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Abstract

We seek a decomposition of a complete equipartite graph minus
a one-factor into parallel classes each consisting of cycles of length
k. In this paper, we address the problem of resolvably decomposing
complete multipartite graphs with r parts each of size a with a one-
factor removed into k-cycles. We find the necessary conditions, and
give solutions for even cycle lengths.

1 Introduction

A problem was posed by Gerhard Ringel in 1967 at a graph theory confer-
ence in Oberwolfach, Germany; the most casual way to state this problem
is to ask if some number of people can be seated at a specified number of
round tables for a series of meals, with these restrictions: Each person is
assigned one seat for each meal, all the people are friends (but not very
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good friends) and wish to be seated next to each other, so every person
must have as a neighbor every other person (but just once). (A neighbor
at a dinner table is defined to be only the person either to the immediate
right or the immediate left, not any of the people across the table.) The
original statement of the problem is as follows: At a gathering, there are n
mathematicians, and we wish to seat them at s round tables of seating ca-
pacities ky, ko, k3, ..., ks (3 < ki, and {_, k; = n) for z meals, so that every
mathematician sits next to every other mathematician exactly once, and
every mathematician is seated exactly once for each meal. In graph theory
terminology, we are decomposing K,, into z parallel classes, each consisting
of cycles of lengths ki, k2, k3, ..., ks (s0 {=1ki = n, = (n—1)/2, so n must
be odd). The question of decomposing K,, into cycles of uniform length has
been well-studied. In 2000 and 2003, Jiugiang Liu considered the resolvable
decomposition of the complete equipartite graph into uniform cycles. This
work is an extention of Liu’s work (3, 4], for different parity of number of
partite sets and size of partite sets.

2 Definitions and Notation

G = (V, E) is a simple graph with no loops or multiple edges. In this work,
we shall designate a specific case or family of cases as RD(a, r, k)*, in which
a indicates the size of each partite set, 7 the number of partite sets in the
equipartite graph, and k the cycle length used in the decomposition with
the star to indicate that a one-factor has been removed; thus, RD(a,r,k)*
is resolvably decomposing the complete equipartite graph with r parts each
of size a, with a one-factor removed, into k-cycles.

3 Obvious Necessary Conditions

The number of vertices in a cycle must divide the total number of vertices
in the graph. Thus we derive the condition k|ar. We note that the degree of
each vertex in the graph must be even, so 2|a(r — 1) — 1, telling us a(r — 1)
must be odd, thus a must be odd and » must be even. We state here
another obvious necessary condition, that bipartite graphs cannot contain
odd cycles. Thus, if r = 2 then £ =0 (mod 2).

4 Preliminary Results

Our first result is on Hamilton cycles in the complete equipartite graph.

Theorem 4.1. RD(a,r,ar)* can be constructed.
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Proof.. In a complete graph K,, (n = ar) we can assign a label to each
vertex. If we let the vertex labels be the elements of Z,, then we can say
that the edge between vertices labeled i and j (i < j)has distance |j — i]
(mod n). In the complete graph K,,, there are the following distances:
{1,2,3,...,ar/2}. Let the set of edges of distance ar/2 be the one-factor,
and let the edges of distances r,2r,...,(a — 1)r/2 be the edges removed
from between vertices in the same partite set. The remaining distances are
{1,2,3,....,r=L,r+1,74+2,...,2r—=1,2r+1,...ar/2 — 1}.

The total number of distances is %-. We removed one distance for the
one-factor, leaving &° — 1 distances. We then removed the distances that
are multiples of 7, leaving & —1—- 251 = 3(ar—2—(a-1)) = }(ar—a—1) =
3(a(r — 1) — 1) distances.

If 3(a(r—1)—1) is even, we order the remaining distances into the follow-
ing pairs: {(1,2),(3,4),...,(r=1,7+1), (r+2,743),...}. If —;-(a(r—l)—l) is
odd, we order the remaining distances as follows: {(1),(2,3),(4,5),...,(r—
2,7—-1),(r +1,7+2),...}, where (1) is the Hamilton cycle determined by
edges of distance 1. Note that each of these pairs of distances are relatively
prime, and therefore can be organized into Hamilton cycles using techniques
described in the theorem of Bermond, Favaron, Maheo [1]. a

We present some techniques for combining decompositions of smaller
graphs to generate decompositions of larger graphs using some results from
Liu [4], notated as RD(a,r, k) without star: Resolvable decompositions of
equipartite graphs having r parts of size a into k-cycles.

Lemma 4.2. If RD(a,r,k)* and RD(ar,m,k) can be constructed, then an
RD(a,mr,k)* can be constructed.

Proof. We begin with m copies of a RD(a,r, k)*. These will be treated as
the m partite sets of the RD(ar,m, k). We use the RD(ar,m, k) to cover
the edges between partite sets.

Clearly, this produces a RD(ar, m, k). O

Lemma 4.3. An RD(a,r,k)* can be used to create an RD(a, mr, k)*.

Proof. We know that a is odd,  is even and k|ar. We need an RD(ar, m, k).
The necessary conditions for existence are satisfied, with one exception:
RD(6,2,6). This can occur two ways, a = 1,r = 6,m = 2,k = 6 or
a=3,r=3,m=2k=26. In the first case, we refer to [2], which offers a
solution, and in the latter case, we refer to figure 1. O
v w

Let T be a tournament on V. If e = vw is an arc ®>® of a digraph
D on V, we say either e is positive, and sgn(e) = +1 if vw is an arc of T,
or e is negative, and sgn(e) = —1 if wv is an arc of T.
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Let G be agraphon V, f : E(G) — F, where F is a finite field of order
g, an odd prime power, and C is a cycle of G:

We say f is consistent on C if the following holds: let D be any one of
the two orientations of C with indegrees = outdegrees =1, at all vertices.
Then, 3 cp(p) s9n(e)f(e) = 0.

We begin with a (gRD(a,r,k))* (henceforth known as a SD or SH?
Design) on ¢K2 — I. If f : E(gK?) — F, we say f is consistent on SD if
1. f is consistent on each cycle of the SD, and
2. For each vw € E(K?), {f(e)le € gK?2, e has ends vw} = F.

Lemma 4.4. If f is consistent on the (qRD(a,r,k))* SD, then there is a
RD{ga,r, k)*.

Proof. Let A x V be the set on which the (gRD(a,r,k))* SD is defined,
on groups A x {v},v € V. We define a RD(qa,r,k)* on F x A x V, using
difference methods on the additive group (F,+), where, for each group
G € Ax V of the (gRD(a,r,k))*, F x G is a group of the RD(qa,r, k)*.

For each (a, s,v), (B,t,w) € F x Ax V, with v # w, the edge joining
(o, s,v) and (B,t,w) is said to be an edge of difference f — o if wv € T,
and difference o — S if vw € T.

For each cycle C = ((a1,v1), (@2,v2), ..., (ak,vx)) of the (g(e,r, k))* SD,
we may find a cycle Ct = ((a;,a;,v1),. .., (@, ak, Uk)) in such a way that
each edge of Ct is of difference the f-value of the corresponding edge in
C. By adding the g elements of F' to the first coordinates of the vertices of
C*, we obtain g of the cycles of our sequence RD(qa,r, k)*. Moreover, each
parallel class of cycles of our (gRD(a,r, k))* SD yields a parallel class of cy-
cles of the RD(ga,r, k)*. Each edge of the one-factor in the (qRD(a,r, k))*
was left behind to become exactly the one-factor of the RD(qa,r, k)*.

O

A RD(a,r, k)" is a pair consisting of an RD(a,r,k)* and a 2RD(a,r, k).
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Theorem 4.5. If there is a RD(a,r, k)", then there is a RD(qa,r, k)",
provided g > 5 is an odd prime power.

Proof. First, we construct a RD(ga,r,k)*. Our RD(a,r, k)*, together with
9;—1 copies of our 2RD(a,r, k), gives rise to a (gRD(a,r,k))*. We need
to find an f. Define f = 0 on the edges of the RD(a,r, k)* (and the
one-factor).

Claim 1 The edges of the 2K? can be labeled with elements of R and

N so that:
1. Every doubled edge will have one edge labeled R and the other labeled

N.
2. No cycle of the 2RD(a,r, k) has labels all R, or all N.

Proof of Claim 1

We form a bipartite graph with partite sets: doubled edges, and cycles
of the 2RD(a,r, k). We add edges (vw, C) if ab is an edge of C, a cycle of
the 2RD(a,r, k). The vertices of the doubled edge set each have degree 2,
and edges of the cycle set each have degree k.

-

A\

f

Doubled edgesCycles of the 2(a, 7, k)

Since all degrees are even, there is an Euler tour on each component.
Also, each component has an even number of edges. We label the edges of
each Euler tour with elements of N and R alternately as we traverse the
tour. |

Claim 2If¢g>5,then D=R—- N = F*

Proof of Claim 2

Certainly, D =R - N C F*,since RNN =0. If a € R, then aD = D,
so D € {R,N,F*}.

Ifg=1(mod 4),let ve N,sovR=N,yN=R. SovD=N-R=
~D = D, since ¢ =1 (mod 4). Thus D = F*.

So,¢=3 (mod 4), D = R+ R. If D = R, then RU {0} is a subgroup
of (F,+), a contradiction. By [5], for somer € R,r+1€ R. So,r+1¢€
R+R=D,soDNR#0,s0 D#N. Thus, D = F*, 0

' - _ [ F* ifg=1(mod 4)
Clalm3S—-R+N—{F if g =3 (mod 4)
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Proof of Claim 3

Certainly 0 € R+ N if and only if ¢ = 3 (mod 4).

Also, if g=1 (mod 4), R+ N = R— N = F*. So, assume ¢ = 3 (mod
4). Again, S€ {RU {0}, NU{0},F}. But —-S=S,s0 S=F. a

We return to the proof of the theorem by showing that a (a,r, k)" will
give us a (qa,r, k)"

We label the edges of each doubled cycle so that every doubled edge will
have one edge labeled R and the other labeled IV, and such that for each
cycle C in the decomposition, find a vertex v on C such that the two incident
edges to v in C have different labels, R or N. Define g : E(¢K?) - F* on
all edges of C arbitrarily according to g(e) € N if e is labeled N, g(e) € R
if e is labeled R, except the two edges incident to v. We need to find p € R
and v € N, the labels on the edges incident to v. We need p + v = the
signed sum of the values of the remaining edges of the cycle. (If for some
reason, this sum is 0, then we change any label to a different value of the
same set. It is possible to find such p and v because by claim 2 and claim
3, and the fact that g > 5, there must be at least 2 elements in each N and
R which is enough to consistently label p and v.)

For the “zero blob”, we already defined f = 0. For each o € R, define f
on a copy of the 2RD(a,r,k) by f(e) = ag(e), (so there will be 9-;—1 copies
of the 2RD(a,r, k)).

Now, f is consistent on the gRD(a,r,k)*. We break it apart into the
RD(ga,r, k)* using Lemma 4.4.

We now need to make a 2RD(ga,r, k). We refer to the above construc-
tion and repeat it with a few minor changes. We use a 2RD(a,r, k) instead
of a RD(a,r, k)* to form the “zero blob”, but leave everything else con-
structed as before. We use two copies of all non-“zero blob” cycles, and
one copy of the 2RD(a,r, k) “zero blob” and observe that we have covered
all necessary edges to make a 2RD(qa,r, k), in the manner shown above.

o

Theorem 4.8. There is a RD(3a,r,ar)”, a odd, v even, ar # 4.

Proof. Previously, we used an arbitrary tournament T on V, so now we will
specify our tournament. Let V = {000, ...,004-1} UZy(r—1) and T be the
tournament on V created in the following manner:

1. Forall 4,7, with1 < j5 < 5(:2—11"—1, orient an edge from ¢ to i + j.
2. For all i € Zo(r—1), and 1 < j < a, orient an edge from oo; to .
3. Orient edges on the co’s arbitrarily.

This tournament admits Z,(,_;) as an automorphism, so that when we
find our base blocks, we can simply “click” them (mod a(r — 1)).



We now define the method of using cracked easter eggs: We form a
path of length a(r — 1) on Z,(—1) whose vertices are (0, 1, -1, 2, =2, ...,
“("' H-1 “("_21) =1, We then subdivide all r of the edges of difference = 0
mod a and label the new vertices 003, 003,...,004-1. The vertex oop is
added, and edges connected to the vertices labeled 0 and (a(r —1) —1)/2
to form a cycle of length ar. To form the remaining cycles, we “click” the

cycle over a(r — 1)

To find the RD(3a,r,ar)”, we use a similar method to Theorem 5.2.
We begin by labeling a RD(a,r,ar)* as our “zero blob” (we can find a
RD(a,r,ar)* using Theorem 4.1). We then create the 2RD(a,r,ar) using
a non-zero consistent labeling f over Z3 by cracked easter eggs. Once the
base blocks are labeled, we can “click” the cycles over 3a and be done with
it.

Here is how we find our non-zero f on our base block: Foreach1 < i <
‘-’ir;;l"—l with a { i, there are two edges of the base block with difference
i; the f-values on these will be z; and —z; for some z; € {1, 2} = Z3\{0}.
For each 0 < j < a — 1, there are two edges of the base block at oo;; the
f-values on these will be y; and —y; for some y; € {1,2}. In the required
consistency equation, the two occurrences of each variable might or might
not cancel out. After simplification, we will have an equation of the form
+23 £ 2% ...+ 2 =0 (mod 3), where the z's are the ¢ variables that did
not cancel out. We require a non-zero solution. Obviously, this is possible
ifand only if t # 1.

Referring to the tournament, we see that the a variables yo, ..., ¥~ do
not cancel out, so we are done unless a = 1, so we shall now analyze the
cases when a = 1.
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Note that the variable z; cancels out if and only if the tournament
orientation on the two edges of difference ¢ is consistent as the cycle is
traversed.

Unfortunately, this is always the case in our base block, so we must alter
it.

Case 1: n =1 mod 4 By the previously stated method for orienting
edges, we discover that all of the differences cancel out and our equation is
the impossible yo = 0, which has no non-zero solution.

So we will remove an edge of maximum length, and replace the edge
between the former beginning and end of the Hamilton path. This new
edge will be labeled as before, according to the tournament.

We find that this creates a Hamilton path whose equation now has more
than one variable, so there is a non-zero solution.

Case 2: n=3 mod 4 Again, by the previously stated method for
orienting edges, we discover that all of the differences cancel out and our
equation is again zp = 0.
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So, again, we will remove an edge of maximal length, and replace the
edge between the former beginning and end of the Hamilton path. This
new edge will be labeled as before, according to the tournament.

Unfortunately, all of the differences still cancel out and our equation
still is zg = 0.

So, we will “flip” the bottom half of the design, and relabel the edges
as before, according to the tournament.

To create the 2RD(3a,r, ar), we use the same method as in Theorem
5.2 to find the 2RD(qa,r, k).
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5 Main result

Theorem 5.1. A complete multipartite graph with r parts each of size a,
minus a one-factor, can be resolvably decomposed into k-cycles if a is odd,
T is even, kira, and k is even.

Proof. To form a RD(a,r,k)*, we need a to be odd, r,k to be even, and
klar. Let k = kyko, so a = a'ky, r = 7'k,. :

1. Make a RD(ky, k2, k)".
If @’ = £3 (mod 18), use Theorem 5.3 to make our RD(3k,, ks, k)"

2. Use Theorem 5.2 to blow up the RD(k, ks, k)" (or our RD(3k,, ks, k)")
into a RD(a’ky, ko, k)".

3. Use Lemma 5.2 to blow up the RD(a’k;, k2, k)* into a RD(a’ky, 7'ks, k)*
(a RD(a,rk)*).

For the first step, we'll need a RD(ky, ke, k1k2)”, with k; odd, ks even,
and (k1, ko) # (1,2). We can create a RD(ky, ko, k1k2)* by Theorem 4.1.
We will create the 2RD(k;, ko, k1k2) using cracked easter eggs as before. [
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Figure 1: RD(3,4,6)*

445



