A note on the minus edge domination number in graphs

S.M. Sheikholeslami*
Department of Mathematics
Azarbaijan University of Tarbiat Moallem
Tabriz, I.R. Iran
s.m.sheikholeslami@azaruniv.edu

Abstract

The closed neighborhood $N_G[e]$ of an edge e in a graph G is the set consisting of e and of all edges having a common end-vertex with e. Let f be a function on E(G), the edge set of G, into the set $\{-1,0,1\}$. If $\sum_{x\in N_G[e]} f(x) \geq 1$ for each $e\in E(G)$, then f is called a minus edge dominating function of G. The minimum of the values $\sum_{e\in E(G)} f(e)$, taken over all minus edge dominating function f of G, is called the minus edge domination number of G and is denoted by $\gamma'_m(G)$. It has been conjectured that $\gamma'_m(G) \geq n-m$ for every graph G of order n and size m. In this paper we prove that this conjecture is true and then classify all graphs G with $\gamma'_m(G) = n-m$.

Keyword: Minus edge dominating function; Minus edge domination number

1 Introduction

Let G be a simple graph with no isolates, vertex set V(G) and edge set E(G). We use [4] for terminology and notation which are not defined here. Two edges e_1, e_2 of G are called adjacent if they are distinct and have a common end-vertex. The open neighborhood $N_G(e)$ of an edge $e \in E(G)$ is the set of all edges adjacent to e. Its closed neighborhood is $N_G[e] = N_G(e) \cup \{e\}$. For a function $f: E(G) \longrightarrow \{-1, 0, 1\}$ and a subset G of G(G) we define $G(G) = \sum_{e \in S} f(e)$. If $G(G) = \sum_{e \in S} f(e)$ for some $G(G) = \sum_{e \in S} f(e)$.

^{*}Research supported by the Research Office of Azarbaijan University of Tarbiat Moallem

then we denote f(S) by f[e]. For each vertex $v \in V(G)$ we also define $f(v) = \sum_{e \in E(v)} f(e)$, where E(v) is the set of all edges incident to vertex v. A function $f: E(G) \longrightarrow \{-1,0,1\}$ is called a minus edge dominating function (MEDF) of G, if $f[e] \geq 1$ for each edge $e \in E(G)$. The minimum of the values f(E(G)), taken over all minus edge dominating functions f of G, is called minus edge domination number of G. The minus edge domination number was introduced by Xu and Zhou in [9] and denoted by $\gamma'_m(G)$. The minus edge dominating function f of G with $f(E(G)) = \gamma'_m(G)$ is called $\gamma'_m(G)$ -function.

A function $f: E(G) \longrightarrow \{-1,1\}$ is called a signed edge dominating function (SEDF) of G, if $f[e] \ge 1$ for each edge $e \in E(G)$. The minimum of the values f(E(G)), taken over all signed edge dominating functions f of G, is called signed edge domination number of G. The signed edge domination number was introduced by Xu in [5] and denoted by $\gamma'_s(G)$. The signed edge dominating function f of G with $f(E(G)) = \gamma'_s(G)$ is called $\gamma'_s(G)$ -function. This parameter has been studied by several authors [1, 2, 3, 5, 6, 7, 8, 10, 11].

In 2007, it was conjectured [9] that for all graphs G of order n, size m and with no isolates, $\gamma'_m(T) \geq n - m$. In Section 2, we first prove that this conjecture is true. Then we characterize all graphs for which $\gamma'_m(T) = n - m$.

When G is not connected, let G_1, \dots, G_k be its components. Then $\gamma'_m(G)$ and $\gamma'_s(G)$ exist if each G_i has order at least 2, and $\gamma'_m(G) = \sum_{i=1}^k \gamma'_m(G_i)$. Hence, it is sufficient we prove the conjecture for connected graphs. Throughout this paper $\ell(v)$ denotes the number of pendant edges incident to vertex v.

Here are some well-known results on $\gamma'_m(G)$.

Theorem A. (See [9]) For any graph G of order n and maximum degree Δ ,

$$\gamma'_m(G) \geq \frac{(4-n)\Delta}{4}.$$

Theorem B. (See [9]) For any graph G of order n and size m,

$$\gamma_m'(G) \ge \frac{4m - (\Delta - \delta)n^2}{4(2\Delta - 1)}.$$

We will use the following observation and properties.

Observation 1. For any simple graph G of order $n \geq 2$ and with no isolates,

$$\gamma'_m(G) \le \gamma'_s(G)$$
.

Theorem C. (See [1]) For any tree T of order $n \geq 2$, $\gamma_s'(T) \geq 1$ with equality if and only if T has no vertex of even degree and $\ell(v) \geq \lfloor (\deg(v) - 1)/2 \rfloor$ for every vertex v. In addition, if $\gamma_s'(T) = 1$ and f is a $\gamma_s'(T)$ -function, then

- 1. f(e) = 1 for each non-pendant edge $e \in E(T)$;
- 2. f(v) = 1 for each vertex v of degree greater than 1;
- 3. f[e] = 1 for each edge $e \in E(T)$.

Theorem D. (See [7]) Let G be a graph with $\delta(G) \geq 1$. Then $\gamma'_s(G) \geq |V(G)| - |E(G)|$ and this bound is sharp.

2 A proof of the conjecture

In 2007, Xu and Zhou [9] conjectured that $\gamma'_m(G) \geq n-m$ for every graph G of order n, size m and with no isolates. In this section we prove that this conjecture is true. We also characterize all graphs G for which $\gamma'_m(G) = n - m$.

Theorem 2. For every simple connected graph G of order $n \geq 2$ and size $m, \gamma'_m(G) \geq n - m$.

Proof. The proof is by induction on m. Obviously the statement is true for m=1,2. Assume the statement is true for all simple connected graphs of size less than m, where $m\geq 3$. Let G be a simple connected graph of size m and f a $\gamma'_m(G)$ -function. We may assume $Z=\{e\in E(G)\mid f(e)=0\}\neq\emptyset$ for otherwise f is an SEDF on G and the result follows by Theorem D. Consider two cases.

Case 1. There is a non-pendant edge $e = uv \in Z$. If e is not a bridge, then G - e is connected and $f|_{G-e}$ is an MEDF of G - e. By the inductive hypothesis we have

$$f(E(G)) = f|_{G-e}(E(G-e)) \ge n - (m-1) > n - m.$$
 (a)

If e is a bridge and G_1 and G_2 are the connected components of G - e, then obviously $f|_{G_1}$ and $f|_{G_2}$ are MEDFs of G_1 and G_2 , respectively. By the inductive hypothesis we have

$$f(E(G)) = f|_{G_1}(E(G_1)) + f|_{G_2}(E(G_2))$$

$$\geq |V(G_1)| + |V(G_2)| - (|E(G_1)| + |E(G_2)|)$$

$$> n - m.$$
(b)

Case 2. The only edges e for which f(e) = 0 are pendant edges. Let $e \in \mathbb{Z}$. Then the function f, restricted to G - e, is obviously an MEDF for G - e and by inductive hypothesis we have

$$f(E(G)) = f(E(G - e)) \ge (n - 1) - (m - 1) = n - m.$$

This completes the proof.

Now we characterize all simple connected graphs G for which $\gamma'_m(G) = n - m$. The following two lemmas explore the structure of γ'_m -functions of such graphs.

Lemma 3. Let T be a tree of order $n \geq 2$ with $\gamma'_m(T) = 1$. If f is a $\gamma'_m(T)$ -function, then

- 1. f(e) = 1 for each non-pendant edge $e \in E(T)$;
- 2. f(v) = 1 for each vertex v of degree greater than 1;
- 3. f[e] = 1 for each edge $e \in E(T)$.

Proof. The proof is by induction on n. The statements are obviously true for n=2. Assume $n\geq 3$ and the statements are true for all trees T of order less than n. Let T be a tree of order n and f be a $\gamma_m'(T)$ -function. We may assume $Z=\{e\in E(T)\mid f(e)=0\}\neq\emptyset$ for otherwise f is an SEDF on T and the result follows by Theorem C. By (b) all edges in Z are pendant edges. Let $e=uv\in Z$ in which $\deg(u)=1$. Then the function f, restricted to T-u, is obviously an MEDF for T-u and we have

$$f(E(T-u)) = f(E(T)) = 1.$$

By Theorem 2, $\gamma'_m(T-u)=1$ and so the function f, restricted to T-u, is a $\gamma'_m(T-u)$ -function. If $\deg(v)\geq 3$, then the results follows by inductive hypothesis. Let $\deg(v)=2$ and $vw\in E(T)$. Since $f[uv]\geq 1$, we have f(vw)=1. It follows that f[uv]=1 and f(v)=1. Now the result follows by inductive hypothesis and the proof is complete.

Lemma 4. Let G be a simple connected graph of order $n \geq 2$ and size m with $\gamma'_m(G) = n - m$. Let f be a γ'_m -function for G. Then

- 1. f(e) = 1 for each non-pendant edge $e \in E(G)$;
- 2. f(v) = 1 for each vertex v of degree greater than 1;
- 3. f[e] = 1 for each edge $e \in E(G)$.

Proof. Let k be the number of cycles of G. The proof is by induction on k. The statements are true for k=0 by Lemma 3. Assume the statements are true for all simple connected graphs G for which the number of cycles is less than k, where $k \geq 1$. Let G be a simple connected graph with k cycles. Let f be a $\gamma'_m(G)$ -function.

(1) Let, to the contrary, e = uv be a non-pendant edge such that f(e) = 0 or -1. By (a) and (b), we have f(e) = -1. Consider two cases.

Case 1. e is not a bridge. Obviously, $f|_{G-e}$ is an MEDF for G-e. Moreover, G-e has at most k-1 cycles. By Theorem 2 we have

$$n-(m-1) \le f|_{G-e}(E(G-e)) = f(E(G)) + 1 = n-m+1 = n-(m-1).$$

Therefore, f, restricted to G - e, is a γ'_m -function. Now let e' be an edge at u in G - e. Then by the inductive hypothesis we have $f|_{G-e}[e'] = 1$. Hence, f[e'] = 0 in G, a contradiction.

Case 2. e is a bridge. Let G_1 and G_2 be the connected components of G - e with $u \in V(G_1)$. Obviously, $f|_{G_1}$ and $f|_{G_2}$ are MEDFs of G_1 and G_2 , respectively. We have

$$n-m=f(E(G))=-1+f|_{G_1}(E(G_1))+f|_{G_2}(E(G_2))\geq n-m.$$

This implies that $f|_{G_1}$ and $f|_{G_2}$ are γ'_m -functions of G_1 and G_2 , respectively. Without loss of generality we may assume the number of cycles of G_1 is less than k. Let $e' \in E(G_1)$ be an edge at u. By the inductive hypothesis we have $f|_{G_1}[e'] = 1$ which implies f[e'] = 0 in G, a contradiction.

(2) Let e = uv be a non-bridge edge of G. By Part 1 we have f(e) = 1. Let G' be obtained from G - e by adding new pendant edges uw_1 and vw_2 at u and v, respectively. Define $g: E(G') \longrightarrow \{-1, 0, 1\}$ by:

$$g(uw_1) = g(vw_2) = 1$$
 and $g(a) = f(a)$ if $a \in E(G - e)$.

Then g is an MEDF of G' and g(E(G')) = f(E(G)) + 1 = (n-m) + 1 = |V(G')| - |E(G')|. Thus g is a γ'_m -function of G'. Since G' has at most k-1 cycles the result follows by the inductive hypothesis on G'.

(3) Part 3 follows from Parts 1 and 2.

Define \mathcal{F}_0 to be the collection of all simple connected graphs of order $n \geq 2$ in which $\ell(v) \geq (\deg(v) - 1)/2$ for every vertex v.

Theorem 5. Let G be a simple connected graph of order $n \geq 2$ and size m. Then $\gamma'_m(G) = n - m$ if and only if $G \in \mathcal{F}_0$.

Proof. If $\gamma_m'(G) = n - m$, then by Lemma 4 it is straightforward to see that $G \in \mathcal{F}_0$. Conversely, let $G \in \mathcal{F}_0$. By Theorem 2 we have $\gamma_m'(G) \geq n - m$. By induction on k, the number of cycles of G, we find an MEDF of G, say g, such that g(E(G)) = n - m. Let k = 0. Assume G_1 is obtained from G by deleting exactly one pendant edge from each vertex of even degree. Obviously G_1 has no vertex of even degree and $\ell(v) \geq \lfloor (\deg(v) - 1)/2 \rfloor$ for every vertex $v \in V(G_1)$. Then by Theorem C, $\gamma_s'(G_1) = |V(G_1)| - |E(G_1)|$. Let f be a $\gamma_s'(G_1)$ -function. Then $f(E(G_1)) = |V(G_1)| - |E(G_1)|$. Define $g: E(G) \longrightarrow \{-1,0,1\}$ by

$$g(e) = f(e) \text{ if } e \in E(G_1) \text{ and } g(e) = 0 \text{ if } e \in E(G) - E(G_1).$$

Obviously g is an MEDF on G and

$$g(E(G)) = f(E(G_1)) = |V(G_1)| - |E(G_1)| = n - m.$$

Now assume there is an MEDF with the required property for every simple connected graph G for which the number of cycles is less than k, where $k \geq 1$. Let G be a simple connected graph with k cycles. Let e = uv be a non-bridge edge in G. By assumption there are pendant edges, say uu', vv' at u and v, respectively. Let $G' = G \setminus \{uv, uu', vv'\}$. Obviously, $G' \in \mathcal{F}_0$. So by the inductive hypothesis there is an MEDF f of G' with f(E(G')) = |V(G')| - |E(G')| = n - m + 1. If $\deg_{G'}(u) \geq 2$, then by Lemma 4 we have f(u) = 1. Let $\deg_{G'}(u) = 1$ and $uu_1 \in E(G)$. Since $G \in \mathcal{F}_0$ it follows that $\ell_{G'}(u_1) \geq (\deg(u_1) + 1)/2$. Hence f assigns 1 to at least a pendant edge at u_1 or assigns 0 to at least two pendant edge incident to u_1 . First let f assigns 0 to at least two pendant edge incident to u_1 . Without loss of generality we may assume $f(u_1w) = f(u_1u) = 0$ where u_1w, u_1u are pendant edges at u_1 . Then the mapping $h: E(G) \longrightarrow \{-1,0,+1\}$ defined by

$$h(u_1u) = 1, h(u_1w) = -1 \text{ and } h(e) = f(e) \text{ if } e \in E(G') \setminus \{u_1u, u_1w\},\$$

is an MEDF of G' for which h(E(G')) = f(E(G')) and $h(u_1u) = 1$. Thus, we may assume f assigns 1 to at least a pendant edge at u_1 . Without loss of generality we may assume $f(uu_1) = 1$ and hence, f(u) = 1. Similarly, we may assume f(v) = 1. Define $g: E(G) \longrightarrow \{-1, 0, 1\}$ by:

$$g(uu') = g(vv') = -1$$
, $g(uv) = 1$ and $g(a) = f(a)$ if $a \in E(G')$.

Then g is an MEDF of G and g(E(G)) = n - m. This completes the proof.

References

[1] H. Karami, A. Khodkar and S.M. Sheikholeslami, Signed edge domination numbers in trees, Ars Combin. (to appear).

- [2] H. Karami, A. Khodkar and S.M. Sheikholeslami, Some notes on signed edge domination in graphs, Graph and combinatorics, 24 (2008), 27-32.
- [3] H. Karami, A. Khodkar, and S.M. Sheikholeslami, An improved upper bound for signed edge domination numbers in graphs, Utilitas Mathematica (to appear).
- [4] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc., 2000.
- [5] B. Xu, On signed edge domination numbers of graphs, Discrete Math. 239 (2001), 179-189.
- [6] B. Xu, On lower bounds of signed edge domination numbers in graphs,
 J. East China Jiaotong Univ. 1 (2004), 110-114 (In Chinese).
- [7] B. Xu, On edge domination numbers of graphs, Discrete Math. 294, (2005) 311-316.
- [8] B. Xu, Two classes of edge domination in graphs, Discrete Applied Math. 154 (2006), 1541-1546.
- [9] B. Xu and S. Zhou, On minus edge domination in graphs, J. Jiangxi normal university, 1 (2007), 21-24 (In Chinese).
- [10] F. Xueliang, Y. Yuansheng and J. Baoqi, A note on the signed edge domination number in graphs, Discrete Math. (to appear).
- [11] B. Zelinca, On signed edge domination numbers of trees, Mathematica Bohemica 127 (2002), 49-55.