: COPY({b1,b3,b3},a) results in three H, graphs (by,bs,bs)n,,
(b17b3s 62)32 and (a’ b, b3)H2'

Lemma 1 [2] (Agrawal’s Lemma) In every binary equi-replicate design of con-
stant block size k (hence bk = vr and b = mv), the treatments in each block can
be rearranged such that in the k by b array, formed with blocks as columns, every
treatment occurs in each row exactly m times.

Procedure GROUP-TRIPLE(P, A,s = %): Let V = {b;,...,b,} and
A = {ay,...,a,} where ANV = 0. Let P = {P,,..., P.} be the collection
of r = 3s resolution classes with blocks of size k = 3, and w be the number of
blocks in each class. Foreachi = 1,2,...,r, welet P, = {B;1, Bi2, ..., Biw}
where each B;; (j = 1,...,w) represents a block of three points from V in
P;. We apply Agrawal’s lemma to define the fourth procedure called GROUP-
TRIPLE(P, A, s = §) as follows:

As r = 3s, we can group three resolution classes together and get s groups :
}Ph Py, P}, {Py4, P5, Ps},..., {Pss—2, Pas—1, Pss}. Let G; = {Psi_a, Pai_1, Pa;}
orl<i<s.

We apply Agrawal’s lemma to rearrange the points in the blocks of each
group so that every point in V' comes exactly once in each of the three rows
(k=3andm =1). Fori =1,...,sand j = 1,...,w, we perform proce-
dures COPY(B 3i—2)j» a;), COPY(B(&'_I)J', a;) and COPY(B(&-)J-, a;), to obtain
Hj graphs. In these resulting H» graphs, it is clear that every pair between two
distinct points in V' occurs three times. Also, fori =1,...,sandj =1,...,v,
the edge between a; and b; appears three times since each point b; appears ex-
actly once in each of the three rows in group ¢ (from Agrawal’s lemma), and no
edge between a; and b; was created when b; appears in the first row, two edges
between a; and b; were created when b; appears in the 2nd row and one edge
between a; and b; was created when b; appears in the third row.

The resulting H graphs contain three edges between each pair of distinct

points from V' and three edges between every pair of points where one point is
from V and the other point is from A.
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Note that since each procedure of THREE-FOR-CLASS(P, A, n) and GROUP-
TRIPLE(P, A, n) produces H, graphs that contain three edges between every pair
of distinct points from V' and three edges between every pair of points where one
point is from V and the other point is from A, we only need to focus on the number
n of new points in A in these two procedures. In THREE-FOR-CLASS(P, A, n),
n = 3r if there are r resolution classes in P. In GROUP-TRIPLE(P, A,n),n = s
ifr = 3s.

4 A Recursive Construction
In this section we prove that an H3(8¢, 3) exists for all £ > 1.

Theorem 4 For s > 0and 0 < i < 8s, ifan H3(8s + 8i, 3) and an Hz(24s,3)
exist, then an Ho(80s + 81, 3) also exists.

Proof: Letv = 72s points in V for some s > 0. Foreach € {0, ..., 8s}, sup-
pose an Hy(8s + 8i, 3) and an H3(24s, 3) exist. Since 24s = 0(mod 6), by case
(4) in Theorem 1, GDD(24s, 3, 3; 0, 1) is resolvable, and there are -7-2—;:% = 24s
resolution classes on V. Obtain an Hj(24s, 3) for the 24s points in each of the
three groups. This takes care of three edges between any two distinct points from
V having first associates from the resulting Hy graphs.

Next we divide the 24s resolution classes into two parts P! and P? where P*
consists of 24s — 3i resolution classes and P? consists of 3i resolution classes.
Perform the procedure GROUP-TRIPLE(P!, A!,n!) on the 24s — 3i resolution
classes in P!, then n! = 242=3 = 85 — i, Next we perform THREE-FOR-
CLASS(P?, A2,n?) on the 3i resolution classes in P2, then n? = 3 x 3i = 9i.
The total number of new points is n’ = n!+n? = 8s—i+9i = 8s+8i. This takes
care of three edges between any two points from V having second associates and
three edges between any two points where one point is in V' and the other point is
a new point in A' U A? from the resulting H graphs.

Finally we obtain an H3(8s + 84, 3) on the n’ = 8s + 8i new points in A® U
A2, This takes care of three edges between any two distinct new points from the
resulting Ho graphs. Combine all the H, graphs obtained, we have an Ha(v +
n’,3) = Hy(72s + 8s + 8i,3) = H3(80s + 84, 3) since these H, graphs contain
three edges between any pair of distinct points in VU AU A2. O

Corollary 2 An H»(8t, 3) exists forallt > 1.

Proof: We know that an H(8¢,3) exists for 1 < ¢t < 9 and ¢t = 19 since a
difference family solution was provided for each case at the beginning of this
section. Let s = 1, an Hp(24s,3) = H(24,3) exists. For0 < i < 8,
8 < 8s + 8i < 72, an Hy(8s + 8i, 3) exists. By Theorem 4, an H3(80s + 84, 3)
exists where 80 < 80s + 8i < 144, i.e. an Hy(8t, 3) exists for 10 <t < 18.
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Next we let s = 2, an H3(24s,3) = H3(48,3) exists. For 0 < i < 16,16 <
8s + 8i < 144, thus an H3(8s + 84, 3) exists. By Theorem 4, an Hz(80s + 81, 3)
exists where 160 < 80s + 8/ < 288, i.e. an Hp(8t,3) exists for 20 < t < 36
(although ¢ = 19 is not covered here, we know that an H, (152, 3) exists from the
difference family solution provided earlier). Now we have an H3(8t, 3) exists for
alll1 <t < 36.

Similarly, let s = 3, an H3(24s,3) = H(72, 3) exists. For0 < i < 16,24 <
8s + 8i < 216, thus an Hy(8s + 81, 3) exists. By Theorem 4, an Hy(80s + 83, 3)
exists where 240 < 80s + 8i < 432, i.e. an H(8¢, 3) exists for 30 < t < 54.

We can see that in step w where w > 2, s = wand 0 < 7 < 8w. Since
24s = 24w < T2w and 85+ 8i = 8w + 8 < 8w + 8 X 8w = 72w and
72w < 80(w — 1) + 8 x 8(w — 1) = 144w — 144 (note w > 2), this implies
that the assumptions on the existence of an Hy(8s + 8i,3) and an H,(24s, 3) in
step w are already shown by the results from step w — 1 and earlier steps (notice
that 80(w — 1) + 8 x 8(w — 1) is the maximum value for which the existence of
decomposition into H, graphs can be shown in step w — 1). That is, by Theorem
4 and the difference family solutions for 1 < t < 9 and ¢ = 19, we can obtain
any H;(8t, 3) from the results obtained in the previous steps. In other words, an
H;(8t,3) exists forallt > 1. O

Theorem S The necessary condition for existence of an Ha(v,3) (v(v—1) =0
(mod 8) is sufficient for the existence of an Hy(v, 3).

Proof: The necessary condition implies that v = 8¢ or 8¢ + 1 forall ¢ > 1.
Hurd and Sarvate [7] have shown that the necessary condition is sufficient for the
existence of an H3(8t + 1, 3) (also for an H;(8t, 3) except possibly for the cases
24 < 8t < 1680). By Corollary 2, we conclude that the necessary condition is
also sufficient for the existence of an H»(8t,3). O

5 Summary

We provided difference family solutions to an H(8¢t,3) for1 < ¢t < 9andt =
19 where 1 < ¢ < 7 cases are the genuine exceptions in [4]. Next we developed
two procedures THREE-FOR-CLASS(P, A,n) and GROUP-TRIPLE(P, A, n)
for finding a construction of a H2(8t,3). We concluded that an H2(8t,3) ex-
ists for all ¢ > 1 by a recursive construction, which implies that the necessary
condition v = 0 (mod 8) is sufficient for the existence of an Ha(v, 3).
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