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1. Introduction

Let G be a simple graph with n vertices and m edges. The
Laplacian matrix of G is defined as L = D — A, where A is
the adjacency matrix of G and D = diag(d,,dy,...,d,) the
diagonal matrix of vertex degrees. The spectrum of G is the
spectrum of its adjacency matrix, and consists of the values
A1 2 A2 2 --- > A\,. The Laplacian spectrum of G is the
spectrum of its Laplacian matrix, and consists of the values
12 e 20t 2 .

The energy of a graph G is defined as

E(G) =) I\
i=1
This quantity, introduced by I. Gutman in 1978 [5], has a lot
of chemical applications. The mathematical properties of graph
energy can be found in the review [6].
The Laplacian energy of a graph is defined as [9]

E(G) = Zl/"z- '_'l

i=]
Similar to graph energy and Laplacian energy, the Laplacian-

energy-like invariant of G, denoted by LEL(G), has recently
been defined as [11]

LEL(G) =) _ V.
i=1

J. Liu and the second author[11) showed that the Laplacian-

energy-like shares a number of properties with the usual graph
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energy. In [15], D. Stevanovié et al. proved that: LEL is as good
as the Randi¢ index (a connectivity index) and better than the
Wiener index (a distance based index). D. Stevanovi¢ [14] exhib-
ited further similarities between them by showing that among
the n-vertex trees, the star S, has minimal Laplacian-energy-
like and the path P, has maximal LEL value.

In 1993, Klein and Randié [10] introduced resistance distance
based on the electrical network theory. The Kirchhoff index [1]
is defined K f(G) = 3_,; 7i;, where ry; is the resistance distance
between vertices v; and v; as computed with Ohm’s law where all
the edges of G are considered to the unit resistors. The Kirchhoff
index is an important structure descriptor. For a connected
graph G with n > 2 vertices, it has been proven [8,20] that
KfG)=ny1 i- It is interesting that when K f(G) attains
the minimum value among some graphs and LEL(G) has the
maximum value. For example, B. Zhou et al. [17] proved that:
For a connected graph G with n > 2 vertices and connectivity «,
Kf(G) 2 Kf((K1UK,_k-1)VK,), and the extremal graph with
the minimum K f is determined among connected graphs with
n vertices and chromatic number x. In [19], B. Zhu showed that
the above extremal graphs attain the maximum LEL among
the respective graphs.

In [13], Nordhaus and Gaddum obtained bounds for the sum
of the chromatic numbers of a graph and its complement. Let G

be the complement of the graph G and I(G) be some invariant
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of G. Then the relations on I(G)+I(G) are said to of Nordhaus-
Gaddum-type.

The matching number of the graph G, denoted 5(G), is the
number of edges in a maximum matching.

In this paper, we study the maximum LEL among graphs
with n vertices and matching number. Nordhaus-Gaddum type
bounds for LEL are obtained. Moreover, results on the differ-
ence and comparison of LEL(G) and LEL(G) are presented.

2. The maximum Laplacian-energy-like with
given vertices and matching number

Lemma 2.1 [10] Let G be a non-complete connected graph and
G* =G +e. Then Kf(G*) < Kf(Q).

Lemma 2.2 [16] For a non-complete graph G and G* = G +e,
we have LEL(G*) > LEL(G).

Noting that the inverse effect of Lemmas 2.1 and 2.2, by
using the similar way in the proof of Proposition 2 of [18], we
obtain the inverse extremal graphs about K f and LEL among
graphs with given vertices and matching number.

G= S5, or G= K; when 8 =1 for a connected graph with
n > 2 vertices.

Proposition 2.3 Let G be a connected graph with n vertices
and matching number 3, 2 < 8 < |Z].

(1) if 8 = %], then LEL(G) £ (n — 1)4/n with equality if
and only if G = K.
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(2)if2< B < [3)—1, then LEL(G) < sv/n+ Yt_,(ni —
1)v/sFn; + (t — 1)/ with equality if and only if G & K, V
(Kay UKy, U---UK,,), where s is the order of subgraph X of
G, t is the number of odd components of G — X and n; is the
order of respective components.

Proposition 2.4 Let G be a connected graph with n vertices and
matching number B (2 < 8 < |3} ), then LEL(G) < sy/n +
(28 —28)v2B — s + 1+ (n— 28+ s — 1)4/s, where the equality
holds if and only if G & K,V (Kn—3p+s—1UK3p_2,41) and 5 < S.
Proof. Suppose G is the extremal graph in (2) of Proposition
2.3. Then LEL(G) = sy/n+ 3 i, (ni — 1)/ + 5 + (t — 1)/5.

Let f(x)=(z—1)vs+z+(m—z—1)y/s+m—zforz<
m — z. Consider the first derivative of f(z), f'(z) = Vs +z —
VeFm g+ (35t - el

Let g(2) = s+m—\7‘-—s§_§n—‘=_lz. Then ¢'(z) = —\/3-17_—;-57;%@+

v ——— > e +’7”n::(:'1*,’.’."“’)' Obviously, ¢'(z) > 0. Then g(z) <
9(g) = 3L _m3-1 0. Then f'(z) < 0 and f(z) is a

decreasing functlon on z. Hence f(n;) < f(n; — 2), i.e.,
(n,-— I)M‘F (m—ni - l)m
<(ni—3PvVs+ni—2+(m—n;+1)V/s+m—mn; +2.

Since r < m — z, we take m = n; +n;. The above inequality

can be transformed to
(ni = 1)v/s+n;+ (n; — 1)y/sFn; < (n; — 3)v/s+n; — 2+
(nj+1)y/s+n; +

Thus by replacing any pair (n;,n;) with 3 < n; < n; —2 by

359



the pair (n; — 2,n; + 2) in the sum Y i (n; — 1)y/n; + 5, we
increase the sum. By repeating this process, we find 3_._, (n; —
1)y/n; + s with Zf=1 =n—sand1l < n; <--- < n, is maximum
ifand onlyifny = --- =m_1 =landn =n—s—1t+
=28—2s+1. Then G = K,V (Kn—28+s-1 U Kop_2441) and
LEL(G)=syn+ (28-2s)y2B—s+1+(n—28+s—1)/s.
a
Remark 2.5 In Theorem 2.4, we have not determined the max-
imum value about s. The monotonicity of function f(s) :=
syn+(26—-28)v/28—s+ 1+ (n—28+ s — 1)/s depends on
not only s but 8. Consider f(s + 1) — f(s) = /n + (26 -
25—2)(V28—s—v2B8—-s+1)—2y/28—s+ 1+ (n+s—20—
DWs+1-v6)+vs+1.
For example, let s =1 and § = %, then
F@ - F) = A+ G -9(/F-1- VD -2/5+5(+2
~1)+v2
~(V2-1)r—(3—4) A= \/_ +2(V2-1)+v2
> Lolp 824 /ny S F AT V2
Then f(2) — f(1) >0 forn > 9. :
Let s =1and 8 = £—2. Then f(2)—f(1) = V/n—2v/n — 4+
V2 + A= — =25 — Hence f(2) — f(1) <0 forn > 9.
For example, let 3 =5 —4 and s = § — 1. Then
fls+1)=f(s) = vn—2yB+2+(n—p-2)(vVB-vB-1)+VB
—2/F=2+(3+2)(yE—4- /E5)

+/Z—4
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> Vi - VIR =B+ (3 + )(\/—=12. )+ V/Ea

=vn—v2n—8+3 \/:_:_+ - > 0.
Let =3 —4 and s = 2. Then
f(s+1)—f(s) = vVn+(n-14)(v/n = 10— v/n—9) —2/n — 9+
9(V3-v2)+V3

< V- B2\ 045 < O forn > 47.

3. Nordhaus-Gaddum-Type bounds for Laplacian-
energy-like

Lemma 3.1 [12] Let G be a graph with order n and u; (i =
1,...,n) be the Laplacian eigenvalues. Then the Laplacian eigen-
values of G are n — fin_1, N — fn—a, ..., N — py, O.

Theorem 3.2 Let G be a graph with n vertices. Then LEL(G)+
LEL(G) > (n — 1)/n, where the equality holds if and only if
G2K, orG=2K,.

Proof. By Lemma 3.1,

n-l

LEL(G)+ LEL(G) =Y Vi + Z N

i=1 i=1

RV/ZC SVORSNTIE SRES Y/ Teme Sy Ry T
> VEFA—E 4+ VI TR B
=vn+--+y/n=(n-1)y/n
Equality holds if and only if p; = 0 or n — u; = 0 for some
ie{l,...,n—1}
Note that there is at least a connected graph between G and
G.
If G is connected, then g3 > ps > -++ > pp—y > 0. Thus
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N—p = =N—fp1=0le,U=-=pn1=n, iy =0.
Then G = K,,.

If G is disconnected, then G is connected. By similar argu-
ments, we have G & K,. Then G 2 K,. O
Lemma 3.3 [4] Let G be a graph with at least one edge and
mazimum vertex degree A. Then py > 1+ A with equality for
connected graph if and only if A=n—1.

Lemma 3.4 [16] Let G be a connected graph with n > 2. Then

Po = - = fpq and py = 1+ A if and only if G = K, or

G=Kip-1.

Theorem 3.5 Let G be a graph with n vertices and m edges.

Denote A by the mazimum vertez degree of G. Then

LEL(G)+ LEL(G) £ V1I+A+vn=2/2m—-1- A+
Vn—1-A++/n-2y/n(n-2)-2m+1+A
<VR+vVn=2(V2m—=n+/n(n—1) — 2m)

with equalities hold if and only if G = Ky 1, or G = K,,.

Proof. The function y = —z? is a strictly convex function.
n-1 n—1
1 i 1 1
E 2 < § ’__ AV
Then 2 7= hi < (,-=2 — 2/,L,)2 and
LEL(G) — /i1 £ Vn —24/2m — p;.
Thus LEL(G) < /i1 + Vn — 2/2m — y;. (1)
n—1 n—1
. 1 1 2
— ) < —
Similarly, we have ;=2 — 2(n i)z < [; — 2(n u,)] .

And LEL(G) < /A — p1+vn = 24/n(n — 2) = 2m + p;.(2)
By (1) and (2),
LEL(G)+ LEL(G) £ /i + Vn = 2/2m = i + v/n — i+
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Vi =24/n(n—-2) - 2m + p,.
Let f(z)=vz+Vn—-2v2m -z +/n—z+
Vvn=24/n(n—2)—2m +z.

Then f'(z) = %(\/g—\/fn% }+%(— n_z'l'\/n(n —2)— 2m+x)'

Note that nA > 2m. By Lemma 3.3, then y; > 1+ A >
2m 2m+n 2m

. It is easily verify that

\/:_V27:n 2$<Oa.nd F \/n(n 2) — 2m+x<

0, ie, f'l(z) < 0 for z > n— Thus f(z) is a decreasing
n—1
The equalities (1) and (2) hold if and only if pp = - -+ = pn—_1
and g3 = A+ 1, by Lemma 3.4, ie., G = Ky ,_;, or G = K,.
The theorem follows. a

4. The Laplacian-energy-like of G and G

By Lemma 2.2, we know that LEL(G—e) < LEL(G). Then
LEL(G —¢€) > LEL(G) holds. In this section, we study some
special graphs with LEL(G) = LEL(G).
Lemma 4.1 [11] Let G be a simple graph with n vertices and m
edges. Then LEL(G) < V2m.
Lemma 4.2 [7] Let G be a simple graph with n vertices and m
edges. Then LEL(G) > f—/—'ﬁ with equality if and only if G = K,
or G= K.
Theorem 4.3 Let G be a simple graph with n vertices and m
edges. If m < 2221), then LEL(G) < LEL(G).

363



Proof. Let 77 denote the number of edges for G. By Lemmas
41 and 4.2, if ZZ > +/2m, then LEL(G) > LEL(G). This

n

inequality can be transformed to 1@%_2——'" > v/2m. Then m <
Un, O

By Theorem 4.3, m=n-1< +"_21n holds for n > 6.
Corollary 4.4 Let T be a tree with n > 6 vertices. Then
LEL(T) < LEL(T).
Corollary 4.5 Let T be a tree with n vertices. Then LEL(T) =
LEI(T) if and only if T = P;.
Proof. By Corollary 4.4, we only need to calculate the LEL-
value of trees with n < 5.

(1) n=2. LEL(P) =v2> 0= LEL(R,).

(2) n=3. LEL(Ps) =3+ 1> V2= LEL(B).

(3) n = 4. There are two cases. Since P; & P;, LEL(F,) =
LEL(P;). And LEL(S,) = 4 > 2v/3 = LEL(S}).

(4) n = 5. There are three cases. Note that LEL(Ss) = v/5+
3 < 6 = LEL(Ss), and LEL(Ps) = 6.77 > 5.314 = LEL(P).
We have LEL(T*) = 6.668 > 5.282 = LEL(T*), where T* is the
tree obtained by attaching an isolated vertex to one of pendent
vertices of Sy.

By all cases exhausted, the proof is completed. O

Note that m =n < '2' +"_21n holds for n > 7.
Corollary 4.6 Let T' be a unicyclic graph with n > 7 vertices.
Then LEL(U) < LEL(U).
Corollary 4.7 Let U be a unicyclic graph with n vertices. Then
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LEL(U) = LEL(U) if and only if U = U; (i = 1,2) (Figure 1).
Proof. By Corollary 4.6, we only need to calculate the LEL-
value of unicyclic graphs with n < 6.

(1) n = 3,4, 5. By [2] (Table 1) and direct calculations, only
two unicyclic graphs with LEL(U;) = LEL(TS) (s = 1, 2).

(2) n = 6. By [3] (Table 1), there are 13 unicyclic graphs
and LEL(U) # LEL(D).

The result follows. a

> D
Ux U,

Figure 1. Unicyclic graphs with LEL(U) = LEL(U)
5. Difference of the Laplacian-energy-like be-
tween G and G

In Section 3, the sum of LEL(G) and LEL(G) has been
studied. In this section, we obtain some results on the difference
of LEL(G) and LEL(G).
Theorem 5.1 Let G be a connected graph with n vertices. Then
LEL(G)— LEL(G) < (n—1)/n with equality holds if and only
ifG=K,.
Proof. Among connected graphs with n vertices, K,, attains
the maximum LEL-value. And K, is the n-vertex graph with
minimum LEL-value. Then LEL(G) —~ LEL(G) < LEL(K,) —
LEL(K,) = (n — 1)y/n. Obviously, the equality holds if and
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only if LEL(K,) =0, ie., G K,. a
Theorem 5.2 Let G 2 K, be a connected graph with n vertices.
Then LEL(G)— LEL(G) < (n—2)\/n+ /2 with equality holds
ifand only if G = K, —e.

Proof. Among connected graphs with n vertices, K, —e attains
the second maximum LEL-value. And K, — e has the second
minimum LEL-value. Then LEL(G) — LEL(G) < LEL(K, —
e)— LEL(K, —e) = (n - 2)y/n - V2.

Obviously, if G & K, — e, then LEL(G) — LEL(G) = (n —
2)vn - V2.

Since G 2 K,, G has at least an edge. Then LEL(G) >
LEL(K,) = V2 and LEL(G) — LEL(G) = (n — 2)v/n — V2.
Thus LEL(G) > (n — 2)y/n. By Lemma 2.2, for G 2 K, and
G2 K,—e, LEL(G) < (n—2)y/n. Then G K, —e. O
Theorem 5.3 Let G be a connected graph with n vertices and
w1 =n. Then LEL(G) — LEL(G) > /n+(n—2)(1 - v/n—1)
with equality holds if and only if G = S,,.

Proof. For a connected graph G with p; = n, G is disconnected.
Suppose G has k components and ith component with order n;.

Note that n; < n — 1 and n; > 2. By Lemma 2.2,

LEL(G) < LEL(Kn, U Kp,U--- UK,
= (ma = )+ (ma = DT+ (e = 1)y
<(mi—-1+-+m—-1)vn-1
=(n-k)vn-1
<(n—-2)vn-T1.
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The equality holds if and only if k =2 and n; = n -1, i.e,,
G K, 1UK,. Then G =2 K, UK; & S,. Note that S,
has the minimum LFL-value among connected graphs with n

vertices.
Then LEL(G) — LEL(E'-) > LEL(S,) — LEL(S’;)
=VR+(m-2)(1-va=-1). O
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