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Abstract

The Padmakar-Ivan (PI) index of a graph G = (V, E) is defined
as PI(G) = 3 c g(neu(€|G) + nev(elG)), where e = uv, n..(e|G) is
the number of edges of G lying closer to u than to v and ne.(e|G) is
the number of edges of G lying closer to v than to u. In this paper,
we give a recursive formula for computing the Pl index of a double
hexagonal chain by using the orthogonal cut, and characterize the
double hexagonal chains with the extremal PI indices.

1 Introduction

The numbers reflecting certain structural features of organic molecules that
are obtained from the molecular graph are usually called graph invari-
ants or more commonly topological indices. One of the oldest molecular
graph-based structural descriptor of organic molecule is the Wiener index
or Wiener number [1], this quantity is equal to the sum of distances be-
tween all pairs of vertices of the respective molecular graph. Since then,
many topological indices have been designed [2]. Such a proliferation is
still going on and is becoming counter productive. In 1990s, Gutman [3]
and coworkers [4] introduced a generalization of the Wiener index (W) for
cyclic graphs called Szeged index (Sz). The main advantage of the Szeged
index is that it is a modification of W; otherwise, it coincides with the
Wiener index. In [5,6] another topological index was introduced and it was
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named Padmakar-Ivan index, abbreviated as PI. The PI index of a graph
G is defined as:

PI(G) = z [Peu(€lG) + (€| G)] (1)
ee E(G)

where e = uv, neu(e|G) is the number of edges of G lying closer to u
than v, ne,(e|G) is the number of edges of G lying closer to v than u and
summation goes over all edges of G. The edges equidistant from u and
v are not considered for the calculation of PI index. Since PI index is
different for acyclic graphs, several applications of PI index are reported in
the literature [13-20].

Recently, (7] gave the formulas for calculating the PI indices of catacon-
densed hexagonal systems, and characterized the extremal catacondensed
hexagonal systems with the minimum or maximum PI index. [8-11] com-
puted the PI indices of TUV Cs(2p, g], zig-zag polyhex nanotubes, the torus
covering by C4 and Cg and the nanotube covering by C4 and Cs. [12] de-
scribed a method of computing PI index of benzenoid hydrocarbons using
orthogonal cuts. The method requires the finding of number of edges in the
orthogonal cuts in a benzenoid system. In this paper, we give a recursive
formula for computing the PI index of a double hexagonal chain and char-
acterize the double hexagonal chains with the extremal PI indices using
this method.

A hexagonal system is a 2-connected plane graph whose every interior
face is bounded by a regular hexagon of unit length 1. Hexagonal systems
are of considerable importance in theoretical chemistry because they are the
natural graph representation of benzenoid hydrocarbons [1]. A vertex of
a hexagonal system belongs to, at most, three hexagons. A vertex shared
by three hexagons is called an internal vertex of the respective hexago-
nal system. A hexagonal system H is said to be catacondensed if it does
not possess internal vertices, otherwise H is said to be pericondensed. A
hexagonal chain is a catacondensed hexagonal system which has no hexagon
adjacent to more than two hexagons. An k-tuple hexagonal chain consists
of k condensed identical hexagonal chains. When k = 2, we call it a double
hexagonal chain [1-2].

A double hexagonal chain can be constructed inductively. Let us orient
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the naphthalene so that its interior edges are horizontal. There are two
types of fusion of two naphthalenes: (i) b=r,c=s,d =t, e = u; (ii)
a=3,b=t, c=u,d=v as shown in Figure 1. We call them a-type and
B-type fusing, respectively. Any double hexagonal chain can be obtained
from a naphthalene B by a stepwise fusion of new naphthalene, and at each
step a type of fusion is selected from 8-type fusing, where 8 € {c, 8}.

a-type
a r /
b s
c t
d u \
© Y p-type

Figure 1. o-type fusing, 8-type fusing.

(2) E (b)

Figure 2. (a) B(o, a,a,a); (b) B(8, e, 8, 8, a).

Let B(61,0,, - -,6,) be the double hexagonal chain with 2(n+1) hexagons
obtained from a naphthalene B by 6;-type, 8-type, - - -, O,-type, succes-
sively. And B(a,a,---,a) or B(8,8,---,0) is called the double linear
hexagonal chain (see Figure 2).
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Let

5= B, iff=aqa;
"1l a fé=p.
Then B(61,02,++,6,) = B(61,0,--+,8,). If n > 1, the double hexagonal
chain B(6,,0s,---,6,) is a pericondensed hexagonal system.

2 Calculation of the PI index of a double
hexagonal chain from orthogonal cuts

Let G = (V, E) be the embedding of a connected, planar and bipartite
graph in the Euclidean plane; V = V(G) and E = E(G) are the vertex and
the edge set of G, respectively. The number of edges of G is denoted by
m =m(G) = |E|.

Let d(z, y) denote the length of a shortest path connecting vertices z,y €
V. e =u'v' € E is called strongly codistant to e = uv € E (briefly: €’ sco
e) if and only if d(u,u’) = d(v,v’) = d and d(u,?') = d(v,v') = d+ 1, or
vice versa, and d > 0. An orthogonal cut C(e) with respect to e is the set
of all edges ¢’ € E, which are strongly codistant to e ([12]):

C(e) = {€’ € E|¢’ is strongly codistant to e}.

The relation sco is an equivalence relation on the edge set E of a bipartite
graph G, and the orthogonal cut C(e) is the equivalence class containing e.

For a bipartite graph G, the edge set E = E(G) is the union of pairwise
disjoint equivalence classes of orthogonal cuts C; = C;(G), j = 1,2,---,k,
of graph G. Let m; = |C;| be the number of edges of orthogonal cut C;.
Then, it is showed in [12] that the equation (1) is now

k
PIG)=m?-) m? 2)
j=1

In the following, we give a recursive formula for computing the PI index
of a double hexagonal chain B(6,,6,---,6,). Since B(6;,8;,---,0,) is
isomorphic to B(#,,82,-,0,), we always assume that 6, = a.

Note that the number of edges in B(6;,82,---,8,) is 11+8n. As in Fig-
ure 3, except Cy, Cy, Ca, C1, C3, the other orthogonal cuts of B(6y, 6z, -, 6,)
are the same of B(6,0z,-+,0,—1). From (2), we have
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PI(B(61,02, v ,en)) - PI(B(01)921 e 39n—1))

128n+ 112 - |Co2 — |C1[? = |C2? - |C})? - |Ch?

+(|C1] = 1)2 + (|Ca| = 1)2 + (|Cs| = 1)2

128n + 102 — 2(|C1| + |C2| + |C3])

128n + 102 — 2(z + y + 2)

where z = |C}|, y = |Cal, z = |C3], and z, y, z are dependent on 6;,6s, - - -, 6,,.

Figure 3. The other orthogonal cuts Cy, C1, Cs, C1, Cj.

Let (973;071—1,"')01) = (a)"’1a7ﬂ"",ﬁ’a$"'7aaﬁ"")s where
PR N TR L

T r2 T3
Ti+re+r3<n
1< <n
0<re<n-n 3)
ro=0ifandonlyifr; =n

0<r3<n—-r1—rp
o 2 1ifrg > 1.

(I) r1 = n. Then, both of C; and C; pass through r; + 1 hexagons, C}
passes two hexagons. Andz=y=r1+2=n+2,2=3.

(IT) r1 = 1. Then, C) passes two hexagons, C} passes r2 + 2 hexagons.
Andz=3,2=7r+3.

When r; = 1, C; passes 3 + 3 hexagons and y = r3 + 4;

When 72 > 2, Cs passes three hexagons and y = 4.

(III) 1 < 7, < n. Then, C; passes r; + 1 hexagons, Cj passes two
hexagons. Andz=r; +2, 2 =3.

When r; = 1, C; passes 3 + 71 + 2 hexagons and y = r3 + r; + 3;

When rp > 2, Cs passes r; + 2 hexagons and y =, + 3.
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So,

2n+1, =

2r1+13+8, l<r<nandr=1;
z+yt+z={ 2r+7, l1<ry<nandr > 2;

r3 + 11, r1 =1and ro = 1;

7 + 10, rr=1andre > 2.

And we have the following recursive formula

Theorem 1. Let (onaen—ls""ol) = (a7"',a’ﬂv'")ﬁsaa""aaﬂs"')'
N A7 N . 7

L r2 T3
Then
PI(B(OI, 027 te 101!)) = PI(B(91$023 tet ;en—l))
124n + 88, L =n;
128n + 86 —4r; —2r3, 1<m <nandry=1;
+ < 128n + 88 — 4ry, l<ry<nandry; > 2
128n + 80 — 2r3, ry =1and ro =1;
128n + 82 — 21y, ri=1and rp > 2,

3 Extremal double hexagonal chains with re-
spect to the PI index

Using Theorem 1 and PI(B) = 96, we can compute out:
If n = 1, then PI(B(6)) = 308.
If n = 2, then PI(B(61,6;)) = 644.
If n = 3, then
PI{B(a, a,a)) = 1104;
PI(B(8,a,a)) = 1106;
PI(B(a,B,a)) = 1106;
PI(B(B, B,c)) = 1106.

PI(B(8y,602,65)) =

If n = 4, then

( PI(B(a,a,a,c)) = 1688;
PI(B(8, o, a, ) = 1692;
PI(B(a, B, a,a)) = 1694;
PI(B(B,8,a,@)) = 1698;
PI(B(a,a,B,a)) = 1694;
PI(B(B, o, B, a)) = 1696;
PI(B(a, 8,8, @) = 1696;

| PI(B(B,8,8,a)) = 1694.

Theorem 2. PI(B(6;,62,---,8,)) = 62n2+150n+96 with the equality
ifandonlyify =---=0p,=caory=---=60,=p0.

PI(B(O], Gs,63, 04)) =<
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Proof. Since B(#1,0a,--,6,) = B(61,0z,---,0,), we may assume that
bn = .

It is easy to see that the result holds for 0 < n < 4.

Suppose that the result is true for n — 1. We show that the result holds
for n > 5.

By Theorem 1, we have

PI(B(a,---,a)) =PI(B(a, - ,a))+124n + 88

n

n—1
= PI(B)+124(1+ 2+ ---+n) + 88n

= 62n2 + 150n + 96
and
dn—-2—-4ry—2r3, 1<rm<nandry=1;
0< 4dn — 4r,, l1<ri<nandry >2;
dn — 8 — 2r3, ri=1and rp =1;
41?.—6—-21‘2, 1‘1=1a.ndr222.

since r; + 72 + 73 < n. So,
PI(B(6,,02,:--,0,)) = PI(B(61,62,---,0,_1)) + 124n + 88

with the equality if and only if r; = n from (3). Thus the result holds for
n>0.
The proof of Theorem 2 is complete.

Theorem 3. Let n > 1. Then

64n? + 143n + 102, if n is even;
PI(B(61,02,"++,6n)) < { 64n? + 143n + 101, if n is odd
with the equality if and only if (6;, - ,6,) = (@, a,8,8,---) or (8,8, ,, - - -)
for even n > 4, and (64,--+,65) = (0,0,8,8,---) or (8,8,a,¢,---) or
B,a,0,8,8,+) or (&, 3, 8,0, ¢, ) for odd n > 5,

Proof. Since B(6,,62,---,60,) = B(61,82, - --,8,), we may assume that
0, = c.

We use the inductive method on n. It can be seen that the result holds
forn =1,2,3,4,5 by computing immediately from the recursive formula in
Theorem 1.
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Let n > 6 and (onyon—la"';el)=(av"'aa)ﬁ,'”»ﬂ’a:"'aa,ﬁa”'vﬂ’
\V_/\_v-/\v/\_.r_d

T 8 t
a,++-). By Theorem 1, we have

PI(B(OI,OZy"')gn))
PI(B(61,02,---,6a-1)) + A
PI(B(01102>' ")a'n-Z)) + A2 + Al-

(i) If » = n, then
Ao+ A; =124(n — 1) + 88 + 124n + 88 < 128(n — 1) + 128n + 78 + 80.
(i) If1<r<nands=1,then A = 128n + 86 — 4r — 2t,
A, = 128(n—-1)+86—4(r—-1)-2t, if2<r <n;
271 128(n—1) + 80 - 2¢, ifr=2
and Az + Ay < 128(n — 1) + 128n + 78 + 80 with the equality if and only
ifr=2andt=0.
(ii) If1 <r <mnand s >2, then A; =128n + 88 — 4r,
A, = 128(n—-1)+88—-4(r-1), if2<r<mn;
271 128(n—1) +82 -2, ifr=2
and Ap + A; £128(n — 1) + 128n + 78 4+ 80 with the equality if and only
ifr=s=2.
(iv)Ifr=1and s =1, then A; = 128n + 80 — 2t,
Ay = 128(n — 1)+ 80 -2k, ift=1;
271 128(n—1)+82-2t, ift>2
and Ay + Ay < 128(n — 1) + 128n + 78 + 80 with the equality if and only
ift=1andk=0.
(v)Ifr=1and s > 2, then A; = 128n + 82 — 2s,

[ 124(n ~ 1) + 88, ifs=n-1;
Ap=< 128(n—1)+86—4s—2k, ifl<s<n—1landt=1;
128(n — 1) + 88 — 4s, ifl<s<n-—1landt>2

and Ay + A; <128(n — 1) + 128n + 78 + 80 with the equality if and only
ifs=2andt>2.
Hence,

PI(B(61,02,-,6.)) < PI(B(61,02,- - -,0n-2))+128(n—1)+128n+78+80

with the equality if and only if r=s=2o0rr=1,8s=2,t > 2.
By the inductive hypotheses,

64(n — 2)? + 143(n — 2) + 102, if n is even;

PI(B(61,02, -1 6n-2)) < { 64(n — 2)? + 143(n — 2) + 101, if n is odd
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with the equality if and only if (61, :+,0n-2) = (@, 0, 8,8, -*) or (61,---,

0n-2) = (8,8,a,a,-) for even n > 6, and (61, ,6n-2) = (,ya,8,8, )

or (ﬁ,ﬂ,a, Q, - ) or (ﬁ, o, 0,68, ) or (a’ﬁaﬂ’a’a: ' ) foroddn 2> 7.
So,

PI(B(61,62,,6 64n? + 143n + 101, if n is odd

with the equality if and only if (6;, -+, 6,) = (o, 2, 8,8,---) or (8,5, a, ¢, + - )
for even n > 4, and (017"'!871) = (aiarﬁ:ﬂ"") or (ﬂaﬁ:aaar"') or
(ﬁyava;ﬁ)ﬂ”“) or (a,ﬂ)ﬂaa’a,'”) for odd n 2 5.

The proof of Theorem 3 is complete.

) < { 64n? + 143n + 102, if n is even;
n

4 Conclusion

Let T'(61,02,---,6,) be a k-tuple hexagonal chain constructed inductively
as the double hexagonal chains. The number of its edges is (3k + 2)n +
(5% + 1). We hope to get a recursive formula for computing the PI index

of T'(8,,62, - --,6,) by using the orthogonal cut, and we can also get
PI(T(61,02,--,6n)) — PI(T(61,63,--+,6n_1))
= (2n-1)(8k+2)2+ 2(5k +1)(3k + 2)
~(ICof* + [C1* + - + |Cf* + [CY[* + - + |} I")
+(IC1| = 1)2 + -+ (|Ck| = 1)* + (IC3| - 1)2 + (ICk| - 1)?
= (2n—-1)(3k+ 2)2 +2(5k+1)(3k +2) — (k + 1)2 -4+ (2k-1)
=2(|C1| + -+ +|Ck +|C2| + - - +|Ck)
Where [Co| = k + 1 and |C]| = 2. When we try to compute |C;| and |C]],
we find that they are dependent on 8;,6s,---,6,. In fact, if

(enaen—ly"'101)=(a, a0, B ,CY,,B,"'),
St N et N !

™ T2 T3

then |Cx| and |Cy| are dependent on 71,72, -+, rx41. So, the more k is large,
the more it becomes complicated. It needs a new method to get a recursive
formula for computing the PI index of the k-tuple hexagonal chains.
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