PEGGING NUMBERS FOR VARIOUS TREE GRAPHS

ARIEL LEVAVI

ABSTRACT. In the game of pegging, each vertex of a graph is con-
sidered a hole into which a peg can be placed. A pegging move is
performed by jumping one peg over another peg, and then removing
the peg that has been jumped over from the graph. We define the
pegging number as the smallest number of pegs needed to reach all
the vertices in a graph no matter what the distribution. Similarly, the
optimal-pegging number of a graph is defined as the smallest distri-
bution of pegs for which all the vertices in the graph can be reached.
We obtain tight bounds on the pegging numbers and optimal-pegging
numbers of complete binary trees and compute the optimal-pegging
numbers of complete infinitary trees. As a result of these computa-
tions, we deduce that there is a tree whose optimal-pegging number is
strictly increased by removing a leaf. We also compute the optimal-
pegging number of caterpillar graphs and the tightest upper bound
on the optimal-pegging numbers of lobster graphs.

1. INTRODUCTION

One of the better known peg solitaire games is described by Berlekamp,
Conway, and Guy in their book, Winning Ways for Your Mathematical
Plays [1]. In this game we are presented with an infinite square grid on a
Cartesian plane. At each intersection there is a hole in which a peg can be
placed, and all the holes in the lower half-plane are filled. We can move
pegs on the grid in the following manner: if we have two adjacent pegs,
one of which is adjacent to an empty hole, then the peg further from the
hole can jump over the peg next to the hole and fill it. The peg that was
jumped over is then removed from the grid. As it turns out, the farthest up
the grid we can get using only legal pegging moves is a distance of 4 holes.

A graph version of this game, where in place of a grid we have any graph
where each vertex represents a hole that can be filled by a peg, was studied
by Helleloid, Khalid, Matchett-Wood, and Moulton in (2] and later by Wood
in [4]. This game is a variation of the graph game pebbling (3], where each
move removes 2 pebbles from a vertex and places one of the pebbles on an
adjacent vertex. A pegging move on a graph consists of removing two pegs
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from adjacent vertices and placing one peg on a unfilled vertex adjacent to
one of the first two holes. Given some initial distribution of pegs on a graph,
we say we can reach a vertex if after a (possibly empty) series of pegging
moves we can cover it with a peg. Research on pegging mainly involves
finding the optimal-pegging number, the size of the smallest distribution
which can reach all the vertices in a graph, and finding the pegging number,
the smallest number of pegs needed to reach all the vertices in a graph no
matter what the distribution. These terms are modeled after the definitions
of optimal-pebbling numbers and pebbling numbers, respectively. In their
paper, Helleloid et al. study the pegging and optimal-pegging numbers of
various types of graphs including paths, cycles, hypercubes, and complete
graphs. They also explore basic pegging properties of graphs with diameters
of at most 3. Wood examines various graph products and the effects of small
variations of distributions of pegs on their reach.

This paper explores the pegging properties of various types of tree graphs.
In Section 2, we provide background and terminology pertaining to the peg-
ging of general graphs. In Section 3 we present pegging properties of general
trees. In Section 4, we find tight bounds on the pegging and optimal-
pegging numbers of the complete binary tree. In Section 5, we define the
concept of an infinitary tree, and find the optimal-pegging number of this
tree, which follows the Fibonacci sequence. As a result of the computations
of the optimal-pegging numbers for these two classes of trees, we deduce
that there is a tree whose optimal-pegging number is strictly increased by
removing a leaf. In Section 6, we compute the optimal-pegging numbers
of caterpillar graphs, as well as the lowest upper bound on the optimal-
pegging numbers of lobster graphs. Finally, in Section 7, we discuss further
research possibilities.

2. BACKGROUND AND TERMINOLOGY

Although this paper only discusses trees, we will describe the basics of
pegging for general graphs. Let G be a graph, and imagine that several of
its vertices are filled with one peg each. Then we consider this set of filled
vertices D to be a distribution of pegs on G. Given distributions D and D'
on G, wesaythat m= u T w isa pegging move from D to D' if there
exist distinct vertices u,v € D and w ¢ D with both u and w adjacent to
v and with D’ = (D\{u,v}) U {w}. Informally, m describes the act of the
peg on u jumping over the peg on v and landing on w, as shown in Figure
1 below.

In this case we write D' = m(D). If D' is achieved after performing a
finite sequence of pegging moves M = (mj,mg,...,m;) on D, we write
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FIGURE 1. Illustration of the pegging move m.

D' = M(D). We denote the sequence of the first i moves in M by M; for
1 <1 < 1. We say that v is reachable (or can be pegged) from a distribution
D if there exists a finite sequence of pegging moves M with v € M (D). The
reach Rg(D) of a distribution D on G is the set of all vertices reachable

from D. We say that G can be pegged by D if Rg(D) = V(G). If the graph
G is clear from the context, we will denote the reach of D as simply R(D).

We will now introduce our main definitions.

Definition 2.1. The pegging number P(G) of a graph G is the smallest
natural number such that G is peggable by every distribution of size P(G).
The optimal-pegging number p(G) of G is the minimum size of all distribu-
tions on G that can peg G.

To illustrate these concepts, consider Sy, the star graph on n vertices (see
Figure 2). Suppose our distribution is D = {v | v is a leaf}. Since no
two vertices in D are adjacent, it is impossible to perform any pegging
moves. Therefore, the center vertex cannot be reached. So there exists a
distribution D of n — 1 pegs on S,, such that R(D) # V(S,), which implies
that P(S,) =n.

Now suppose D consists of only two pegs with one placed on the center
vertex and one placed on one of the leaves. Since all of the leaves in S,, are
adjacent to the center vertex, they can all be reached. So p(S,) < 2. Since
we can’t perform any pegging moves if |D| = 1, p(S,) = 2. '
The next set of definitions is useful for calculating the pegging and the
optimal-pegging numbers of a graph.

Definition 2.2. Let t € V(G). The weight of a vertex v with respect to t
is w®®) where w = (v/5—1)/2 and d(v, t) is the distance between vertices
v and t. The weight of a distribution D with respect to t is

w(D) = 3 wie),

veD
The summed weight of a vertez v with respect to L C V(G) is
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FIGURE 2. Illustration of the pegging and optimal pegging
numbers of S5. Graph (a) shows that four pegs do not
necessarily reach all the vertices of S5. However, the two
well placed pegs on graph (b) achieves the goal.

wi(v) = E'wt(v)-

tel
Similarly for D C V(G), w(D) = Tyey we(D)-

Notice that w defined in this way is a positive solution of the 22 + z =
1. Weights satisfy the first of the following two monotonicity lemmas.
The second monotonicity lemma establishes that removing pegs from a
distribution cannot help us reach vertices that we otherwise could not reach
with their presence.

Lemma 2.3 (Monotonicity of Weight). Let D be a distribution of pegs on
a graph G, and let D’ be the distribution achieved by performing the finite
sequence of pegging moves M. Then w,(D') < wi(D) for allt € V(G).

Lemma 2.4 (Monotonicity of Reach). Let D' C D be two distributions on
a graph G. Then we have R(D') C R(D).

See [2] for proofs.
Combining Lemma 2.3 with the fact that if t € D, w,(D) > 1, we get the
following theorem:

Theorem 2.5. If D C V(G) and t € R(D), then wy(D) > 1.
The contrapositive of this theorem is extremely useful for calculating lower

bounds for pegging and optimal-pegging numbers. Here is another variation
of this theorem.
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Corollary 2.6. If L C Rg(D), then wi(D) > |L|.

Proof. Suppose L C Rg(D). Then w(D) = ng(D) > Zl =|LJ.
tel tel
O

Corollary 2.6 shows that we can obtain a lower bound for the optimal-
pegging number of any graph G by choosing L C V(G) and taking the
partial sum Sj of the k largest summed weights of the vertices in V(G) with
respect to L. We sum until we achieve some Sj, where Sx—1 < |L| < Sk.

One interesting variation of pegging involves stacking more than one peg on
a single vertex. We define a multi-distribution of pegs D on a graph G as a
multiset of the elements of V(G). Informally, D is a distribution of pegs on
G where each vertex can be covered with more than one peg. To distinguish
between a multi-distribution and our original definition of a distribution,
we will call distributions that only allow one peg per vertex proper distri-
butions. A stacking move m = v~ v w from a multi-distribution D is a
pegging move without the constraint that w ¢ D. Notice that all pegging
moves are stacking moves, but the converse is not true. Also notice that
the definitions of pegging numbers and optimal-pegging numbers require
that the initial distributions of pegs be proper. We say that D supersedes
D’ if the presence of peg p € D’ implies that p € D. The set of vertices
that are reachable by D via stacking moves is denoted R,(D).

Let Dy be a multi-distribution of pegs and let M = (m;,ma,...,m;) be
a sequence of stacking moves with D; = M;(Dy). Fix a peg p € D;.
Informally, we define the ancestors of p, denoted anc(Dy, M, p), as the set
of pegs in Dy that contribute to the placement of p € D;. Formally, we
define the ancestor function by induction:

(1) If M = 0, then anc(Do,9,p) = {p}.

(2) f m; = u” v ~p, then anc(Do, M;,p) = anc(Do, M;_j,u) U
anc(Do, M;-1,v).

(3) If the specific occurrence of p € D; is also in D;_;, then anc(Do, M;, p) =
a'nc(-DO,Mi—l’p)'

Lemma 2.7. Let Dy be a distribution of pegs and let M = (m,,...,m;) be
a sequence of moves to obtain some distribution D; containing pegs  # y.

Then anc(Dp, M, z) N anc(Dy, M, y) = 0.
Proof. Let M; = (m4,--- ,m;) be the first { moves in M where 1 <i <!

and denote the distribution we achieve after M; as D;. Informally, we define
the function des as the peg in D that is contributed to by some peg in Dy.
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Formally, we define des(p) = d(Do, M,p) where we define function d by
induction:

1) If peg p € Dy, then d(Dy, M, p) = p.
22; Ifmi =u" v P, thend(Dl'—thu) = d(Di-],M,'U) = deS(DhMrp)'

(3) IfpeDi—1N D;, then d(D,'_l, M,p) = d(D;,M,p).

Since preimages of distinct vertices under des are disjoint, the sets anc(Dg, M, z)
and anc(Dp, M, y) are disjoint. O

The following lemma. provides a property about pegging graph that we will
use frequently in the remainder of this paper.

Lemma 2.8. Let u,v € V(G), and let D be a distribution of pegs on G.
Suppose M is a sequence of pegging moves such that u € anc(D, M,v).
Then for a vertez w € D there exists a path P = {w,v1,v2,...,Vk,v} such
that u € P.

Proof. Suppose u € D. If we use u to reach v then there must exist a path
between the two vertices, and the above statement is trivially true. Suppose
u ¢ D. In order for a peg to reach u, there must be a vertex w € D that is
an ancestor of u, which implies that there is a path between w and u. So
by transitivity, there is a path from w to v containing u. a

The following lemma shows that stacking pegs does not extend the reach
of a proper distribution.

Lemma 2.9 (Stacking Lemma). Let D be a proper distribution, and let M
be a sequence of stacking moves leading to a multi-distribution M (D). Then
there exists a sequence of pegging moves M’ resulting from a reordered sub-
sequence of M such that the proper distribution M'(D) supersedes M (D).
Moreover, Ry(D) = R(D).

See [2] for proof.

Another graph game that is similar to pegging is pebbling. A pebbling move
on a multi-distribution D is one where we remove two pegs from one vertex
and place one on an adjacent vertex. A peggling move is either a stacking
move or a pebbling move. The set of vertices that are reachable by D via
peggling moves is denoted Ry(D).

The next lemma found in [2] shows that pebbling does not increase the
reach of a proper distribution either.

Lemma 2.10 (Peggling Lemma). Let D be a proper distribution and let
M be a sequence of peggling moves leading to a multi-distribution M (D).
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Then there exists a sequence of pegging moves M' such that the proper
distribution M'(D) supersedes M (D). Moreover, Ry(D) = R(D).

Since these peg moving methods do not change the reach, they are useful
techniques that will come in handy later on.

3. GENERAL TREES

In the sections to come, we will introduce various types of trees and compute
their pegging numbers and optimal-pegging numbers. The goal of this
section is to present two results that are true for all trees. The first result

is due to M. Wood (4.

Lemma 3.1. Let T be a tree, and let t be a vertex in T that is reachable
from some distribution D. Then t is reachtﬂlﬂrom D using only pegging
moves toward t, i.e. for each movem = v~ v w, d(w,t) < d(u,t).

The idea behind the proof is that since T is acyclic there exists only one
path between ¢t and v € D. Therefore if we move v away from t we will
eventually have to move toward ¢ on the same path, and so such a move

would unnecessary.

The second result in this section pertains to the pegging numbers of sub-
trees.

Lemma 3.2. Let T be a tree and T' a subtree of T. Then P(T") < P(T).

Proof. Let k = P(T). If k > |V(T")|, then trivially P(T") < P(T). If
k < [V(T")|, then let D be a distribution of size k on T'. By definition of
k, Rp(D) = V(T) 2 V(T"). Suppose there exist vertices u € V(T)\V(T")
and v € V(T”) such that we cannot reach v without first reaching u. By
Lemma 2.8 this can only occur if there exists a path between v and some
vertex w € D that contains u. Since T is acyclic, there exists at most one
path from w to v, which is contained in 77. So u is not contained is this
path, which implies that Ry (D) = V(T'). Hence, P(T") < P(T). a

Note that this property of pegging numbers does not hold for general
graphs. Nor does the same conclusion hold for optimal-pegging numbers of
graphs, trees or otherwise.

4. COMPLETE BINARY TREES

In this section we will find bounds for the pegging number and optimal-
pegging number of the complete binary tree. We will denote the complete

393



binary tree of height h as T. A vertex v is located at level ! of T}, if
d(v,r) = I, where r is the root of the tree. By this terminology, the root
7 is the vertex located at level 0. We will use the notation v : [ to signify
that vertex v lies at level [.

The following lemma is pivotal for calculating a lower bound for the pegging
number of these trees.

Lemma 4.1. Ifr denotes the root of T}, then
(2w)*+ -1
w-—-1

Proof. A vertex at level | is a distance of | away from the root. Furthermore,
the number of vertices at level ! is 2. So

wr(V(Th)) =

WV T = T w) =3 et = Py = B

veV(Th) 1=0 vl =0

Now we will present our bound.

Theorem 4.2. Let T, be a complete binary tree of height h. Then for
sufficiently large h we have

P(Th) 2 |V(Tn)| - 172.

Proof. By Lemma 4.1, each subtree of T, of height k, denoted Tk, rooted
at a vertex v € V(Th) has weight w,(V(Tk)) = 2221 For each leaf
t € V(T5) there exists a subtree of height k whose root is located a distance
of k + 2 away from it. We find this tree by following the path of length
k +1 from t toward the root. Once we are a distance of k 4 1 away from ¢
at some vertex u, we go to the child of u that we have not traversed. This
child is at level 2 — k£ and therefore is the root of a subtree of height h — k.
Since this subtree is a distance k + 2 from ¢, its weight with respect to ¢ is

k2 ()L — 1

w-1
Let us sum up the weights with respect to ¢ of every subtree of height
8 < k < h—1 that is a distance of k + 2 away from t. Since T}, is a binary
tree, there exists only one such tree of each height k that fits these criteria
and all of these trees are disjoint. In addition, let us add the weights with

w(V(T})) =w
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respect to ¢t of each vertex along the path between ¢ and the root which is
a distance of K+ 1 from ¢ for 8 £ k < h — 1. In other words, we are adding
the weights with respect to t of every vertex in V(7},) and subtracting the
subtree of height 7 that contains ¢ as a leaf. The weight of this distribution

Dis

h-1 k+1
(D) = Jrr2 (@) —1 FottH
w(D) ,§,< Gl L vat)

_ i ( ka2 (2w)FH —1 +wk+1)

pard 2w~-1
h-1 h—1
Zwk“@i’ﬂ—_—l—— + Ewk“ 4.9271
k=0

= -1
=551 Z (2FH1w?t3 w"+2 ) +w Zw —4.9271
W= k=0

(2w ) +w( ) w® —4.9271

2w 1 = 2w-1 =

_ 2w3(2h 2}1_1) w
_(2w—1)(2w2—1)+w_1(1 5 1)(w ~1) - 4.9271

As h — o0,

. 2w’ w w
aim w(D) < (2w —1)(1 — 2w?) t1ow (l T w-— 1) — 49271
< 8.47213 — 2.61803 — 4.9271
=0927 < 1.

So by Theorem 2.5, we have t ¢ R, (D), which implies that P(T,) > |D|.
Since |D| = |V(T»)| — |V (Ts)|, for sufficiently large h we have

P(Tw) = |D|+ 1= |V(Th)| - IV(@)| + 1 = [V(Th)| — 254.

Now let us refine our results. When k > 11, we have exactly 1 pegged vertex
a distance of 8 from ¢, 2 pegged vertices a distance of 9 from ¢, 4 pegged
vertices a distance of 10 from t, and 8 pegged vertices a distance of 11 from
* t in the distribution D. In V(T3)\D there are 64 vertices of distance 12
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from t, 32 vertices of distance 13 from ¢, and 48 vertices of distance 14 from
t. If we remove all pegs from vertices of D of distances 8, 9, 10, and 11
from t and add pegs to all the vertices in V(T,)\D of distances 13 and 14
from ¢ and 1 of the 48 vertices of distance 12 from ¢, we get a distribution
D’ such that

jlllirn w (D) = hlim wy(D) 4 64w 4+ 3203 4 w12 — 8w — 4010 — 2,% — 8
—00 —+00
=0.99975 < 1.

So by Theorem 2.5, t ¢ Ry, (D’), which implies that P(T,) > |D’|. Since
|D'| = |V(Thn)| — |V (T7)| + 82, for sufficiently large h we have

P(Ty) = |D'| 4+ 1 = |V(Ty)| — |V (T7)| + 83 = |V (Th)| — 172.

Corollary 4.3.
P(Th)

W2 V(D)
Corollary 4.4. Let T), be a complete binary tree of height h. Then

P(T}) > |V(Th)| — 172

for all h € N.

FIGURE 3. The binary tree T} with distribution D such
that every vertex is covered with a peg except for the ver-
tices in the subtree 7% on the bottom right. By Theorem
4.2 we see that, given this distribution, we cannot reach
vertex t. Theorem 4.2 further refines this result.
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Proof. If |V(Th)] £ 172 then this statement is trivially true. Therefore,
assume |V(T4)| > 172. Then T} is a subtree of T, a complete binary
tree that we consider to have a “sufficiently large height.” Let D be a
distribution of pegs on T and D’ a distribution of pegs on T;,. We use the
construction of D described in Theorem 4.2 so that there exists at least one
vertex t € V(T') that we cannot reach. If A > 11, then we can construct
D' in such a way that T} contains the tree of height 7 that was originally
unpegged. In accordance of our refined results, at least 157 of the pertinent
172 vertices are unpegged. So D’ C D, and by Monotonicity of Reach,
R(D") C R(D). Hence, t ¢ R(D'), and P(T3) > |V(Th)| — 172. O

The next two lemmas are necessary for calculating bounds for the optimal-
pegging number for T}.

Lemma 4.5. Let Ty, be a complete binary tree, and let L C V(T}) be the
set of leaves of Ty. Then for any vertex where v € V(T}) is at level I, we

have

(2w)h—l
w?

wr(v) = (1 - w(2w?)).
Proof. We prove this by strong induction on I.

Base Case: | = 0. The root r is the only vertex in V(T}) that is located at
level 0. Since T}, is complete, all of the leaves in T}, are located at level h,
and so for all leaves t, d(r,t) = h. Hence,

wp(r) = Z we(r) = de(r,t) = th

teL tel tel
ofl-w 2w)h—t
=2". " = (w)" 0( 5 )=( w)2 (1-w(2w?)?).

W

Inductive Hypothesis: Assume that for all vertices at level k that is at most
l -1, we have

(2w)h—k

w2

Inductive Step: Consider the vertex v located at level ! of T;,. The subtree
rooted at v has a height of 2 —1, and so by the base case the summed weight
of its leaves is (2w)"~!. For every other leaf in L, the summed weight of v is
the summed weight of the vertex u adjacent to v at level / —1 multiplied by
w, since v is a distance of 1 away from u. However, when we add w x wg (u)
we have double counted the leaves of the subtree rooted at v. We must

wr(v) = ( —w(2w2)k) .
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therefore subtract w? — wy(v). So our summed weight for » with respect
to L is:

wr(v) = (2w)" (1 = ) +w - wr(u)

= (i1 - w®) + 2L (1)

= (2w)" ! [1 - w? +2(1 — w(2w?)"1)]

(%)h _ (w? - w* + 2% — 203 (2w?)!1)
(2‘:)"—‘ (30? — w* — w(2w?)!)
h-t
= —-(2‘:)2 (1 -w(@2?)).

O

We proceed using the technique following Corollary 2.6 to find a lower
bound for the optimal-pegging number. Our first step is to rank each level
of the tree according to the weights of its vertices. In other words, the
highest ranking level is the one that contains the vertex with the largest
weight, the second highest ranking level is the one that contains the vertex
with the second largest weight, and so on. Since every two vertices in the
same level have the same weight, a complete ranking exists.

Lemma 4.6. Let T, be a complete binary tree, and let L C V' (T}) be the
set of leaves of Ty. If vy denotes an arbitrary vertezx at level | in T}, then
Jor 5 < i < h, we have

wr(v1) > wr(ve) > wr(vs) > wr(ve) > wr(ve) > - > wp(vi) > wr(vig1) > -+ - .

Proof. Let v; and vy be vertices at levels ! and ! + 1 of T}, respectively.
Then by Lemma 4.5,

wr(v) — wr(vigr) = (%)h—‘ (1 - w(@?)) - (24.13‘)# (1 - w(2w?)'+1)

(2“’)"—‘ ! [2w — 2w?)"* — 1+ w(@w?)]
= ——(2w)h_ _ (¥ (w-1)+(w-1)+w]
(2"«’)"—1_

[(w=1) ()" +1) +u].

398



So wr () —wr(vi41) > 0 when w > (1 - w) [(2w?)*+! +1],ie. for 1 <1<
h — 1. Therefore, the summed weight of each vertex decreases as the level
of the vertex increases, except when the level increases from 0 to 1.

Now all we need to prove is that wr(v4) < wi(vo) < wr{vs). This can be
shown directly by calculating the ratios between the weights:

wi (vo) _ (Qw)h _ (2w)4 5
wZ(v§> = B (1 — e - T—T6a0 ~ M12997.

Therefore, wi(v4) < wp(vp). Finally, we calculate the ratio of wy(vp) to
wr,(va):

wr(vo) _ (2w)* ()
wi(vz) - (2w)h-3 (1 - w(2w?)?) =187 0.995713.

Thus, wr(vo) < wi(vs). O

We are now ready to present our bounds on the optimal-pegging number
of Th.

Theorem 4.7. For a complete binary tree of height h > 8, JY{%M <
P(Th) < QR

Proof. Let us first prove the lower bound. Let L be the set of leaves of T},.
Since h > 7, by Lemma 4.6 we know that the h — 3 levels of vertices with
the largest summed weights with respect to L are levels 0 through h — 4.
Let v; denote a vertex in level . Since each level [ has 2! vertices, we can
. calculate the summed weight with respect to L of the distribution D made
up of all the vertices in the first h — 3 levels:
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h—-4

wr(D) =) 2wy (v;)

=0
h—4 o ;
2:(2w)h—1 i
=Y — (1 - w(2w?)?)
=0
h—a ;
2"w"" .
- (1 - w(2?))
=0 w2
oh h=4 L
== Z (wh—z _ 2twh+s+1)
w t=0
2h, h-4 . )
== (wh—t _ wh+l(2w)s)
w 1=0
2w hhod _: .
= (w_z) Z (w™* — w(2w)*)
=0
2w)h [h—4 . h—-4 ;
bl D ICRE BCP
L1=0 =0
_ (Quw)h fw¥h -1 g (2w)h-3 -1
T ow? jwelo1 2w—1
_ (u)t [wih -1 (2w)—2 -1
w? w w?

=271 — w3 + 2807 — W) < 2R = L)

h—4
Sop(Th) > ¥ 2¢ +1 =23 > T,

=0
The upper bound can be established simply by putting pegs on every vertex
of levels 0 through 5 of a tree of height 8. It is possible to reach all the
vertices, and since T3 is a subtree of any complete binary tree of height
greater than 8, this result can be generalized to all complete binary trees
of height at least 8. Furthermore, if we extend a path from the root of
a complete binary tree of height 5 with pegs on every vertex of the tree,
we can reach a distance of 4 along the path. So given a tree of height 12,
if levels 4 through 9 are covered with pegs, we can reach all the vertices

4 ses 4
in the tree. Therefore, S2+_;".§__lllﬂ&ll = L‘ﬂ;}%&ﬂ, and so p(Th) <

10088|1V9!1T;.!| < IV!g';.!l . O



5. INFINITARY TREES

A complete infinitary tree of height h is a tree rooted at a vertex r such that
each vertex has a countably infinite number of children and the distance
between r and any leaf is h. Since each level consists of an infinite number
of pairwise non-adjacent vertices, it is impossible to calculate the pegging
number of such a tree in any meaningful way.

However, finding specific finite distributions of pegs that can peg any vertex
in the tree is within our reach. In this section we compute the optimal-
pegging number of the complete infinitary tree of height h.

Lemma 5.1. Let T, denote a complete infinitary tree of height h rooted at
vertezr, and let F, denote the nth Fibonacci number. Then any distribution
Dy, which pegs levels 0 through k requires at least Fy 3 — 1 pegs. Moreover,
r € Dy.

Proof. We prove this by strong induction on k. Since the base cases are
trivial, we assume that the theorem statement is true for all 2 < i < k,
where k < h. Let D; be a minimal distribution needed to reach levels
0 through k of 7). Since D, has finitely many pegs, by the Pigeonhole
Principle, there exists at least one subtree of T} rooted at a child of r with
no vertices in Dy.

Let w be a vertex at level k in this subtree of T}, and let M be a minimum
finite sequence of pegging moves used to reach w from Dy. The last move
meMism= u~ v -w for some two vertices  in level k — 2 and v
in level £ — 1. By Lemma 2.7, we can partition D into two distributions,
one that can peg u and one that can peg v. Suppose r ¢ Di. Then
neither of the parts contain r, and by the inductive hypothesis, they each
contain at least Fi, o and Fi4 vertices, respectively. This implies that
|Dk| = Fiey2 + Fi41 > Fry3 — 1. So in order for Dy to be of size Fr43 —1,
it must contain r.

However, since both partitions cannot contain r, one must be sub-optimal.
It is evident that if we can place a peg on a vertex in the kth level of this
subtree, then we are able reach all the vertices in the first & — 1 levels of
the subtree. Then

|D| 2 (Fk41 — 1) + (Fky2 — 1) +1 = Fry3 — 1.

The distributions for Dy and D; are obvious. Now we will show how to
recursively construct a distribution of size Fi,3 — 1 which pegs level 0
through k for a tree of height h > k where k > 2.
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Let T}, be an infinitary tree of height » and let Dy = Dx_q U Dr_1 U {z,y}
where Di—1 and Do are optimal distributions for pegging the first & — 1
level and the first k—2 level of T}, respectively, x and y are not contained in
Dy.—1 or Dy_2, and z is adjacent to both y and r. Since T} is an infinitary
tree, we can choose Dix_; and Dy_s so that they intersect only at r. We
can use Dy_; to reach any vertex v a distance of k¥ — 1 away from r, and
Dy_2 U {z,y}\{r} to reach any vertex a distance of k — 2 away from r. If
we choose to use Dx_2 U {z,y} to peg u, the vertex a distance of k — 2
away from r and adjacent to v, then we can perform the pegging move
m= u~ v ~w where w is a vertex adjacent to v that is a distance of k
away from . So we can reach any vertex in levels 0 through k of T;,. The
size of this distribution is

|Dil = |Di=1] + |Di—2] =1+ 2 = (Fr41 = 1) + (Fiq2 — 1) + 1 = Fpy3 — 1.
]

Theorem 5.2. Let T}, be an infinitary tree of height h. Then
P(Th) = Fryz—1
where F,, denotes the nth Fibonacci number.

o—0O0—@ Oo—0—=0

FIGURE 4. The infinitary tree T3 with distribution D3 con-
taining Fs — 1 pegs that can reach target vertex .

Proof. By Lemma 5.1, we need at least Fj,3—1 pegs to peg levels 0 through
h of Ty, so p(Th) > Fr+3—1. Also by Lemma 5.1, there exists a distribution
D of this size such that R(D) = V(T}). So p(Th) = Fr4s — 1. (]

By combining our results from Theorems 4.7 and 5.2, we are confronted by
the surprising and counterintuitive reality of the existence of trees which



have optimal-pegging numbers that increase with the removal of a leaf. We
show this in the following corollary.

Corollary 5.3. There ezist infinitely many trees which have optimal-pegging
numbers that increase with the removal of a leaf.

Proof. Let T}, and T;, denote a complete binary tree and an infinitary tree,
respectively, both of which have height h. By Theorems 4.7 and 5.2, p(T3) >
p(T}) provided that &|V(Th)| > Fays — 1, or

h+3
l(2h+1_1) > 1 1_+_\/_§ -1
16 N 2 '

This is true if
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This is true for h = 13. Since (1++v/5)/4 < 1, ((1+v/5)/4)" is & monoton-
ically decreasing function. Hence p(Th) > p(T}) for all A > 13.

Let D be the recursively defined distribution on the infinitary tree T},
described in the proof of Lemma 5.1. By Lemma 5.1, the root of T} is
covered with a peg, and the distance between every vertex in D and the
root is at most 2. Therefore, there exists a complete (Fr+3 — 2)-ary tree
of height h, T}/, such that T} is a subtree of T}, and D C V(T}). By
Lemma 3.1, there exists a finite sequence of pegging moves M such that
anc(D, M,v) C V(T}) for every v € T}. Therefore, p(T}') < p(T}.) < p(Tr)
for all A > 13. Since T}/ is finite, by the Pigeonhole Principle, there exists
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at least one tree T that is a subtree of T}/ and a supertree of T such that
the deletion of a leaf from T results in a tree with a larger optimal-pegging
number.

6. CATERPILLARS AND LOBSTERS

This section is devoted to computations of the optimal-pegging numbers
of caterpillar graphs, as well as calculating the lowest upper bound on the
optimal-pegging number of lobster graphs. A caterpillar graph, E, is a tree
such that if all leaves and their incident edges are removed, the remainder
of the graph forms a path. A lobster graph, L, is a tree such that if all
leaves and their incident edges are removed, the remainder of the graph is
a caterpillar. '

Theorem 6.1. The caterpillar graph E satisfies p(E) = [4£L], where d is
the diameter of E.

First we need four lemmas that will be used in the proof of this theorem.

Lemma 6.2, Let P, be a path on n vertices and let D be a distribution of
pegs on P,. Then for allv € R(D), v € D or v is adjacent to some vertex
in D.

Proof. Suppose that this claim is false, and that there exists a vertex v €
R(D) that is a distance of at least two from any vertex in D. If v € R(D),
then it must be reachable from the distribution of pegs on one side of it.
Let D’ C D be the distribution of pegs on one side of v. We can get an
upper bound for the weight of D':

— g2 2
woD) S? +uf 4+t l=u? (L2 ) o 2y
l-w l-w

Therefore v ¢ R(D'), and so v ¢ R(D). ]

Lemma 6.3. Let D be a distribution of pegs on some caterpillar E with
diameter d > 2, and let P be a longest path of E. If P C R(D), then
R(D) = V(E).

Proof, By definition of a caterpillar, a vertex that does not lie in P must
be a leaf. Let | be such a leaf, and let v € P be adjacent to I. Assume for
the sake of contradiction that ! ¢ R(D). Since v is not a leaf there exists
two vertices u and w adjacent to v that are in P, and are therefore in the
reach of D. Suppose there exists a sequence of moves M = (m;,...,mg)
where v € anc(D, M,u). Then there must be some z € R(D) (possibly



w) adjacent to v such that either z € D or v,z € M;(D), for some 1 <
i < k. Either way, we can reach [ via the pegging move m = 7 v .
The same argument holds if there exists a sequence of moves M where
v € anc(D, M,w). Now suppose this is not the case, and that no such
sequence of moves exists where v is an ancestor of u or w. Let us consider
the case where there exists a sequence of moves M = (m;,,...,mi) where
u € anc(D, M, v). If there is some finite sequence of pegging moves M’ =
(mi,...,m!) such that v € anc(D, M’,w), since v lies in the path between
u and w, and v is adjacent to w, then m) = z v ~w forsome1<i<n
and z € V(E). So we can construct a sequence of pegging moves M” =
(mf,...,m;) wherem} = z “vM] ifj=1iand m{ = m]; otherwise, and
we can reach [. If such a sequence M’ does not exist, then by Lemma 2.7,
there exists another sequence M” = (mf{,...,m!) such that anc(D, M, v)
and anc(D, M”,w) are disjoint. Let (M, M") = (m,,...,mg,m{,...,ml).
Then v,w € (M,M") (D), and so we can reach ! via the pegging move
m= w~ v ~]. Ifuis not an ancestor of v and vice versa, we can reach !

via the pegging move uw~ v -~/ . Sol € R(D). a

Lemma 6.4. Let E be a caterpillar with diameter d > 3, and let D be a
distribution of pegs on E such that R(D) = V(E). Denote the set of leaves
in D as Lp. If |Lp| 2 1, then there ezists o distribution D' such that
|D'| < |D), R(D') = R(D), and |Lp/| < |Lp|.

Proof. Let | be a leaf in D and v be the vertex adjacent to I. There are
three possible configurations of D:

Case 1: v ¢ D. Since ! is not adjacent to any other pegged vertices, it
cannot be used to reach v. So v € R(D\{l}). If D' = DU {v}\{{}, then
after a series of stacking moves we can achieve 2 pegs on v with which to
perform a pebbling move to reach I. But by the Peggling Lemma, this
means that {v,l} C R(D’). Furthermore, the set of vertices that can be
reached by a pegging move using ! are all adjacent to v, so they can be
reached with pebbling moves as well. So R(D’) = R(D).

Case 2: v € D. Suppose there exists a path P C V(E) of length d such
that P C D. If | ¢ P, then by Lemma 6.3, R(D\{!}) = R(D). Suppose
[l € P. Since d > 2, there is a vertex u € P that is distinct from ! and
adjacent to v, and we can perform the stacking move m = u v ~]. So
P C R(P\{l}), and by Lemma 6.3, R(D\{l}) = R(D).

Suppose no such path exists. Denote the two closest unpegged, non-leaf
vertices on opposite sides of v as u and w (in other words, v lies on the
path between u and w, and there is no unpegged, non-leaf vertex v’ such
that v’ lies on the path between v and u or v and w). Let P denote the
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longest path of E containing u, v, and w. By the definitions of u and w,
any other unpegged vertex z in P is closer to either u or w than it is to v.
Suppose z is closer to u. By Lemma 3.1, if ! is used to reach x, we move
the peg on ! toward z, and therefore toward u. So if M = (my,...,mg) is
the sequence of moves on D used to reach z by first moving the peg on I,
and if i is the smallest index such that M; contains u, then z € R(M;(D)).
Since the pegs on ! and v are removed from E in the first ¢ moves of M,
l,v ¢ My(D). Let D' = DU {u,w}\{l,v}. Then M;(D) C D’, and so
z € R(D'). We can follow a similar argument if z is closer to w. So
P C R(D’), and by Lemma 6.3, R(D’) = V(E). a

The following lemma and its proof were presented in Helleloid, et al. [2].
Lemma 6.5. For n > 3, the path P, satisfies p(Py) = [n/2].

Proof of Theorem 6.1. By Lemmas 6.3 and 6.5, we see that p(E) < [441]
and by Lemma 6.4, it is clear that p(E) < p(Pi41). So p(E) = [ﬁz’—l-] O

The optimal-pegging numbers for lobsters are not as straightforward. A
caterpillar is a type of lobster, so some lobsters with diameters d have
optimal-pegging numbers as low as ["—;l] However, this is not the case
for all lobsters. A counterexample is a lobster L such that if all its leaves
and their incident edges are removed, the remainder of the graph is a star
with at least 4 leaves. The diameter of this graph is 4, and so for the sake
of contradiction, suppose we only need a distribution D, of 3 pegs to reach
all the vertices in L. By the Pigeonhole Principle, there is at least one leaf
! ¢ D such that d(l,v) > 2 where v is the closest vertex to ! in D, and
no other vertex in D is as close to ! as v is. The closest we can get a peg
to ! after one move is a distance 1 away from [. However, since the third
peg is a distance of at least 3 away from I, the two pegs remaining on the
graph are not adjacent, and so no more pegging moves can be performed.
Therefore, 3 pegs are not sufficient to peg L.

For this reason, we present only an upper bound for the optimal-pegging
number of & lobster.

Theorem 6.6. For all lobsters L with diameter d > 5, we have p(L) <
d-1.

Proof. Consider the distribution D where all the pegs cover a longest path
of L with the exception of the two endpoints. Clearly, if we can reach every
leaf in L, then we can reach all the vertices in L. Since |D| =d—1 > 2, any
vertex in, or adjacent to, some vertex in D is reachable, so let us consider
the case where the leaf in question is a distance of at least two away from



FIGURE 5. An example of a lobster L where p(L) > 3.
This graph shows a distribution of three pegs such that ¢
cannot be reached.

any vertex in D. Let u,v,l € V(L) where ! is the leaf, v € D, and u
is adjacent to both v and . Since u,l ¢ D we know that there are two
vertices z and y adjacent to v that are covered with pegs. Furthermore,
since D > 4, there must exist another vertex 2 adjacent to either z or y in
D. Without loss of generality, assume that z is adjacent to y. Then we can
reach [ via a series of pegging moves:

my = x’T‘u
mo = z/@‘v
ms = ’U/T.\l
So l € R(D). a

7. FUTURE RESEARCH AND ACKNOWLEDGMENTS

Future research includes finding bounds on complete n-ary trees for n > 3.
We can also study various types of caterpillars and lobsters in greater depth.
By classifying these graphs by properties such as the number of their leaves,
their diameters, or the regularity of their constructions, one might be better
able to compute their pegging numbers. Another direction would be to find
the probabilities that specific graphs can be pegged based on the size of their
distributions with respect their number of the vertices.
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