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Abstract

In this paper, we consider mixed arrangements which are composed of
the hyperplanes (or subspaces) and the spheres. We research the posets
of their intersection sets and calculate the M&bius functions of the mixed
arrangements through the hyperplane (or subspace) arrangements’ Md&bius
functions. Moreover, by the method of deletion and restriction, we calculate
the recurse formulas of the triples of these mixed arrangements.

1 Introduction

A hyperplane arrangement & is a finite collection of codimension one affine sub-
spaces in a finite dimensional vector space. Because hyperplane arrangements
have many important properties in the aspects of combinatorics and topology,
many mathematicians are interested in studying them. Now many good results
have been gotten in studying the regions of 27, the M&bius function, the char-
acteristic polynomial of the intersection set L(&) of the elements of &, and the
topology structure of the complement of &/. The main results about hyperplane
arrangement can be found in [3].

Yi Hu considered another kind of arrangement called mixed arrangement .#
in [2], and calculated the homology of the complement of affine subspace arrange-
ment and mixed arrangement by induction and the Mayer-Vietoris sequences.

Definition 1.1. [2] A mixed arrangement is a finite set .# = {My,...,M;} of
closed subspaces (with induce topology) of R”", which satisfies

(1) every M; is a copy of a differentiable ball or sphere of some dimension (that
is, of a differentiable copy of R¥ of S* for some k < n);
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(2) every two subspaces meet transversally.

In this paper, we are also interesting in the mixed arrangements, and we'll
consider the poset L(.#) of the mixed arrangement .# from the view of combi-
natorial point, but here we drop the second condition in the above conditions, i.e.
we consider more universal cases.

We organized this paper as follows. In section 2, we give some basic defi-
nitions. In section 3, we calculate the M6bius functions of the poset of mixed
arrangements. In section 4, we get the deletion-restriction formulas for the char-
acteristic polynomial and the number of regions.

2 Preliminary

Definition 2.1. A finite hyperplane arrangement 2, is a finite set of affine hyper-
planes in some vector space K", where K is a field. If T = Ny H # 0, we call
&, centered with center T. If &, is centered, then coordinates may be chosen so
that each hyperplane contains the origin. In this case we call &, central.

Definition 2.2. If K =R, set #, = o, U{S""'}, where $"~! is a sphere of dimen-
sion n— 1 in R, Let L(2%,) be the partial order set of all nonempty intersections
of elements of &, and L(.#,) be the partial order set of .#,. Both the partial
orders are defined by reverse inclusion, i.e.

X<Y&XDY.
Thus R” = 0 is the minimum element in L(%) and L(.#},).

Definition 2.3. For any X,Y € L(4,), define the meetby X VY = XNY, and the
joinby XAY =N{Z|Z € L()},XUY C Z}. And we define the meet A and the
join V by the same way in L(.#,).

Definition 2.4. If every pair of elements of a poset L has a meet, we say that L is
a meet-semilattice. A poset L is locally finite if every interval [x,y] C L is finite.
Define the Mobius function u of locally finite poset L by the following conditions:

”'(xsx) = 1,VxelL
ulx,y) = - Z u(x,y), forallx<yin P.
x<z<y

If L has a 0, than we write u(x) = u(0,x).

3 The Mébius Function

3.1 The Mixed Arrangement with One Sphere

Here we suppose that &, = {H},---,Hp} is a finite hyperplane arrangement in
R". Let .#), = o, U{S""'} be the corresponding mixed arrangement in R".
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Now using X* denotes some X € L(.#,) with dimX = k, and p;, denotes the
Mébius function in L{&f,).

Proposition 3.1. Let L(S"!) = {XN$""!: X € L(#)}\ {0}, then L(#;,) =
L(f) UL(S""). L(.#,) and L(S*~") both are meet-semilattices.

Proof. For My = M4 U{S""'}, so VX € L(.#,), X is either an affine subspace or
a sphere.

(1) If X is an affine subspace, then X = (; H;, for some H; € &, so X € L(.#,).

(2) If X is a sphere, let dimX = k, X* = S, so there exists a unique affine sub-
space X**! € L(a7,) such that S™ is the sphere (not always unit sphere)
which is got by the meet of $"~! and X**!, Thus L(#,) = L(a%) U
L(s* 1.

Now in L(5"~!), we define the order by the reverse inclusion as in definition 1.1.
Consider §'NS/ # 0, define S'v S/ = §'NS/, and S'AS/ =N{Z|Z € L($*),S'U
§/cz).

ForVvs',8/ € L(S"!),

SN ={seL(s"")S'us/ C 5}
={x‘ns"jx4ns~ux9ns!y c xns*'}
= ("{x? e L(«,)Ix% X% C X})nsm!
= (X4 X NS,

where if X9 intersects with $"~!, then d = dimS + 1, if X is tangental to $"~!,
then d = min{¢|X* NS"~! = S}, the same to X% and X9. So S'AS/ € L($""!).
Therefore L(S""!) is a meet-semilattice.

Now forany X € L(.2%,), and §/ = X% NS§"!, Let X AS/ = N{Z e L(A#)|X'U
S/ C Z} = X3, in fact, VS € L(S"~!), there are just two cases:

(i) There is no sphere S* such that the affine subspace X’ C S*, so X, € L)
is an affine subspace. Let X' AX% ={Z € L(#)|X'UX% C Z} = X,.
Thus from §/ C X;, it can be seen that X4/ C X;, so X; 2 X;. On the other
hand, X'US/ C X'UX% C X, 50 X) € Xp, ie. X ASI = XTAXY,

(ii) X' must be a point. If X' C §/, then X' AS/ = §, else just the same as (i),
let X' AX% =N{Z € L(«)|XUX% C Z}, we have X' AS/ = XIAXY,

So L(.#,) is a meet-semilattice. |
IfN{X|X € #,} =0, and we let L(.#,) = L(.#,) U {0}, then it's clearly 0 is
the maximum element 1 in L(.#,), and L(.#;,) is an atomic lattice.
Let O and r be respectively the center and radius of §*~!, and the norm ||X —
Y|| be the Euclidean distance of X,Y € R". For the set N of maximal elements in
L(=,), we partition them into the following three parts:
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(1) Ny = {X*eN|X*ns*! =@ fork>0,or ||X°-0|| > r},

(2) Ny = {X* € N|X* intersect with §"~! fork > 0, or || X° - Of| < r},

(3) N3 = {X* € N|X* is tangental to §*! for k > 0, or || X0~ O] = r}.
Theorem 3.2, The Mabius function ¢, (x) of L(.#,) is following:

(1) Forany X! € L(%,) forl > 0and X® € NyUN,, g, (X') = peg, (X').

() IfY*e N, fork >0, orY! is covered by X° € N, in (). Let S¥~! = Y*n
sn-1, sk-1 is the maximal element in L(.#,), and for any X' € [0,S*~!}n
L(S™Y), g, (X') = = phgy, (X'*+1), where X'+ € o, and X! = X'+ ns—1,

(3) If Y* € N3, Suppose Y* = (Y_ Hj;, where H;; € o, for 1 < j <t, and
all the hyperplanes containing Y* are here. Let Z° = Y*N$"~!, for any
X' € 0,20 NL(S™ ), t, (X') = —theg, (X)), where X! = X!+ N g1,
and

(i) if there is no hyperplane tangental to $"~!,
”’vﬂn(zo)=— 2 u-dn(xl))

x'eL(at)
20 cover X!

(ii) if there exists a hyperplane, suppose H;,, such that Z° € H;, and H;, is
tangental to $"~1, then

e @)=- Y pg(X)

Xe[”i] ,z°)nL(d,,)

Proof. VX* € L(&#%,) for k > 0 and X° € Ny UN,, the interval [0,X"] in L(a7,) is
equal to the interval [0, X'] in L(.#,), because the affine space X! can’t be included
in any sphere. Therefore (1) is clearly.

Now we’ll prove (2). First let M be the set of all subspaces intersecting with
5"~1, and whose dimension is larger than 0. Then we can give the following map

I
f: M—Lis™ Y
er+l P—*S"_l ﬂ)-(H'l =5
and use f|4 to denote the restriction of f on some set A.

Let o be the set of all hyperplanesin .#. VX! € L($"~!), there exists a unique
subspace X/*! € L(«/) such that X! = X"*!n§"~!. Assume that X}*2,... X/+2
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are all the ! + 2 dimensional subspaces containing X'+! in L(.#"). Let Sj-‘“ =
X;*ZOS"" for1 < j<r, then

sl =X'l+l nSn—l = (XI"H nX}-{-Z)ﬂsn—l =X‘I+lns‘li’l S j S k.

We’ll prove {T'+! < SY|T'*! e L(#')} = {X'+!, 8. si+1).

First *“2” holds according to above.

For VT!*+! belongs to the left, if T'*! € L(«), thus TH+! = X!+1, if T+ ¢
L(s"h), T+ = X+2n 81 5 8, 50 XI+2n s~ 5 X+ NS!-!, we have X142 >
X1 But X{*2,... X2 are all the I + 2 dimensional subspaces containing X'*!
in L(#) , s0 3g, such that X'*2 = X2, thus T'+1 = +1,

Now VX! € L(S*1), we calculate u 4, (X') by induction.

Whenh=n—1,8""1=R*NS"", 50 g (5" ") = —1 = pg, (R").

Suppose when h > [, it holds.

When h =1,

by X == 14 (2)
z<x!

=~ o, X + (i M (S5 + i #x,.(x,'-*z))
j=1 j=1

+oot (2 ka(S)+ 3 Mn(X)) +oo

Sely Xelgyy
+ (1, (S"") + 1 (0)),
where I = {S% € [0,X']NL(S" 1)}, Jo = {X* € [0,X']|NL(o4)}. I and J are
finite set, f(Jo) = Ix—1 and f];, is a bijection. So by the hypothesis of induction,
the sum of every parentheses is 0. Hence
by (X') = — 1, (X) = —pig, (R'H1).

Last let’s prove (3). By the same process of the proof of (2), VX' € [0,Z2%)n

L(S"71), we have 4, (X') = — g (X'*).
(a) If there is no hyperplane tangental to $*~!.
First assume Z° € L(o%,), i.e. Y* = Z0, then

bt (2 ==Y bu(2)
2<2°

n—1\
== X m"(X’)+Z<EMn(S)+ > Mn(x))

XleL(ot) a=k \Selq X€Jgi|
20 cover x!

— h.

== Y uag(X);

Z*eL(an)
Z0 cover X!
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If Z° ¢ L(,), then Y* is the unique subspace covered by Z°,
1t (Z') = = oty (V5),
So (i) hold.
(b) If there exists such a hyperplane H,i tangental to §*~!. We consider &' =
{H,, yo+yH;, }, and A’ = &' US". It can be seen L(.#) is a lattice and
20 is the maximum element i. Let " = {H;, - ,H;} and A" = " U

§"=1, Compare L(.#") and L(.#'), we’ll find, in L(.#"), the abundant
elements are all subspaces tangental to §*~! at point Z0, so it’s apparent

1, (2% = - > Hat, (X)-

XelH;, Z0)CL(h)

Therefore, we get (ii). [ |
Now the main result of [6] can be regarded as the corollary of theorem 3.2
Corollary 3.3. [6] If o, is central. For X! € L(.#,), if X! € L(&/"!), then
Py (X') = Ueg, (X*); if X! € L(S"1), then there exists the unique X'+! € L(%,),

such that X! = §' = §'-'nX"*1 and p ¢ (X*) = pag, (XH).

3.2 The Mixed Arrangement with Subspaces and Multiple Spheres

Now we consider more general case, the mixed arrangement with subspaces and
n-spheres.

Definition 3.4. [1] A subspace arrangement (or affine subspace arrangement) is

a finite set
o = {Kla"' aKh}

of affine proper subspaces K; in real Euclidean space R".
A subspace arrangement <, will be called
(i) central, if all K; are linear subspaces, i.e., if 0 € K,
(ii) simple, if K; C K; implies i = jforall 1 <i,j<h,
(i) pure, if dim(K;) = dim(K}), forall1 <i,j <h,

(iv) d-dimensional, if d = max dim(K;).
1<i<h

Here we let & = {S),---,S,} be the set of p different spheres of n— 1 di-
mension and the intersection of any two spheres is 0. Let # = &/ U.% be the
corresponding mixed arrangement.

The same as before, let L(2) be the partial order set of all nonempty inter-
sections of elements of o7, and L(.#) be the partial order set of .#. We use X*
to denote some X € L(.#) of k dimension, and s to denote the Mdbius function
in L(&).
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Theorem 3.5. Let L() = {XNS: X € L(«),S € #}\ {0}, then L(#) =
L(#)UL(S). L(.#) and L{%) both are meet-semilattices.

Let O; and r; are the center and radius of S; respectively, 1 <i < p. For the set
N of maximal elements in L(2/), we put them into the following parts:

(1) M= {X*eNNV1<i< p,X*NS;=0fork> 0, or ||X°—Oi|| > ri},

(2) N, = {X* € N|31 <i < p, such that X* intersect with S; for k > 0, or 0 <
[1X° - 04| < i},

(3) N3 = {X* € N|31 < i < p, such that X* is tangental to S; for k > 0, or
IIX° - 04| = ri}.
Note N> N N3 may be not empty set.
Theorem 3.6. The Mobius function p ¢ (x) of L(.#) is following:
(1) Forany X! € L(&) for1 > 0 and X° € Ny UN3, i (X") = ugr(X").

(2) IfY* € N, fork >0, or ! is covered by X0 € N, in L(&%,). Let S~ =¥*n
S;, $¥~! is the maximal element in L(.#,), and for any X' € [0,S*~']NL(S;),
U (X') = —pg (R1+1), where X'+! € of and X! = X!+ ngn—L,

(3) IfY* € N3, suppose Y* = (Y, Hj;, where H;, € o7, for 1 < j <t,and all the
hyperplanes containing Y* are here. Let 20 = Y*n§;, VX! € [0,Z°)NL(S;),
(XY = —pg (X1H1), where X! = XN,

(a) if there is no subspace belonging to & which is tangental to §;,

ra() == Y psxh,
XeL(a)
20 cover X!

(b) if there exists such a subspace, suppose H;,, such that AR H;, and
H;, is tangental to S;, then

1 (Z%) =~ Y Kot (X).
XelHy, 20)L(af)

Proof. V1 < i< j<p, L(Si)NL(S;) =0 and L(.#) doesn’t change the Mébius
function of the subspaces except for points sometimes, so we can calculate the
Mobius function of L(S;) alone, just like we are dealing with the mixed arrange-
ments with a single sphere. So by theorem 1.1, we know this theorem holds.
|
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4 The Deletion-Restriction Forumla

In this section, we let ), = 2, U %, where &, is a hyperplane arrangement and
& is the set of p different spheres of n — 1 dimension with the intersection of any
two spheres empty.

4.1 Characteristic Polynomial

Definition 4.1. Define the characteristic polynomial of .4, to be

Xty = Y p(X)pm),
XeL(My)

Definition 4.2. If X € L{.#,,), define #x C .#, by
My ={Y € M|XCY}.
Also define .#X C .#, by
MY ={YNX £0|Y € A\ My}

Choose X € My, let A’ = M\ {X}, #" = #X, and we call (Mp, A", A") is
a triple of the mixed arrangement .#,.

Lemma 4.3. [4] Let L beAa finite lattice. Let X be a subset of L such that 0 éX,
and such thatif y € L, y # 0, then some x € X satisfies x < y. Let N; be the number
of k-element subsets of X with join 1. Then

ue(0,1)=No =Ny + Ny —---.
Lemma 4.4. Let .#, be an arrangement in R”, then

xa)= Y (-1)nds), @.1)
WA
L@ hasigy

where 1 is the minimum element of L($).

Proof. VX € #,, by lemma 4.3, we have
oy (X) = D (=1)Ne(X),
k

where Ni(X) is the number of k-subsets of .#, \ .#x with join X. In other words,

pa(X)= Y (-1
BEC Aty \ M
X':n}'e.éy

Note X is the minimum element { 5 of %, now multiply both sides by r4™X) and
sum over X to obtain the equation. |
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Theorem 4.5, Let (#,, #',.#") is a triple of .#,, then
X (t) = Xar(t) = X ()

Proof. Let X € #, define the triple (#,,.#',.#"). The equation (4.1) can be
regarded as the sum of the following two parts,

Y (1)), 42)
X¢BC My
LB has T g
and _
2 (_l)lgltdim(ig)‘ 4.3)
Xeﬂg.ﬂn
L(#) has 1y

It's clear the formula (4.2) is just x4 (¢). In formula (4.3), let € = (Z\ {X})*,
so dim(1y) = dim(1 3) and the formula (4.3) is equal to

E (_])]‘él-f-ltdim(l@) - "'Xﬂ”(‘)'
fcu*
L&) has 1y

4.2 Regions

Definition 4.6. A region R of a mixed arrangement .#, is a connected component
of the complement X of the hyperplanes and spheres:
x=R'-JH- |J sV
Hesty s-les

Let Z(.#,) denote the set of regions of .#}, and let
"(Mn) = I‘%(-/ﬂn)l
be the number of regions.

Definition 4.7, Let (#,,.#',.#") is a triple of .#,,, where X = S; € ., for some
1 <£i< p,define
RBR(M")=S""" - U Y.
Yent”

Now let n > 2. We consider the mixed arrangement .# composed of subspace
arrangement & and spheres %, where & = {§),--,Sp} is the set of p different
spheres of n — 1 dimension and the intersection of any two spheres is 0.

Since the subspaces whose dimensions are less than n— 1 don’t create re-
gions in the n-dimensional space, we only need to consider the mixed arrange-
ment 4, = &, U5, where &, is the hyperplane arrangement composed of the
hyperplanes in o7
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Theorem 4.8. Assume n > 2 and (#,,.#',.#") is a triple of .#,, then
r(tty) =r(A')+r(A").

Proof. Note that r(.#,) equals r(.#") plus the number of regions of .#, cut into
two regions by X (which is not always right for n < 2). Let R’ be such a region
of A, then R'NX € Z(#"). Conversely, if R” € %(.#,), then points near R"
on either side of X belong to the same region R’ € Z(#"), since any Y € .4’
separating them would intersect R”. Thus R’ is cut into two parts by X. We have
got a bijection between regions of .#” cut into two parts by X and regions of .#".
We get the equation. 1

The above theorem isn’t always right for the case n < 2. For example, we
consider .#> = {A,S}, where A is a line, which intersects with the circle S in a
plane, Then r(#2) =4, but r(.#') =2 and r(.#") =3 if we let X = A. and the
counter-example for n = 1 is easy to be found. But we have the two following
conclusions forn =1,2.

Theorem 4.9. Suppose n = 2, if X satisfies that
(@) X e,

(b) let ' C & be the set of the spheres touching with X, and m spheres in %/
only touch with X, where 1 <m < |&/,

then
r(#2) = r(A')+r(A")—m,

else
r(A) =r(A')+r(A").

Proof. Let || =kand &' = {Sy,,...,S4}. Let (1) C &' be the set of spheres
which intersect with X, and (1) = %'\ (1) be the spheres which is tangental
to X. If X satisfies (a) and (b), without loss of generality, assume these m spheres
are Sy, -« Sgm-

()If for some 1 < i <m, S, € W), then let Sp, NX = {x;,y:} C A". VX' €
My, let X'NX =a. a; = max({ala < xi,a=X'NX,X' € 2 UFV}U{-c0}),
b= min({ala >yih,a= X'nX,X' € .%Uy(l)}U{+°°}). When g; = — (bj =
+¢00), it means there are no lines intersecting with X at the left (right) region of x;
(yi). So when we travel along X from negative infinity to positive infinity, we’ll
find X doesn’t create a new region in .# when through the line segment [a;, x;],
but it does when through [b;,yi], i.e., [a;,xi] and [yi, ;] cut a region of .#” into two
parts together.

(iD)If for some 1 < j <m, Sp; € £ D), then let S;,NX = {x;} C .#". Set
cj=max({ala<xj,a=X'NX,X' € #\{Sg}}U{-}) and d; = min({ala >
xj,a=X'NX,X" € M\ {Sg;}} U{+}). Then it’s obvious x; cuts [c;,d;] into
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two parts, i.e., x; creates a new region in .#"”, but [c;,d;] doesn’t create a new one
in .#, because it can be contained in some [a;,x;] or [x;, b;] for some S, € ().
According to theorem 4.8, we can establish a bijection between regions of .#” cut
into two parts by X and Z(.#")\ ({[aixi]|Sg; € N} U{[c;xj]ISg; € P},
S0

r(y) = r(') + r ") - || - | SO,

ie.
r( M) =r( MY +r(M")—m,

If X doesn’t satisfy the two conditions, i.e. X doesn’t touch any spheres, or
m=0,or X € %, then we can prove

(M) =r(AH')+r(A"),
just the same as we prove Theorem 4.8.

The following theorem is obvious.

Theorem 4.10. When n = 1, for any X € .#, and some i

() IfX =S,
r(#) =r(A'y+2— 2",
(i) IfX = A,
r(A) =r(A)+1- 4"
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