# The diameter and the chromatic number of almost self-complementary graphs

Ping An<sup>a</sup> Zhantao Huang<sup>b</sup> and Yinglie Jin<sup>b\*</sup>

<sup>a</sup> State Key Laboratory of Reactor System Design Technology,

Chengdu, P. R. China

<sup>b</sup> School of Mathematical Sciences and LPMC, Nankai University,

Tianjin, P. R. China

#### Abstract

A graph G with an even number of vertices is an almost self-complementary, if it is isomorphic to one of its almost complements  $G^c - M$ , where M denotes a perfect matching in its complement  $G^c$ . In this paper, we show that the diameter of connected almost self-complementary graphs must be 2, 3 or 4. And we construct connected almost self-complementary graphs with 2n vertices having diameter 3 and 4 for each  $n \geq 3$ , and diameter 2 for each  $n \geq 4$  respectively. In addition, we also obtain that for any almost self-complementary graph  $G_n$  with 2n vertices,  $\lceil \sqrt{n} \rceil \leq \chi(G_n) \leq n$ . By construction, we verify that the upper bound is attainable for each positive integer n as well as the lower bound when  $\sqrt{n}$  is an integer.

**Keywords:** diameter, chromatic number, almost self-complementary. **MSC(2000):** 05C12, 05C15, 05C60

### 1 Introduction

A graph G is self-complementary, if it is isomorphic to its complement  $G^c$ . Similarly, a graph G with an even number of vertices is almost self-complementary, if it is isomorphic to a graph (called an almost complement of G) obtained from  $G^c$  by minus a perfect matching of  $G^c$ . Let M denote the perfect matching, then the almost complement of G depending on G can be written as  $G^c$ . Obviously,  $G^c$  is an almost complement of  $G^c$  with the same matching  $G^c$ .

<sup>\*</sup>Corresponding Author. E-mail: yljin@nankai.edu.cn.

Alspach [1], who first introduced almost self-complementary graphs, proposed the determination of all possible orders of almost self- complementary circulant graphs. Dobson and Šajna [3] solved this problem for a particularly "nice" subclass of almost self-complementary circulants. Later on, Potočnik and Šajna [5] investigated some properties of almost self-complementary graphs and gave necessary and sufficient conditions on the order of a regular graph, and constructed several types with special meanings.

In this paper, we mainly investigate the diameter and chromatic number of almost self-complementary graphs.

In section 2, we show that if G is a connected almost self-complementary graph with 2n vertices, the diameter of G must satisfy  $2 \le diam(G) \le 4$ . We also construct three types of connected almost self-complementary graphs with 2n vertices having diameter 2 for each integer  $n \ge 4$ , as well as diameter 3 and 4 for each integer  $n \ge 3$ .

In section 3, inspired by the idea in [2], we show that for an almost self-complementary graph G with  $\chi(G)=k$ , the number of vertices |V(G)| must be less than or equal to  $2k^2$ . Furthermore, we obtain that for any almost self-complementary graph G with 2n vertices, the chromatic number of G must satisfy  $\lceil \sqrt{n} \rceil \leq \chi(G) \leq n$ . In addition, we verify that the upper bound is attainable for each positive integer n and the lower bound is attainable when  $\sqrt{n}$  is an integer, by constructing almost self-complementary graphs with |V(G)| = 2n,  $\chi(G) = n$  and  $|V(G)| = 2n^2$ ,  $\chi(G) = n$  respectively.

For any two vertices x, y of a graph  $G, (x, y) \in E(G)$  denotes that x is adjacent to y in G.

## 2 The diameter of almost self-complementary graphs

Ringel [6] showed that the diameter of any self-complementary graph G must satisfy  $2 \leq diam(G) \leq 3$ . In this section, we investigate the diameter of almost self-complementary graphs. Let G be an almost self-complementary graph. If G is disconnected, the diameter of G is infinity. So we suppose G is connected in this section. Let  $AC_M(G)$  be its almost complement depending on the perfect matching M in  $G^c$  such that  $G \cong AC_M(G)$ .

**Lemma 1.** For any two vertices  $x, y \in V(G)$ ,  $d_{AC_M(G)}(x, y) \le 2$  if  $d_G(x, y) \ge 4$ .

*Proof.* Since G is connected, let  $xv_1v_2\cdots v_my$   $(m\geq 3)$  denote the shortest path between x and y in G. If  $(x,y)\in E(AC_M(G))$ , then  $d_{AC_M(G)}(x,y)=$ 

 $1 \leq 2$ . Otherwise, we have  $(x, y) \in M$ ,  $(x, v_2) \in E(AC_M(G))$  and  $(y, v_2) \in E(AC_M(G))$ , then  $d_{AC_M(G)}(x, y) = 2$ .

**Theorem 1.** G is a connected almost self-complementary graph, then  $2 \le diam(G) \le 4$ .

*Proof.* Because G can't be complete graph,  $diam(G) \geq 2$ . On the other hand, suppose there exists a connected almost self-complementary graph with  $diam(G) \geq 5$ . For any two vertices  $x, y \in V(G)$ :

- (1) If  $d_G(x, y) \ge 3$ , we claim  $d_{AC_M(G)}(x, y) \le 3$ . Because, if  $d_{AC_M(G)}(x, y) \ge 4$ , we have  $d_G(x, y) \le 2$  according to the Lemma 1.
- (2) If  $d_G(x,y)=2$ , there exists a vertex z such that  $(x,z)\notin E(G)$  and  $(y,z)\notin E(G)$  since  $diam(G)\geq 5$ . Then  $(x,y)\in E(AC_M(G))$ , or  $(x,y)\in M$ ,  $(x,z)\in E(AC_M(G))$ ,  $(y,z)\in E(AC_M(G))$ . Hence  $d_{AC_M(G)}(x,y)\leq 2$ . (3) If  $d_G(x,y)=1$ . Let  $I_1=\{v: (x,v)\notin E(G)\}$ ,  $I_2=\{v: (y,v)\notin E(G)\}$ , then we can easily obtain  $|I_i|\geq 3$  (i=1,2) and  $|I_1\cap I_2|\geq 2$  since  $diam(G)\geq 5$ .
- (a)  $|I_1 \cap I_2| \ge 3$ , suppose  $v_1, v_2, v_3 \in I_1 \cap I_2$ . In  $AC_M(G)$ , both x and y are adjacent to at least two vertices in  $\{v_1, v_2, v_3\}$  and  $d_{AC_M(G)}(x, y) = 2$ .
- (b)  $|I_1\cap I_2|=2$ . In this situation,  $x,y,u_1,u_2$  must be the vertices of a path  $P_5: z_0z_1z_2z_3z_4z_5$ , where  $d_G(z_0,z_5)=5$  and  $\{x,y\}=\{z_1,z_2\}$  or  $\{x,y\}=\{z_2,z_3\}$ . In  $AC_M(G)$ ,  $z_1$  is adjacent to at least two vertices in  $\{z_3,z_4,z_5\}$ ,  $z_2$  is adjacent to at least two vertices in  $\{z_0,z_4,z_5\}$ , and  $z_3$  is adjacent to at least two vertices in  $\{z_0,z_1,z_5\}$ . Hence  $d_{AC_M(G)}(z_1,z_2)=2$ ,  $d_{AC_M(G)}(z_2,z_3)=2$ , namely,  $d_{AC_M(G)}(x,y)=2$ .

Above all, we have  $d_{AC_M(G)}(x,y) \leq 3$  for any two vertices x,y of G. So  $diam(AC_M(G)) \leq 3$ , contrary to  $diam(G) \geq 5$  since  $G \cong AC_M(G)$ . Therefore,  $2 \leq diam(G) \leq 4$ .

Potočnik and Šajna [5] presented all almost self-complementary graphs of order at most 6. The connected almost self-complementary graphs among them are listed in Figure 1 (dotted lines are the perfect matching M, and  $\sigma$  is an isomorphism such that  $\sigma(G) = AC_M(G)$ ).

From Figure 1, we obtain that the diameter is 3 or 4 for the connected almost self-complementary graphs of order at most 6. In the following, we shall construct three types of connected almost self-complementary graphs G on 2n vertices such that diam(G)=3,4 for each integer  $n\geq 3$  and diam(G)=2 for  $n\geq 4$  respectively. Let  $V(G)=\{x_i,y_i:i=1,2,\cdots,n\}$  and the perfect matching in  $G^c$  be  $M=\{(x_i,y_i):i=1,2,\cdots,n\}$ . We construct the graphs by defining the edge set E(G) and the almost self-complementary isomorphism  $\sigma:G\to AC_M(G)$  respectively.

Construction 1. For any positive integer  $n \geq 3$ , we construct a connected almost self-complementary graph G on 2n vertices with diam(G) = 4 as following.



Figure 1: Connected almost self-complementary graphs with order at most 6

$$E(G) = \{(x_1, x_2), (y_1, y_2), (y_2, x_i), (y_2, y_i) : 3 \le i \le n\}$$

$$\cup \{(x_i, x_j), (x_i, y_j) : 2 \le i < j \le n\}$$

$$\sigma = (x_1 x_2 y_1 y_2) \prod_{i=3}^{n} (x_i y_i)$$

We can verify G is connected. And for any two vertices  $x, y \in V(G)$ :  $(x,y) \in E(G)$  if and only if  $(\sigma(x), \sigma(y)) \in E(AC_M(G))$ , namely  $G \cong AC_M(G)$ . Furthermore  $d(x_1, y_1) = 4$ , so diam(G) = 4.

Construction 2. For any positive integer  $n \ge 3$ , we construct a connected almost self-complementary graph G on 2n vertices with diam(G) = 3 as following.

$$E(G) = \{(x_i, x_j), (x_i, y_j) : 1 \le i < j \le n\} \cup \{(y_1, x_n)\} \setminus \{x_1, y_n\}$$

$$\sigma = \prod_{i=1}^{n} (x_i y_i)$$

We can easily verify  $\sigma$  is an isomorphism:  $G \to AC_M(G)$ . The vertex  $x_1$  is adjacent to all vertices in V(G) except  $y_1, y_n$  and  $d(x_1, y_n) = d(x_1, y_1) = 2$ ,  $d(y_1, y_i) = 3$  for  $i = 1, \dots, n$ . Hence diam(G) = 3.

**Construction 3.** For any positive integer  $n \ge 4$ , we construct a connected almost self-complementary graph G on 2n vertices with diam(G) = 2 as

following.

$$E(G) = \{(x_1, y_i), (y_1, y_i) : 2 \le i \le n\}$$

$$\cup \{(x_i, x_j), (x_i, y_j) : 2 \le i < j \le n\} \cup \{(y_2, x_n)\} \setminus \{(x_2, y_n)\}$$

$$\sigma = (x_1)(y_1) \prod_{i=2}^{n} (x_i y_i)$$

We have  $G \cong AC_M(G)$  and  $\sigma$  is the isomorphism. The subgraph on vertex set  $V(G)\setminus\{x_1,y_1\}$  is a graph in Construction 2. Now  $d(x_1,y_1)=d(y_i,y_j)=2$  for  $1\leq i< j\leq n$ . Hence diam(G)=2.

### 3 The chromatic number of the almost selfcomplementary graphs

According to the conclusion in [4], we have  $\sqrt{n} \leq \chi(G) \leq \frac{n+1}{2}$  for any self-complementary graph G with n vertices. In this section, we investigate the chromatic number of almost self-complementary graphs.

**Theorem 2.** Let G be an almost self-complementary graph with chromatic number  $\chi(G) = k$ , then  $|V(G)| \leq 2k^2$ .

Proof. Let M be the perfect matching in  $G^c$  such that  $G \cong AC_M(G)$ . Suppose  $|V(G)| \geq 2k^2 + 1$ . Since there are k colors, there are at least 2k + 1 vertices, which are independent in G, equipped with the same color. The subgraph in  $AC_M(G)$  on those 2k + 1 vertices contains a complete graph of order 2k + 1 minus a maximal matching, and we have  $\chi(AC_M(G)) \geq k + 1$ . Hence  $\chi(G) \geq k + 1$  since  $G \cong AC_M(G)$ , a contradiction. Therefore  $|V(G)| \leq 2k^2$ .

**Theorem 3.** For any almost self-complementary graph G with 2n vertices, we have  $\lceil \sqrt{n} \rceil \leq \chi(G) \leq n$ .

*Proof.* Let  $\chi(G) = k$ . Suppose  $k \leq \lceil \sqrt{n} \rceil - 1 < \sqrt{n}$ . According to Theorem 2,  $|V(G)| \leq 2k^2 < 2n$  contrary to |V(G)| = 2n.

On the other hand, let M be the perfect matching in  $G^c$ , such that  $G \cong AC_M(G)$ . We equip the two adjacent vertices in M with the same color and obtain a proper coloring of G. Hence  $\chi(G) \leq n$ .

Next, by construction, we show that the upper bound is attainable for any integer  $n \ge 2$  as well as the lower bound when  $\sqrt{n}$  is an integer.

**Construction 4.** For any integer  $n \geq 2$ , we construct an almost self-complementary graph G of order 2n such that  $\chi(G) = n$ .

$$V(G) = \{x_i, y_i : i = 1, \dots, n\}$$

$$M = \{(x_i, y_i) : i = 1, \dots, n\}$$

$$E(G) = \{(x_i, x_j), (x_i, y_j) : 1 \le i < j \le n\}$$

$$\sigma = \prod_{i=1}^{n} (x_i y_i)$$

We can easily verify  $\sigma$  is an isomorphism:  $G \to AC_M(G)$  and G is an almost self-complementary graph. G contains a complete subgraph  $K_n$ , so  $\chi(G) \geq n$ . On the other hand, we can set  $x_i$  and  $y_i$  with the same color i  $(1 \leq i \leq n)$ , then we obtain  $\chi(G) \leq n$ . Hence  $\chi(G) = n$ .

Construction 5. For any integer  $n \ge 1$ , we construct a graph G such that  $\chi(G) = n$  and  $|V(G)| = 2n^2$ .

$$V(G) = \{x_{i,j}, y_{i,j} : i, j = 1, \dots, n\}$$
  $M = \{(x_{i,j}, y_{i,j}) : i, j = 1, \dots, n\}$ 

1. If n is even, we define a mapping  $\sigma: V(G) \to V(G)$  as follows:

$$\sigma = \prod_{\substack{t \text{ odd} \\ 1 \le t \le n-1}} (x_{t,t} \ x_{t+1,t} \ x_{t+1,t+1} \ x_{t,t+1}) (y_{t,t} \ y_{t+1,t} \ y_{t+1,t+1} \ y_{t,t+1})$$

$$\times \prod_{\substack{t \text{ odd} \\ 0 \text{ odd}}} (x_{i,j} \ x_{j,i} \ x_{i+1,j} \ x_{j,i+1}) (y_{i,j} \ y_{j,i} \ y_{i+1,j} \ y_{j,i+1})$$

We can easily verify that 
$$\sigma$$
 contains  $2 \times \left(\frac{n}{2} + \sum_{i=1}^{n-3} (n-i-1)\right) = \frac{1}{2}n^2$ 

cycles, namely  $4 \times \frac{1}{2}n^2 = 2n^2$  elements of V(G). On the other hand, for any vertex  $a_{ij}$  in V(G),  $a_{ij}$  belongs to a unique cycle of  $\sigma$  and  $a_{ij}$  has a unique image and preimage under the action of  $\sigma$ . Hence  $\sigma$  is a permutation.

Next we define the edge set E(G) based on each cycle in  $\sigma$ . Denote  $V(X_i) = \{x_{i,j}, y_{i,j} : j = 1, \dots, n\}$  for  $i = 1, \dots, n$ ;  $V(Y_j) = \{x_{i,j}, y_{i,j} : i = 1, \dots, n\}$  for  $j = 1, \dots, n$ .

$$V(G) = V(X_1) \cup V(X_2) \cup \cdots \cup V(X_n) = V(Y_1) \cup V(Y_2) \cup \cdots \cup V(Y_n)$$

be two partitions of the vertex set of G into disjoint subsets.

For any pair of vertices  $a_{i,j}$ ,  $b_{s,t}$  in V(G) such that  $(a_{i,j}, b_{s,t}) \notin M$ , let  $(\sigma^0(a_{i,j}) \ \sigma(a_{i,j}) \ \sigma^2(a_{i,j}) \ \sigma^3(a_{i,j}))$ ,  $(\sigma^0(b_{s,t}) \ \sigma(b_{s,t}) \ \sigma^2(b_{s,t}) \ \sigma^3(b_{s,t}))$  for the two cycles containing  $a_{i,j}, b_{s,t}$  respectively, where  $\sigma^0(a_{i,j}) = a_{i,j}$ ,  $\sigma^0(b_{s,t}) = b_{s,t}$ .

If there exist  $p(0 \le p \le 3)$  and  $j_0(1 \le j_0 \le n)$  such that  $\sigma^p(a_{i,j}) \in V(Y_{j_0}), \sigma^p(b_{s,t}) \in V(Y_{j_0})$ , let

$$(\sigma^{p+1}(a_{i,j}),\sigma^{p+1}(b_{s,t})) \in E(G) \text{ and } (\sigma^{p+3}(a_{i,j}),\sigma^{p+3}(b_{s,t})) \in E(G)$$

Otherwise, order

$$\{a_{i,j}, \ \sigma(a_{i,j}), \ \sigma^2(a_{i,j}), \ \sigma^3(a_{i,j}), \ b_{s,t}, \ \sigma(b_{s,t}), \ \sigma^2(b_{s,t}), \ \sigma^3(b_{s,t})\}$$

by the subscripts of the elements lexicographically. Let c be the smallest element under this ordering, namely there is  $q(0 \le q \le 3)$  such that  $\sigma^q(a_{i,j}) = c$  or  $\sigma^q(b_{s,t}) = c$ . We let

$$(\sigma^q(a_{i,j}),\sigma^q(b_{s,t}))\in E(G)$$
 and  $(\sigma^{q+2}(a_{i,j}),\sigma^{q+2}(b_{s,t}))\in E(G)$ 

We claim E(G) is well-defined, since for any two vertices  $a_{i,j}, b_{s,t}$ , if j = t and  $i \neq s$ ,  $\sigma(a_{i,j})$  and  $\sigma(b_{s,t})$  cannot belong to the same set  $V(Y_j)(1 \leq j \leq n)$  under the action of  $\sigma$  and the same holds to  $\sigma^3(a_{i,j})$  and  $\sigma^3(b_{s,t})$ .

At the same time, for any edge  $\alpha \in E(G)$ ,  $\sigma\alpha \in E(AC_M(G))$ . Conversely, for each  $\beta \in E(AC_M(G))$ ,  $\sigma^{-1}\beta \in E(G)$ . It means  $\sigma(G) = AC_M(G)$ ,  $\sigma(M) = M$ , and thus G is an almost self-complementary graph.

We have  $\chi(G) \leq n$  since each subgraph  $Y_j (1 \leq j \leq n)$  is an independent set. On the other hand, each subgraph  $X_i (1 \leq i \leq n)$  is a complete graph on 2n vertices minus a perfect matching. So  $\chi(G) \geq n$ . Consequently,  $\chi(G) = n$ .

2. If n is odd, we define a mapping  $\varphi: V(G) \to V(G)$  as follows:

$$\varphi = \{ \prod_{\substack{t \text{ odd} \\ 1 \le t \le n-1}} (x_{t,t} \ x_{t+1,t} \ x_{t+1,t+1} \ x_{t,t+1}) (y_{t,t} \ y_{t+1,t} \ y_{t+1,t+1} \ y_{t,t+1}) \}$$

$$\times \{ \prod_{\substack{i \text{ odd} \\ 1 \leq i \leq n-2 \\ i+2 \leq j \leq n}} (x_{i,j} \ x_{j,i} \ x_{i+1,j} \ x_{j,i+1}) (y_{i,j} \ y_{j,i} \ y_{i+1,j} \ y_{j,i+1}) \} \times (x_{nn}) (y_{nn})$$

We can verify the conclusion in a similar way.

Corollary 1. For each almost self-complementary graph G such that  $\chi(G) = n$  and  $|V(G)| = 2n^2$ , G contains n "cocktail party" subgraphs,  $K_{2n} - nK_2$ , on 2n vertices, where those subgraphs are mutually disjoint.

*Proof.* There are at  $2n^2$  vertices and n colors. So there are at least 2n vertices equipped with the same color. Similar to the proof of Theorem 2, if there are 2n+1 vertices with the same color, we obtain  $\chi(G) \ge n+1$ , a contradiction.

Hence each color assigns to exact 2n vertices which is an independent set in G. Because  $\chi(AC_M(G)) = \chi(G) = n$ , the subgraph on the 2n vertices for each color must be "cocktail party graph":  $K_{2n} - nK_2$ . We have  $AC_M(G)$  contains n ( $K_{2n} - nK_2$ ), which are mutually disjoint. The conclusion follows since  $G \cong AC_M(G)$ .

### References

- [1] B. Alspach, J. Morris, V. Vilfred, Self-complementary circulant graphs, *Ars Combinatoria*, **53**(1999) 187-191.
- [2] C. Y. Chao and G. Whitehead, Chromaticity of self-complementary graphs, *Arch. Math.*, **32**(1979) 295-304.
- [3] E. Dobson and M. Šajna, Almost self-complementary circulant graphs, *Discrete Math.*, **278**(2004) 23-44.
- [4] E. A. Nordhaus and J. W. Gaddum, On complementary graphs, American Math. Monthly, 63(1956) 175-177.
- [5] P. Potočnik, M. Šajna, On almost self-complementary graphs, *Discrete Math.*, 306(2006) 107-123.
- [6] G. Ringel, Selbstkomplementäre Graphen, Arch. Math., 14(1963) 354-358.