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Abstract

The closed neighborhood Ngle] of an edge e in a graph G is the
set consisting of e and of all edges having a common end-vertex with
e. Let f be a function on E(G), the edge set of G, into the set
{-1,0,1}. If Zze,,,a[e] f(z) 2 1 for each e € E(G), then f is called
a minus edge dominating function of G. The minimum of the values
Zee B(G) f(e), taken over all minus edge dominating function f of G,
is called the minus edge domination number of G and is denoted by
v (G). It has been conjectured that 4;,(G) > n —m for every graph
G of order n and size m. In this paper we prove that this conjecture
is true and then classify all graphs G with v,(G) =n —m.

Keyword: Minus edge dominating function; Minus edge domination
number

1 Introduction

Let G be a simple graph with no isolates, vertex set V(G) and edge set
E(G). We use [4] for terminology and notation which are not defined here.
Two edges e),ex of G are called adjacent if they are distinct and have a
common end-vertex. The open neighborhood Ng(e) of an edge e € E(G)
is the set of all edges adjacent to e. Its closed neighborhood is Ngle] =
Ng(e) U {e}. For a function f : E(G) — {-1,0,1} and a subset S
of E(G) we define f(S) = 3, f(e). If S = Ngle] for some ¢ € E,
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then we denote f(S) by fle]. For each vertex v € V(G) we also define
f(v) = Xecp() (), where E(v) is the set of all edges incident to vertex
v. A function f : BE(G) — {-1,0,1} is called a minus edge dominating
function (MEDF) of G, if fle] > 1 for each edge e € E(G). The minimum of
the values f(E(G)), taken over all minus edge dominating functions f of G,
is called minus edge domination number of G. The minus edge domination
number was introduced by Xu and Zhou in [9] and denoted by 7;,(G). The
minus edge dominating function f of G with f(E(G)) = 4/,(G) is called
Yin(G)-function.

A function f : E(G) — {-1,1} is called a signed edge dominating
function (SEDF) of G, if f[e] > 1 for each edge e € E(G). The minimum
of the values f(E(G)), taken over all signed edge dominating functions
f of G, is called signed edge domination number of G. The signed edge
domination number was introduced by Xu in [5] and denoted by ~;(G).
The signed edge dominating function f of G with f(E(G)) = v.(G) is
called v, (G)-function. This parameter has been studied by several authors
1,2 3,5,6,7,8, 10, 11].

In 2007, it was conjectured [9] that for all graphs G of order n, size
m and with no isolates, v/,(T') > n — m. In Section 2, we first prove
that this conjecture is true. Then we characterize all graphs for which
Tm(T) =n—m.

When G is not connected, let Gy,:--,Gi be its components. Then
7.(G) and v.(G) exist if each G; has order at least 2, and 4/,(G) =
Zf=1 v4.(G;). Hence, it is sufficient we prove the conjecture for connected
graphs. Throughout this paper ¢(v) denotes the number of pendant edges
incident to vertex v.

Here are some well-known results on v/, (G).

Theorem A. (See [9]) For any graph G of order n and maximum degree
A,
4-n)A
Tn(6) 2 U202
Theorem B. (See [9]) For any graph G of order n and size m,

4m — (A - §)n?

T (G) 2 124 =1)

We will use the following observation and properties.

Observation 1. For any simple graph G of order n > 2 and with no

isolates, -
Ym(G) £ 75(G).



Theorem C. (See {1]) For any tree T of order n > 2, 7,(T) 2 1 with
equality if and only if T has no vertex of even degree and 4(v) > |(deg(v)—
1)/2] for every vertex v. In addition, if ¥,(T") = 1 and f is a v, (T")-function,
then

1. f(e) =1 for each non-pendant edge e € E(T);
2. f(v) =1 for each vertex v of degree greater than 1;
3. fle] =1 for each edge e € E(T).

Theorem D. (See [7]) Let G be a graph with §(G) > 1. Then v(G) >
|[V(G)| — |E(G)| and this bound is sharp.

2 A proof of the conjecture

In 2007, Xu and Zhou [9] conjectured that «,,(G) > n — m for every
graph G of order n, size m and with no isolates. In this section we prove
that this conjecture is true. We also characterize all graphs G for which

Tm(G)=n—m.

Theorem 2. For every simple connected graph G of order n > 2 and size
m, 4n(G) 21— m.

Proof. The proof is by induction on m. Obviously the statement is true for
m = 1,2. Assume the statement is true for all simple connected graphs of
size less than m, where m > 3. Let G be a simple connected graph of size m
and f a 7},(G)-function. We may assume Z = {e € E(G) | f(e) =0} # 0
for otherwise f is an SEDF on G and the result follows by Theorem D.
Consider two cases.

Case 1. There is a non-pendant edge e = uv € Z.
If e is not a bridge, then G — e is connected and f|g-. is an MEDF of
G - e. By the inductive hypothesis we have

FE(G) = flo-<(E(G -¢€)) 2n~(m—1) > n—m. (a)

If e is a bridge and G; and G» are the connected components of G — e,
then obviously f|g, and f|¢, are MEDFs of Gy and G, respectively. By
the inductive hypothesis we have

HE@G) = fle,(E(G1)) + flea(E(G2))
2 V(G| +IV(G2)l = (IE(G1)] + |E(G2)) (b)

> n—m.
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Case 2. The only edges e for which f(e) = 0 are pendant edges.
Let e € Z. Then the function f, restricted to G — e, is obviously an MEDF
for G — e and by inductive hypothesis we have

f(E@G)=f(E(G-¢e))2(n-1)=(m—-1)=n—-m.
This completes the proof. O

Now we characterize all simple connected graphs G for which +/,(G) =
n — m. The following two lemmas explore the structure of 4,,-functions of

such graphs.

Lemma 3. Let T be a tree of order n > 2 with 4/,(T) = 1. If fis a
¥4, (T)-function, then

1. f(e) =1 for each non-pendant edge e € E(T);
2. f(v) =1 for each vertex v of degree greater than 1;
3. fle] =1 for each edge e € E(T).

Proof. The proof is by induction on n. The statements are obviously true
for n = 2. Assume n > 3 and the statements are true for all trees T of
order less than n. Let T be a tree of order n and f be a +},(T)-function.
We may assume Z = {e € E(T) | f(e) = 0} # @ for otherwise f is an
SEDF on T and the result follows by Theorem C. By (b) all edges in Z are
pendant edges. Let e = uv € Z in which deg(u) = 1. Then the function f,
restricted to T — u, is obviously an MEDF for T — u and we have

FE(T —v)) = f(E(T)) =1.

By Theorem 2, 4/, (T’ —u) = 1 and so the function f, restricted to T —u, is
a v, (T — u)-function. If deg(v) > 3, then the results follows by inductive
hypothesis. Let deg(v) = 2 and vw € E(T). Since fluv] > 1, we have
f(vw) = 1. It follows that f[uv] =1 and f(v) = 1. Now the result follows
by inductive hypothesis and the proof is complete. (]

Lemma 4. Let G be a simple connected graph of order n > 2 and size m
with 4/ (G) = n — m. Let f be a v/, -function for G. Then

1. f(e) =1 for each non-pendant edge e € E(G);
2. f(v) =1 for each vertex v of degree greater than 1;
3. fle] =1 for each edge e € E(G).
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Proof. Let k be the number of cycles of G. The proof is by induction on
k. The statements are true for ¥ = 0 by Lemma 3. Assume the statements
are true for all simple connected graphs G for which the number of cycles
is less than k, where k£ > 1. Let G be a simple connected graph with &
cycles. Let f be a ~/,(G)-function.

(1) Let, to the contrary, e = uv be a non-pendant edge such that f(e) =
Oor — 1. By (a) and (b), we have f(e) = —1. Consider two cases.

Case 1. e is not a bridge. Obviously, flg—. is an MEDF for G — e.
Moreover, G — e has at most k — 1 cycles. By Theorem 2 we have

n—(m—1) < flo—e(E(G—€)) = (@) +1=n-m+1=n—(m-1).

Therefore, f, restricted to G — e, is a v/, -function. Now let e’ be an edge
at u in G — e. Then by the inductive hypothesis we have flg-.[e/] = 1.
Hence, f[¢'] =0 in G, a contradiction.

Case 2. e is a bridge. Let G; and G> be the connected components of
G - e with v € V(G). Obviously, flg, and f|g, are MEDFs of G; and
Ga, respectively. We have

n—m = f(E(G)) = -1+ fla,(B(CL) + flo, (B(G2)) 2 n —m.

This implies that f|g, and f|g, are7/,-functions of G; and Gz, respectively.
Without loss of generality we may assume the number of cycles of G, is
less than k. Let ¢’ € E(G1) be an edge at . By the inductive hypothesis
we have f|g,[e'] =1 which implies f[¢'] =0 in G, a contradiction.

(2) Let e = uv be a non-bridge edge of G. By Part 1 we have f(e) = 1.
Let G’ be obtained from G — e by adding new pendant edges uw; and vw,
at u and v, respectively. Define g : E(G') — {-1,0,1} by:

g(uwy) = g(vwz) = 1 and g(a) = f(a) if a € E(G —e).

Then g is an MEDF of G’ and g(E(G")) = f(E(G))+1=(n—m)+1=
|[V(G")| - |E(G")|. Thus g is a «,,-function of G’. Since G’ has at most
k — 1 cycles the result follows by the inductive hypothesis on G”.

(3) Part 3 follows from Parts 1 and 2. O

Define Fp to be the collection of all simple connected graphs of order
n 2 2 in which £(v) > (deg(v) — 1)/2 for every vertex v.

Theorem 5. Let G be a simple connected graph of order n > 2 and size
m. Then 4/.(G) = n — m if and only if G € F,.
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Proof. If 4!,(G) = n—m, then by Lemma 4 it is straightforward to see that
G € Fo. Conversely, let G € Fo. By Theorem 2 we have ~/,(G) > n — m.
By induction on k, the number of cycles of G, we find an MEDF of G, say
g, such that g(E(G)) = n — m. Let k = 0. Assume G is obtained from
G by deleting exactly one pendant edge from each vertex of even degree.
Obviously G; has no vertex of even degree and £(v) > |(deg(v) — 1)/2] for
every vertex v € V(G;). Then by Theorem C, v{(G1) = |V(G1)| - |E(Gh)].
Let f be a v4.(G1)-function. Then f(E(G,)) = |V(G1)| — |E(G1)|. Define
g9: E(G) - {-1’0) 1} by

gle) = f(e) ife € E(G1) and g(e) =0if e € E(G) — E(G,).
Obviously g is an MEDF on G and
9(E(G)) = f(E(G1)) = V(G| - |[E(G1)| =n —m.

Now assume there is an MEDF with the required property for every simple
connected graph G for which the number of cycles is less than k, where
k > 1. Let G be a simple connected graph with k cycles. Let e = uv
be a non-bridge edge in G. By assumption there are pendant edges, say
uwv/,vv’ at u and v, respectively. Let G' = G\ {uv,uv’,vv'}. Obviously,
G’ € Fy. So by the inductive hypothesis there is an MEDF f of G’ with
F(B(G")) = |V(G)|-|E(G")] = n—m+1. If degg/(u) > 2, then by Lemma
4 we have f(u) = 1. Let degg/(u) =1 and uu; € E(G). Since G € Fp
it follows that €g(u1) > (deg(u1) + 1)/2. Hence f assigns 1 to at least a
pendant edge at u; or assigns 0 to at least two pendant edge incident to u;.
First let f assigns O to at least two pendant edge incident to u;. Without
loss of generality we may assume f(uyw) = f(uju) = 0 where ujw, uyu are
pendant edges at u;. Then the mapping h : E(G) — {—1,0,+1} defined
by

h(uiu) = 1, h(uyw) = —1 and h(e) = f(e) if e € E(G') \ {w1u, vw},

is an MEDF of G’ for which h(E(G")) = f(E(G’)) and h(uju) = 1. Thus,
we may assume f assigns 1 to at least a pendant edge at u;. Without loss
of generality we may assume f(uu;) = 1 and hence, f(u) = 1. Similarly,
we may assume f(v) = 1. Define g : E(G) — {-1,0,1} by:

g(uu’) = g(vv') = -1, g(uv) =1 and g(a) = f(a) if @ € E(G').

Then g is an MEDF of G and g(E(G)) = n — m. This completes the
proof. O
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