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Abstract

For every integer c, let n = R4(c) be the least integer such that for
every coloring A:{1,2,...,n} — {0,1} there exists a solution
(zls Z2, 33) to

T1+T2+Cc=1x3

such that z; #z; when i#j

and A(zy) = A(z) = A(zs).

In this paper it is shown that for every integer c,
4c+8 ife>1

8 if —3<c¢< -6
_J9 ife=0,-2,-7 -8
Rae)=1 10 ife=—1,-9
ol - [E=4]  ife< 10,
Note: Part of the research for this paper occurred when the second author was
an undergraduate student at South Dakota State University.

Introduction

Let N represent the set of natural numbers and let [a, b] denote the set
{neNla<n<b}. A function A:[l,n] — [0,£—1] is referred to as a
t-coloring of the set [1,n). Given a t-coloring A and a system L of linear

equations or inequalities in m variables, a solution (zi,z3, ... ,Zm) to the
system L is monochromatic if and only if
A(a:l) = A(mg) = e = A(:L‘m)

In 1916, I. Schur [19] proved that for every t > 2, there exists a least
integer n = S(t) such that for every t-coloring of the set [1,n], there exists a
monochromatic solution to
T + T2 = Z3.
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The integers S(t) are called Schur numbers. It is known that S(2) =5,
S(3) = 14 and S(4) = 45, but no other Schur numbers are known [21]. In
1933, R. Rado generalized the concept of Schur numbers to arbitrary systems of
linear equations. Rado found necessary and sufficient conditions to determine if
an arbitrary system of linear homogeneous equations admits a monochromatic
solution under every t-coloring of the natural numbers [4,12,13,14]. For a
given system of linear equations L, the least integer n, provided that it exists,
such that for every t-coloring of the set [1,n] there exists a monochromatic
solution to L is called the t-color Rado number (or t-color generalized Schur
number) for the system L. If such an integer n does not exist, then the ¢-color
Rado number for the system L is defined to be infinite. In recent years the exact
Rado numbers for -several families of equations and inequalities have been
found, but almost entirely for 2-colorings [1,7,8,9,10,11,17,18].

Recently several variations of the classical Rado numbers have been
considered [5, 6, 16]. One possible variation is to add to the system of equations
the condition that all variables in the solution be distinct. We will refer to the
Rado numbers for any system that requires the integers in the solution to be
distinct as distinct Rado numbers. This variation has the following motivation.
The study of Schur numbers and Rado numbers is closely linked to a similar area
of study in graph theory. Let K, represent a complete graph on n vertices. In
1930, F. Ramsey [15] proved that for every integer ¢ > 2 and all integers
81,82,...,8; there exists a least integer n = R(sy, 82,...,5;) such that if the
edges of a K, are colored with ¢ colors then there exists an ¢ € [1,¢] such that a
K, with all edges colored the ith color can be found in the K,. The integers
R(sy, 82,...,8t) are called Ramsey numbers and are known for only a few small
values of ¢ and s;. Since any graph with n vertices can be found in a K, it is
clear that for every ¢ > 2 and for all graphs Gy, Gy, ..., G}, there must also exist
a least integer n = R(G1, Gy, ..., G;) such that if the edges of a K, are colored
with ¢ colors then there exists an ¢ € [1,] such that a G; with all edges colored
the ith color can be found in the K,,. This integer is called the Ramsey number
for the set of graphs {G), G, ..., G;}. The study of Schur and Rado numbers as
well as Ramsey numbers is considered a part of Ramsey Theory, although
ironically Schur's theorem was published fourteen years before Ramsey's
theorem.

The similarities between investigating the Rado numbers for specific
equations and the Ramsey numbers for specific graphs are very strong. In the
first case we are looking for a sufficiently large set of natural numbers that when
arbitrarily colored will assure a monochromatic set of numbers that also forms a
solution to a specified equation. In the second case we are looking for a
sufficiently large complete graph such that when the edges are arbitrarily colored
there will exist a monochromatic set of edges that also forms a specified graph.
There are some major differences however. Probably the most significant
difference is that while the Ramsey number for any set of graphs is finite, the
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Rado numbers for many equations are infinite. Another difference is that while a
given integer may be used more than one time in the solution to an equation, no
single edge is ever used more than once in a given graph. In the case of distinct
Rado numbers this difference is eliminated, so the problems are more closely
linked to the problem of finding Ramsey numbers for graphs.

W. Sierpinski [20] considered the problem of finding the distinct Schur
numbers and was able to show that the 2-color distinct Schur number is 9. Also,
in [2] the 2-color Rado numbers we determined for the two systems

Im): ;y+z24+ -+ Zp1 < T
and
lalm) 21+ z2+ -+ 2oy < ZTm
z; #z; when i# j.

Note that the subscript on [g(m) refers to the fact that the integers in a
solution must be distinct. Let r(m) and r4(m) represent the 2-color Rado
numbers for the systems /(m) and l3(m) respectively. While it is trivial to show
that for every m > 3, r(m) = m? — m + 1, it is nontrivial to show that for every
m23

2md—m?+m+1 m = 0(mod 4)
ra(m) = gmd-m?+ Bm4+ B8 m = 1(mod 4)
a\m) = Smd—m?+ m+ 1 m = 2(mod 4)
2md—m?+ Em+ 3 m = 3(mod 4).

As illustrated in the above example, adding to a system the
requirement that the integers in a solution must be distinct may make the
determination of the distinct Rado numbers for this new system considerably
more challenging than determining the Rado numbers for the original system.

We continue the investigation of distinct Rado numbers by considering
the following variation of the Schur equation. For every integer c, let L(c)
represent the system
Lic): z¢1+zo+c=1x3
and let R(c) represent the 2-color Rado number for this system. It was
determined by Burr and Loo [3] that

4c+5 ifec>0
R(c)= le| = lELs:lJ if c<0.

In this paper we consider the distinct Rado numbers for this system. For every
integer c, let Ly(c) represent the system

Lile): ;y+T2o+ec=1x3
z; #x; when i#j
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and let Ry(c) represent the distinct 2-color Rado number for Lg(c). In this
paper we determine Rg4(c) for every integer c. Note that when ¢ = O this is the
above mentioned result of Sierpinski.

Main Results
Theorem: For every integer c,
4c+ 8 ife>1
8 if =3<c< -6
~J9 ife=0,-2,-7,-8
Rale) =1 1o ife=—1,-9

le] —[151‘—4] if ¢< —10.

5

Proof: The proof will be accomplished in three major parts. In Part 1, we will
show that R4(c) = 4c + 9 for all integers ¢ > 1. In Part 2, we will show that
Ry(c) = |c| - |_15|5_—4J for all integers ¢ < — 14. Finally, in Part 3, we will give
a proof that is representative of the individual cases which must be considered
for each integer c such that — 13 < ¢ < 0.
Part 1: First we shall show that

Ry(c) =4c+38
for every positive integer c. For every positive integer c, it is easy to verify that
the coloring A : [1,4c + 7] — [0, 1] defined by

0 if1<z<c+2
1 ifc+3<zx<3+6
0 if3c+7<z<4c+"7

Az) =

avoids a monochromatic solution to Ly(c). It follows that
Ry(c) > 4c+38

whenever c is a positive integer. We shall now show that
Ri(c) <4c+8

for every positive integer c. Let a positive integer ¢ be given and let
A: [1,4c+ 8] — [0, 1] be an arbitrary 2-coloring of the set [1,4c + 8].

We must show that A contains a monochromatic solution to Lg(c). Without loss

of generality we may assume that
A1) =0.

We shall consider four cases based on the four possible ways to color the
integers 3 and ¢ + 3.
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Case 1. Assume that A(3) =0and A(c+3) =0. If A(c+4) = 0, then
(1,3, ¢ + 4) is a monochromatic solution to Ly(c) and we are done, so we may
assume that

Alc+4)=1.
If A(2¢ + 6) = 0, then (3, ¢ + 3, 2c + 6) is a monochromatic solution, so we
may assume that

A(2c+6)=1.
Now, if A(2) = 0, then (1,2, ¢ + 3) is a monochromatic solution and if
A(2) = 1, then (2, ¢ + 4, 2¢c + 6) is a monochromatic solution.

Case 2. Assume that A(3) = 0and A(c+3) = 1. If A(c+4) = 0, then
(1,3, ¢ + 4) is a monochromatic solution, so we may assume that

Alc+4)=1.

If A(3¢+ 7) = 1, then (c + 3, ¢ + 4, 3c + 7) is a monochromatic solution, so
we may assume that

ABc+7)=0.
If A(2¢c + 4) = 0, then (3, 2c + 4, 3¢ + 7) is a monochromatic solution, so we
may assume that

A(2c+4)=1.
Now, if A(4c + 8) = 0, then (1, 3c + 7, 4c + 8) is a monochromatic solution
and if A(4c + 8) = 1, then (c + 4, 2¢ + 4, 4c + 8) is a monochromatic solution.

Case 3. Assume that A(3) = 1and A(c+3) =0. If A(2¢c + 4) =0, then
(1,¢ + 3,2¢ + 4) is a monochromatic solution, so we may assume that

A2c+4)=1.

If A(3¢c + 7) = 1, then (3, 2¢ + 4, 3¢ + 7) is a monochromatic solution, so we
may assume that

A(Bc+T)=0.
If A(2) = 0, then (1,2, ¢ + 3) is a monochromatic solution, so we may assume
that

A(2)y=1.

Now, ifc = 1, then ¢ + 3 = 4, s0 A(4) = 0. If A(6) = 0, then (1,4,6) isa
monochromatic solution and if A(6) = 1, then (2, 3, 6) is a monochromatic
solution. So the case were ¢ = 1 is finished and we may continue with the
assumption that ¢ > 2.

If A(c+ 5) = 1, then (2, 3, c + 5) is a monochromatic solution, so we may

assume that
Ac+5)=0.
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If A(4) = 0, then (1,4, c + 5) is a monochromatic solution, so we may assume

that
A(4)=1.

Now, if A(3c + 8) = 0, then (¢ + 3, ¢ + 5, 3c + 8) is a monochromatic solution
and if A(3c + 8) = 1, then (4, 2¢ + 4, 3¢ + 8) is a monochromatic solution.

Case 4. Assume that A(3) = 1and A(c+3) =1. If A(2¢ +6) =1, then
(3, ¢ + 3, 2¢ + 6) is a monochromatic solution, so we may assume that
A(2c+6)=0.

If A(c+ 5) = 0, then (1, c + 5,2¢ + 6) is a monochromatic solution, so we may

assume that
A(c+5)=1.

If A(2) = 1, then (2, 3, ¢ + 5) is a monochromatic solution, so we may assume

that
A(2)=0.

Now, if A(3c + 8) = 0, then (2, 2¢ + 6, 3¢ + 8) is a monochromatic solution
and if A(3c + 8) = 1, then (¢ + 3, ¢ + 5, 3c + 8) is a monochromatic solution.

Since we found in A a monochromatic solution to L4(c) in every case we may
conclude that R4(c) < 4c + 8 and since it was previously shown that
Ry(c) 2 4c + 8, we conclude that

Ry(c) =4c+38
for every positive integer c.

Part 2: We shall now consider the case where ¢ < — 14. Let an integer
¢ £ — 14 be given. First we shall show that

Ra(e) 2 le| - | 454

by exhibiting a coloring A.: [1, le| - []ﬂg_—“J - 1] — [0,1] that avoids a
monochromatic solution to Lg(c). Note that ¢ can be uniquely expressed as
c= -5t —a.
where t > 2 and a € [4, 8]. Since ¢ is positive, it follows that
Ry(t) =4t + 8.

Hence, there exists a coloring A;:[1,4t+7] — [0,1] that avoids a
monochromatic solution to Ly(t). Now, since
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le| - [1215"—4J-1 =|-5t—af - [L:f";;!ij—l
= (5t +a) - [Etp=4| -1
=(5t+a)-t+ |24 -1
=(5t+a)—t—1
=4t+a-1,

our desired coloring A,: [1, le] = []5]3'—4 J - 1] — [0, 1] may be expressed as

Ac: (1,4t +a—1] — [0,1]. Define A.: [1,4t +a — 1] — [0,1] by
A(z) = A(4t +a — ).

It will be shown that A, defined in this way avoids a monochromatic solution to
Ly(c). Assume that (z;, z2, z3) is a solution to Ly(c) = Lq( — 5t — a). Let
yi=4t+a—x; foreveryie[1,3].
Therefore,
A(yi) = A(4t +a — z;) = Ac(z;) forevery i € [1,3]

and the triple (z;,z2,23) is monochromatic in A, if and only if the triple
(¥1, ¥2, y3) is monochromatic in A;. Also, since z; # z; when i # j, it follows
that y; # y; when i # j. Now,

N+p+t=@t+a—z)+@t+a—z0)+1¢
=4t+a—(z)+z2+(~5t—a))
=4t+a—(z1+22+¢)
=4+a—zx3
=Us.

Therefore, (y1,¥2,ys) is a solution to Lg(Z). Since the coloring A, avoids
monochromatic solutions to Ly(t), the triple (31, y2, y3) is not monochromatic in
A, so the triple (z1, 22, 3) is not monochromatic in A,. Thus, the coloring

A [i,lc| - ]_195'—4 - 1] — [0,1) avoids a monochromatic solution to L(c)
and

Ra(c) 2 le| - | 52 .
Now we shall show that

Ra(e) < lel - | 454.
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Let an arbitrary coloring A, : [1, le] - I-I-C-Ls'—““ — [0,1] be given. We must
show that A, contains a monochromatic solution to Ly(c). Note that c can be
uniquely expressed as

c= —-5s—b
where s is a positive integer and b € [9, 13]. Since
|c|_[l£I5-_4J =|_53_b|_[l-_5s-?él-_4j
= (5s+8) — s — |25
=(5s+b)-s-1
=4s+b-1,

A, can be represented as A, : [1,4s+ b — 1] — [0,1]. Let
A, : [1,4s + 8] — [0, 1] be defined by
A,(z) = A(4s+ b —z).

Since s is positive, Rq(s) = 43 + 8, so A, contains a monochromatic solution to
L4(s). Let (y1,y2,y3) be this solution. Let

zi=4s+b—y; foreveryi€ [L,3].

Therefore, A(x;) = Ac(4s+ b — ;) = Ag(ys) for every i € [1,3]. Since the
triple (y1,2,¥3) is monochromatic in A,, it follows that the triple (z1, 3, z3) is
monochromatic in A.. Also, since y; # y; when 4 # j, it follows that z; # x;
when ¢ # j. Finally,

Ti+T2+c=(4s+b—y)+(4s+b—y) +(—5s—b)
=4s+b—(pn +y2+3)
=4s+b—ys
= z3.

Hence, the triple (z;,z3,3) is both monochromatic in A, and a solution to
L4(c).  Therefore, we have shown that the arbitrary coloring

A [1, le] = |_15|5'—4” — [0, 1] contains a monochromatic solution to L4(c) and

that
Ra(c) < Je| - [LI;—“J

Since it was previously shown that Ry(c) > |c| — l s 4J , we have that

Ry(c) =|c| - I_lfl'—"J foreveryc < — 14.

5
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Part 3: Finally, we shall consider the cases where ¢ € [ — 13,0]. Each of these
fourteen values of ¢ must be considered separately. Note that even though the
formula for Ry(c) is the same forc < — 14 and for ¢ € [ — 13, — 10, the proof
for ¢ < — 14 does not generalize to ¢ € [ — 13, — 10]. For each of the fourteen
values of c in the set [ — 13, 0], the proof of the upper bound for Ry(c) is
straightforward case analysis. However, each proof requires several cases. Also,
the lengths of the strings to be colored are small enough that the values of Ry(c)
can easily be determined with the help of a computer. For these reasons, we will
demonstrate the proof technique for these special cases by proving one case and
we will provide the results of computer experiments for the other cases. Since
the case for ¢ = 0 was previously known, we will show that Rg( — 1) = 10.

First note that the coloring A : [1,9] — [0, 1] defined by

0 if £=1,2,3,59
A@*‘{1ifx=4ﬁﬂs

avoids a monochromatic solution and thus
Ry(-1) 2 10.

To prove the upper bound for Ry( — 1), let an arbitrary coloring

A : [1,10] — [0,1] be given. We will show that A contains a monochromatic
solution to L4( — 1). As an interesting note, the coloring of the integer 1 does
not affect the possibility of a monochromatic solution to the equation

x) + x2 — 1 = z3 because no set of three distinct natural numbers that includes 1
could provide a solution to the equation. Therefore, A(1) can be either color.
Without loss of generality, we may assume that

A@2) =0

and we shall consider four cases based on the four possible ways to color the
integers 3 and 5.

Case 1. Assume that A(3) = 0 and A(5) =0.

If A(4) = 0, then (2, 3, 4) is a monochromatic solution to Ls( — 1), so we may
assume that A(4) = 1. If A(7) =0, then (3, 5, 7) is a monochromatic solution
to Lyg( — 1), so we may assume that A(7) = 1. If A(6) = 0, then (2,5,6) isa
moncchromatic solution to Lg( — 1), so we may assume that A(6) = 1. If
A(9) = 1, then (4, 6,9) is a monochromatic solution to Lg( — 1), so we may
assume that A(9) = 0. Now, if A(10) = 1, then (4, 7, 10) is a monochromatic
solution to Ly( — 1), and if A(10) = 0, then (2,9, 10) is a monochromatic
solution to Ly( — 1).

Case 2. Assume that A(3) = 0and A(5) = 1.

If A(4) = 0, then (2, 3, 4) is a monochromatic solution to Ly( — 1), so we may
assume that A(4) = 1. If A(8) = 1, then (4, 5, 8) is a monochromatic solution
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to Ly( — 1), so we may assume that A(8) = 0. If A(9) =0, then (2,8,9) isa
monochromatic solution to Lg( — 1), so we may assume that A(9) = 1. Now, if
A(6) = 1, then (4, 6, 9) is a monochromatic solution to Lq( — 1), and if

A(6) = 0, then (3, 6, 8) is a monochromatic solution to Lg( — 1).

Case 3. Assume that A(3) = 1and A(5) =0.

If A(6) = 0, then (2, 5, 6) is a monochromatic solution to Lg( — 1), so we may
assume that A(6) = 1. If A(8) = 1, then (3, 6, 8) is a monochromatic solution
to Lg( — 1), so we may assume that A(8) = 0. If A(9) =0, then (2,8,9) isa
monochromatic solution to Ly( — 1), so we may assume that A(9) = 1. Now, if
A(4) = 0, then (2, 4, 5) is a monochromatic solution to Lg( — 1), and if

A(4) = 1, then (4, 6,9) is a monochromatic solution to Lg( — 1).

Case 4. Assume that A(3) =1and A(5) = 1.

If A(7) = 1, then (3, 5, 7) is a monochromatic solution to Ly( — 1), so we may
assume that A(7) = 0. If A(8) = 0, then (2, 7, 8) is a monochromatic solution
to Ly( — 1), so we may assume that A(8) = 1. If A(10) = 1, then (3,8,10) isa
monochromatic solution to Ly( — 1), so we may assume that A(10) = 0. Now,
if A(4) = 1, then (4, 5, 8) is a monochromatic solution to Ly( — 1), and if

A(4) = 0, then (4,7, 10) is a monochromatic solution to Ly( — 1).

Since in all four cases we found a monochromatic solution to Ly( — 1), we may

conclude that
Ry(-1)<10

and the case for c = — 1 is complete. 0

The following table was made with the help of a computer. For all
values of ¢ € [ — 13, 0], this table lists all of the longest colorings (up to a
permutation of the colors) that avoid a monochromatic solution to L4(c) and
thus establish the lower bounds. These colorings are expressed as strings. For
example, the string 00101110 represents the coloring A : [1,8] — [0, 1] defined
by

0 if z=1,2,4,8

Alz) = { 1 if z=3,5,6,7.
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I

Ry(c)  maximal strings

(3}

Ry(c)  maximal strings

0 9 00101110 -9 10 011101001
10 011101000
-1 10 000101110
011010001 -10 9 00000111
00111000
-2 9 01010110 00111010
00111100
-3 8 0011101 01000111
0001101 01111000
01111100
-4 8 0110001
0111001 -11 10 000000111
001000111
-5 8 0100011 001111000
0100111 001111100
010000111
-6 8 0010101 011000111
0101001 011111000
0101010
0101011 -12 11 0011111000
0101100 0111111000
0101110
0111010 -13 12 00111111000
-7 9 01101010
-8 9 01111001
01111000
01101001
01101000
00010111
00010110
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