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Abstract: An adjacent vertex distinguishing edge coloring or an avd-
coloring of a simple graph G is a proper edge coloring of G such that no
two adjacent vertices are incident with the same set of colors that are used
by them. H. Hatami showed that every simple graph G with no isolated
edges and maximum degree A has an avd-coloring with at most A + 300
colors, provided that A > 10%0. We improve this bound as what follows: if
A > 105, then the avd-chromatic number of G is at most A + 180, where
A is the maximum degree of G.
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1. Introduction

Let G(V, E) be a graph with vertex set V' and edge set E, respectively. For
a vertex z of G, let Eg(z) be the set of edges which are incident with z
and let Ng(z) be the set of its neighbors in G and dg(z) = |[Ng(z)| be the
degree of z in G if G is a simple graph, otherwise dg(z) be the number of
edges with one end z, that is, dg(z) = |E¢(z)]. A(G), or simply, A denotes
the maximum value of dg(z) for each z € V(G). A k-edge coloring of G is a

ARS COMBINATORIA 110(2013), pp. 421-433



mapping f : E — {1,2,..., k} such that adjacent edges are assigned different
colors. A partial k-edge coloring of G is a mapping f from a subset F of
E to the color set {1,2,...,k} such that f is a k-edge coloring of the edge-
induced subgraph by F. For a vertex u and a partial k-edge coloring f of G,
let C¢(u) denote the set of colors of edges in Eg(u). If Cy(u) # Cg(v) for
any v € N(u), we say u is adjacent-vertex distinguishable or distinguishable
under the coloring f. If all vertices in G are distinguishable under a k-edge
coloring f, f is called a k-adjacent-vertex distinguishable edge coloring or
avd-coloring of G. The minimum such a k is called the adjacent-vertex
distinguishable edge chromatic number, denoted by Xqva(G)-

The adjacent vertex distinguishable edge colorings are investigated by
many researchers under different names, and there is a few directions re-
lated with the avd-coloring of graphs, [1-7, 9, 13, 14]. The following conjec-
ture was introduced in 2002. Since then, there are a lots of results related
with this conjecture. Many of these results are on special class of graphs.
The properties of their structures help us calculate the value of Xx,4q(G).
A breakthrough is made recently by Hatami {11], since an upper bound is
for nearly all graphs and the bound is neat. For notations not defined here,
we follow [8, 10, 12].

Conjecture 1.1 (Zhang et al. [13]). The avd-chromatic number of every
simple connected graph G except the cycle of length five and isolated edges
is at most A + 2, where A is the mazimum degree of G.

Conjecture 1.1 is interesting, since we think it is not easy to use the
induction method. Given a graph G and one of its avd-coloring f, if we
remove an edge uv, which is colored by &, we may not obtain an avd-
coloring of the resulting graph G — uv. For example, we choose the path
with three vertices.

Theorem 1.2 (Balister et al. (2, 8]). If G is a graph with no isolated
edges, then the avd-chromatic number of G is at most A + O(logx), where
X is the chromatic number of G.

Theorem 1.3. (H. Hatami [11]). If G is a graph with no isolated edges
and mazimum degree A, then the avd-chromatic number of G is at most
A + 300, if A > 10%,

Here, we use the same probabilistic modal and the same steps to con-
struct an avd-coloring of G as those in [11], but we use a strong form of the
Chernoff Bound to evaluate the upper bound of the avd-chromatic number.
The tools we used here is of independent interests, and it may be used in
other problems. Our upper bound for avd-coloring is as what follows.
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Theorem 1.4. Let G be a connected simple graph. Then the avd-chromatic
number is at most A + 180, where A is the mazimum degree of G and
A > 101,

In the proof of Theorem 1.4, Lovasz’s local lemma and Talagrand’s
inequality will be used several times. And we list them here.

Lemma 1.5 (The Symmetric Lovsz Local Lemma). Let Ay, Aa, ..., A, be
events in a probability space. For all i, Pr(A;) = p and the event A; is
mutually independent of all events but at most d events. If dpd < 1, then
Pr(n.,4;) > 0.

Lemma 1.6 (Talagrand’s Inequality). Let X be a non-negative random
variable, not identically 0, which is determined by n independent trials
N,Ts,...,T, , and satisfying the following for some ¢c,r > 0,

1. Changing the outcome of any one trial can affect X by at most c,
and

2. For any s and any outcome of trials, if X > s, then there is a
set of at most rs trials whose outcomes certify that X > s, then for any
0<t< E[z],

12
Pr{|X — E(X)| > t + 60c\/rE[X]] < 4~ %5171,

2. The strong form of the Chernoff Bound

The Chernoff Bound is an important tool for studying random graphs. This
bound is often used in the following form.

Lemma 2.1 (The Chernoff Bound) Suppose that BIN(n,p) is the sum
of n independent Bernoulli variables, each equal to 1 with probability p and
0 otherwise. For any 0 <t < np,

Pr[|BIN(n,p) — np| > t] < 2¢~*"/(3np),
The following theorem is the main result in this section. We use this
theorem to improve Hatami's upper bound. This theorem is interesting

since if we consider one problem by Lemma 2.1 to get a bound, we may use
Theorem 2.2 to try the work. Maybe a better bound is obtained.

Theorem 2.2 Suppose that BIN(n,A/n) is the sum of n independent
Bernoulli variables, each equal to 1 with probability A\/n and 0 otherwise,
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and (k — A\)? > k, where X and k are non-negative integers and A < n.
Then we have the following:
1. If k < A, then Pr[BIN(n,M/n) < k| < 57
k+1)A*e~2
2. Ifk > )\, then Pr{BIN(n,\/n) > k] < G2 <oe,

Before proving Theorem 2.2, we have the following two lemmas.

Lemma 2.3 Let A be a positive integer and k be a non-negative integer
such that (k —A)2 > k. Forz >k and z > ) > 0, then we have

TH+1=A\ z \* [z+1-A\CP
F(x)_z+1—k'(z+1) ( T—\ ) 2L

Proof. Let A(z) = (z+1-A)/(x+1-k), B(z) = (35)" and C(z) =

(zi:i-x)(x—k)_

And then

E=Xx Y\ A=k
! — —_
A=) = (1+x+1—k) T (z+1-k)?’

B’(:c):B(x)-{lnlix+ 1 }

14z

and

1N _ z+l-2 z-k 1
C'le) = Cl) {l“ -2  z4+1-X z-AJ"

So, we have the following.

F'(z) = B(z)C(z) {A’(w) + A(z)-
{ln T+z + 1= 1+::: + ln(l + ?}3) - G’ﬁﬁﬂkz_—n‘}}

= B(z)C(z){A'(z) + A(:c)
{In(1+ o) + 2 - e )
‘by In = l = -+ ln(l + ;—_—X) = ln(1 + m)

Let
Ge)= (z+1-k? g5
= (z4+1-k)?. {A(z) + A(x) :
{In(1 + ) + 71 - T -
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By z > 0 and In(1 + z) < z, we have

C@) s (e+1-0? {Pkem + 23

A
{WT(?—T\T'*‘:M =+1- Ajtz Aj}}

— 2 A~k 1~
= (z+1-k) {z—_'_i—_-,;)-r'l'ﬂ'l—

iix—xzﬂz—)\j - iz+le5kZ =y
— Q-REH)E=)) | sEH-keod)_ (@-k)al=k)e+)

(z+1)(z=2A) (z+1)(z—2) (z—A)(z+1)
— (k== (A 1k—k?— A'
- (z+1)(z=2)

By k < (A — k)2, we have the following.
A+DE=—k2 =22 <A+ 1)k —(k+2kX)=—kA<0.
For 0 < A < z, we have

(k=(k=Nz+A+1k—k2-22<0.

So F'(z) < 0.
Note that limy—, 400 A(Z) = 1, limz—y 400 B(z) = € ! and limz—y 400 C(z)
= e!, and then lim; 100 F(z) = 1, s0 we have F(z) > 1. O

Lemma 2.4 Let A be a positive integer and k be a non-negative integer
such that (k — A)2 > k. Then we have

e
BIN(k;n,A/n) < 2 ——
where BIN (k;n,A/n) = Pr[BIN(n,\/n) = k.
Proof. By Lemma 2.3, we have
BIN(kin+1,0/(n+1) _ ("' ,(,\/(n+1)) (1=M/(n+1))"+1-*
BIN(km,X/n)  — (& A/n (A=3/n)"=*
n n—k
= () (22)
F(n) 2 1.

-a

Note that lim,, ;o BIN(k;n,A/n) = '\k,j! . And then we have the
conclusion. O

Now we are ready for proving Theorem 2.2.
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Proof of Theorem 2.2. 1. If A > k > m, then

BIN(m —1;n,A/n) _ (n—A)m
BIN(m;n,A/n) = (n—m+1)A

By Lemma 2.4, for 0 <i <k,

IN

m _k
<—=<<z.
AT

k—1
BIN(i;n, \n) < (;) . BIN(k;n, M\/n),

and

k
1+5

E\F 1= (k/NF A
+(X)= T-E/A “2—F

And so,

N <2 BIN(kim Mn) < et
PT[BI (n, )\/n) < k] < A_—k ( y /n) S m.
2. If A < k <m, then

BIN(m+1;n,A/n)  (n—m)A A < A
BIN(m;n,A/n) ~ (n—=A)(m+1) " m+1~" k+1

By Lemma 2.4, for k <i < n,

. < . .
BIN(i;n,A/n) < (_k+ 1) BIN(k;n,\/n),
and -
Lo -+ (e
= 1=(/(kt1)"H k4
= 1-X/(k+1D) FHl-X*
And then,
k+1 (k +1)Ake=2
> <L — ; <
PrIBIN(n,Mn) 2 K] < gy =5 BIN(kin M) < i mmms.

3 Proof of Theorem 1.4.

Although our proof is based on Hatami’s in [11], for self-contained reason,
we restate the proof in details. The proof includes three steps. At the last
step, an avd-coloring is constructed. The numbers used in the following
paragraphs meet the requirements of Theorem 2.2.
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Step 1. Let G be a simple graph and = be a vertex of G. Then z is
called a light vertex if dg(z) < A/3 otherwise a heavy vertex. Let zy be
an edge of G. Contracting edge zy means that first removing edge zy from
G and then identifying = and y. We denote the resulting graph as G/zy.
Let H be the subgraph of G induced by light vertices. Let F be the set
of isolate edges in H. Let G' = G/F and H’ = H/F, which are obtained
by contracting the set of edges in F. Note that A(G) = A(G’) and the
multiplicity of G’ is at most two.

If G’ is p-avd-colorable, then G is also p-avd-colorable. Suppose that
G’ has a p-avd-coloring ¢’, we can obtain a p-avd-coloring o of G as what
follows: for an edge e in G’ with color o’(e), we let o*(e) = o’(e) for the
corresponding edge, then we have a partial p-avd-coloring of G. And then
we can obtain the p-avd-coloring o by extending the coloring o* to all edges
in G since for an edge zy in F, dg(z) +dg(y) < A.

Step 2. This step contains two phases. Let f be an edge coloring of G’
with at most A + 2 colors.

Phase one: 1.1 Uncolor each edge of E(G’) — E(H') with probability
114/A.

After this step, each vertex = has a set of uncolored edges U(z), which
is a subset of Eg:/(z) — E(H').

1.2 For a vertex v in G, if [U(v)| > 170, recover the colors of all
uncolored edges in U(v), and call v a recovered vertex.

Let f/ be the partial coloring obtained after performing Phase one. Let
Uy (v) be the set of uncolored edges in Eg(v)—E(H') and let R be the set of
recovered vertices, @ be the set of all vertices v such that |U(v)] < 20, T be
the set of vertices in V(G’) — V(H') such that there is an edge vw € U(v)
and w € R, and L be the set of vertices v in V(G') — V(H’) such that
[Us (v)| < 20.

Clearly LC RUQUT.

Lemma 3.1 Letv e V(G') - V(H'). We have
3.1.1 Prjv € R) < 1/1000.
3.1.2 Pr[v € Q] < 1/1000.
3.1.8 Prjv € T| <1/1000.

Proof. 3.1.1 Since U(v) has Bernoulli distribution, and we know that
A/3 < dg'(v) < A, Theorem 2.2 implies that

172.114171 . g—114

58 - 171! < 1/1000,

Pr{v € B] = Pr{|U(v)| > 170} <
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where k = 171, A =114 and k + 1 — A = 58, (k — A)2 > k holds.

3.1.2 The worst case is when dg:(v) = A/3. Then Theorem 2.2 implies
that

3820, -38
19.19!
where k = 19 and A = 38, (k — A)?2 > k holds.

Priv € Q] = Pr{|U(v)] < 20] < < 1/1000,

3.1.3 Consider an edge vw, where v € V(G') — V(H') and w € V(G').
First, we prove an upper bound for Prjvw € U(v) and w € R]. Then
Theorem 2.2 implies that

171114170 . =114

Priw € Rlvw € U(v)] < <1/108,

57 - 170!
where k = 171 and A = 114, (k — A)? > k holds.
Hence,
1 114 1
< — < —.
Privw e U(v)andw € R] < TN ST

Since v has at most A neighbors, Prjv € T} < —-53 A< == 1000 O

By Talagrand’s Inequality, for A > 1015, similar to the proof of Lemma
2 in [10], we have the following.

Lemma 3.2 For every vertezv € V(G') - V(H'),

1

PrING (I N LI > 105 < =7
Proof. Note that [N(v)NL| < [Nw)NR|+ |[Nw)NT| + |[N(w)Nn Q)|
If |Ng:(v) N L| > A/100, then at least one of |[Ng'(v) N R| > A/300,
|Ng'(v) N Q| > A/300 and |Ng/(v) N T| > A/300 holds. By Lemma 3.1,
E[|[N(v) " R|] £ A/1000, E[|N(v) N Q|] < A/1000 and E[|N(v) nT|} <
A/1000. For wv € E(G') — E(H'), consider the independent Bernoulli
trials T,,,,, where the outcome of T,,, determines whether uv is uncolored
in Phase 1.1 or not.

Claim. Pr{|Ng (v)nR| > A/300] < 1/(3A7), Pr(|Ng:(v)NT] > A/300] <
1/(3A7) and Pr[|Ng:(v) N Q| > A/300] < 1/(3A7) holds.

Proof of Claim. Changing the outcome of each trial affects |Ng/(v) NR)|
by at most two, and every assignment to trials that results |Ng/(v) NR| >
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k can be certified by the outcome of 170k trials. Talagrand’s inequality
implies that

Pr [INo/(v) N Rl > g+t +60 x 2,/170 745

2
< 43—1000t /8x4x 170A'

Since changing the outcome of each trial may add or remove at most
two vertices from R, at most 2 x 170 vertices may be added or removed
from T. So it affects |[Ng:(v)NT| by at most 2x 170. And every assignment
to trials that results |Ng/(v) NT] > k can be certified by the outcome of
170k trials. Talagrand’s inequality implies that

Pr [INe/(v) NT| > 35 +¢ +60 x 2 x 170,/170- 5]

< 4e-1ooo:2/8x4x 1703A.

Instead of considering the random variable |Ng-(v) N Q|, we apply Ta-
lagrand’s inequality to X, = dg(v) — |Ng/(v) N Q|. Changing the outcome
of each trial affects X, by at most two, and every assignment to trials
that results X, > k can be certified by the outcome of 20k trials. For
X, = dg'(v) — |Ng:(v) N Q|, and E[X,] > dg/(v) — A/1000. Talagrand’s
inequality implies that

Pr [X, < de(v) - 1hs —t — 60 x 2v20- A
< 4e—t’/8x4x20x(dcl(u)-A)/lOOO < 46-:’/1000A_

Substituting ¢ = A/1000 in the above inequalities. We have Pr[|Ng: (v)N
R| > A/300] < 1/(3A7), Pr[|Ng:(v)NT| > A/300] < 1/(3A7) and

Pr{|Ng:(v) N Q| > A/300] = Pr{x,, < dg(v) — A/300]
< Pr [ X, < do(v) - 5 —t - 60 x 2v30 B < ghv

For A > 10!, similar to the proof of Lemma 3 in [11], we have the
following.

Lemma 3.3 For every two adjacent vertices u,v € V(G') -V (H'), where
dG,(u) = dgr (’U)

Pr[u ¢ Land |Cs(u)ACy (v)] < 10] < 3AE

Proof. It is sufficient to prove that Pr[|Cs (u)ACy (v)| < 10|u ¢ L] <
545- We assume that Cy(u) = C¢(v). Suppose that |Us (u)| = k > 20. If
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|Cy (u)ACY:(v)| < 10, then there are at least k—10 colors in Cy(u)—Cyr(u)
which are also in C¢(v)—Cjy+(v). Since there are at most two edges between
u and v, the probability of this occuring is at most

AT
k-10/ A 8AS

So the lemma follows. O
By Lemmas 3.2 and 3.3 and the local lemma, we have

Lemma 3.4 If we apply Phase one to the edge coloring f, and obtain a
partial edge coloring f', then with positive probability, we have

3.4.1 For every vertez v € V(G') — V(H'), we have |Ng/(v) N L| <
A/100.

3.4.2 For every two adjacent vertices u,v € V(G') — V(H'), where
do(u) = dg:(v) and u ¢ L. We have |Cy (u)AC (v)| 2 10.

Proof. We define the following bad events. For v € V(G’) — V(H'), let
A, be the event that |[N(v) N L| > A/100. For each edge uv such that
u,v € V(G') - V(H'), dg:(u) = dg'(v), let Ay, be the event that v ¢ L
and |Cy (u)ACy (v)| < 10.

Clearly, each event Ax is mutually independent of all events Ay as long
as all vertices in X are in a distance of at least six from all vertices in Y.
Hence each event is independent of all events but at most 2 x A® events,
and by Lemmas 3.2 and 3.3, each event occurs with a probability of at most
1/(8A®). So the Local Lemma implies this lemma. O

Phase two: For every vertex u € L, choose five colored edges uv; under
flforl1 <i<5andwv € V(G')— L uniformly at random and uncolor
them.

After performing Phase two, we obtain a partial edge coloring f of
E(G') — E(H'). Let U’(v) be the set of uncolored edges by performing
Phase two.

By the local lemma, we have the following.

Lemma 3.5 Suppose that f' is a partial edge coloring of which satisfies
Properties (3.4.1)and (8.4.2) in Lemma 3.4. If we apply Phase two to f’,
and obtain a partial coloring f, then with positive probability, we have
(8.5.1) For every vertexv € V(G') —V(H') — L, we have |U'(v)| < 4.
(8.5.2) For every two adjacent vertices u, v € V(G') =V (H'), where
dg(u)=dg' (v), we have Cz(u) # Cj(v).
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Proof. Suppose that u,v € V(G') -V (H') are two adjacent vertices such
that dg'(u) = dg/(v) and u ¢ L. By Lemma 3.4.2, it is sufficient to prove
the following instead of (3.5.2).

(3.5.2) For every two adjacent vertices u,v € L, where dg/(u) =
dg(v), we have C§(u) # Cj(v).

We define the following two types of bad events. For every vertex u €
V(G') -V (H') — L, and every five edges uv; for 1 <i < 5 such that v; € L
and uv; is a colored edge under f’, let A, (y, ...} denote the event that
uv; € U'(u) for 1 < ¢ < 5. For every two adjacent vertices u,v € L where
dg'(u) = dg(v), let Ay, denote the event that Cy(u) = Cy(v).

We estimate Pr[Ay {u,,...,vs}] and Pr[Ay,] firstly. For every v € V(G')—
V(H'), we have de/(v) > A/3, IN(v) N L| < A/100, and the uncolored
degree of v is at most 170. So every edge uv is uncolored in Phase two with a
probability of at most 5/(dg:(v)—A/100—170) < 5/(A/3—-A/100-170) <
20/A, and also two parallel edges are uncolored with a probability of at
most z7; X ra7i=yy < (20/A)?. Since u € L, this implies

20
PT[A’LL,{‘UI,...,‘Us}] S (K)s-

For two adjacent vertices u,v € L with dg/(v) = dgr(u) and Cy(u) =
Cj(v), since C¢(u) = Cf(v), all five edges in U’(v) are determined by the
five edges in U’(u), and the edges in U’(u) are chosen independently from
the edges in U’(u). Then we have Pr{Ay,] < 1/(%/*) < (R)S.

Secondly, we construct a graph D, whose vertices are all the events of
two types Au,{v,,....us} and Ay, two vertices of Au,{v:,...,va}a Aw,{v',...,vg},
Ayy and Ay, are adjacent if and only if one of {vy, ..., vs}N {vf, ...,
vE} # 0, {v1, ..., vs} N {w, v} # 0, {w, v} N {w, v’} # 0 holds. For a
vertex w € L, since there are at most A(4/1%) events of A, (v,,...us } and
at most A/100 events of the form A,,, the maximum degree of D is at
most 5(A - (4/1%°) + A/100) < 6A(4/3%°) < 6A5/108. By the local lemma,
the conclusion follows. g

Step 3: From a partial edge coloring f of E(G') — E(H') to obtain an
avd-edge coloring G’.

We only recolor the edges of H'. Let f; = f. We repeated modify f, to
eventually obtain a (A + 180)-avd-coloring of G’. Given f}, for k > 1, we
suppose that for an edge uv € H' with Cy, (u) = Cy, (v). Since H' does not
have isolated edges, we may assume dg(u) > 2, and v, vy, ..., ¥y are the
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neighbors of u in H’', where r = dy(u). Uncolor all edges uv; for 1 <r <r
to obtain a partial coloring fj.
Similar to the proof of Lemma 6 in [11], we have the following.

Lemma 3.6 There exist sets L(uv;) C {1,...,A+ 180} for1 <i <, all
of size 7 + 180 such that

(8.5.1) In the partial edge coloring fi all the colors in L(uv;) are avail-
able for the edge uv;.

(3.5.2) If v' # u is adjacent to v; and Cyy (v') — Cy;(vi) has only one
element z, then ¢ L(uv;).

Proof. Since dg(u), dgr(v) £ A/3, there are at least A/3+7 4180 avail-
able colors for uv;. And there are at most A/3 colors for uv; dissatisfying
352). O

Consider all possible proper coloring f; such that the color of wv; is
chosen from L{uv;). There are at least (r + 180)(r +179) . . - 181 colorings.
Choose one from them as fi. There are at most ( + 180)(r — 1)! different
possible choices of fi such that Cj, (u)= Cf,(vi). So we have

PrlUi<ic-Cy, (u) = Cp, ()] <X, PT[ka (u) = Cp, ()]
<Y r+179 81 <1
This implies that there is a proper edge coloring fi+1 as fi such that

u is distinguishable. Hence by repeatedly applying this procedure we will
obtain a (A + 180)-avd-coloring of G'.
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