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Abstract

We establish several formulae for sums and alternating sums of prod-
ucts of generalized Fibonacci and Lucas numbers. In particular, we
extend some results of Z. Cerin, and of Z. Cerin and G. M. Gianella.
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1 Introduction and the main result

Let p and ¢ be two integers such that pg # 0 and A := p? — 4q # 0.
We define sequences of generalized Fibonacci and Lucas numbers (U,) =

(U’(‘p,q)) and (V,,) = (V#?), for all n, by induction

{ Up=0, U =1, Up=pU,_, = qUn—2,
%=21 V1=P: Vn=pV-1"'an-2-

Sequences of Fibonacci (Fy,), Lucas (L,), Pell (P,), Pell-Lucas (Q,),
Jacobsthal (J,), Jacobsthal-Lucas (j,) , listed as A000045, AC0032, A0G0129,
A002203, A001045, A014551 respectively in Sloane [16], are special cases of
sequences (U,) and (V). In fact (F,,L,) = (U,(.l"l),V,fl’_l)) forn >0,
(Pa,@n) = (U™, Vi 7Y) for n > 0, and (Jn, 4n) = (U2, i)
forn > 0.
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For two integers 7 and s and for all sequences X = (Xm),,cz and
Y = (Yin) ez St

S (X,Y) := ZXr+2z'Ys+2i and AT (X,Y):= Z(‘“l)i Xrr2iYos2i.

=0 i=0

We also set S (X) := S (X, X) and AT (X) := AL (X, X).

Sums involving Fibonacci, Lucas, Pell and Pell-Lucas numbers and some
generalizations have been studied by several authors. For example, for
trigonometric sums, see Melham [12] and Belbachir & Bencherif [1], for
reciprocal and power sums, see Melham [13, 14], and for the sum of squares
see Long [11]. The sums S&"*) (X) and AT (X), forr—s € {0,1} and X €
{F,L,P,Q,J,j}, were studied by Cerin, and Cerin & Gianella: 59 (F)
2], AT (F) 3] and AT (L) [5), S& (J) and AT (J) (8], S (5)
and AT (5), [9], S&°) (P) {4], S (Q) and AL (Q) [6), AL (P) and
again S§"° (P) [7).

In this article, we give simplified expressions for the sums () (X,Y)
and AT (X,Y), where X and Y can be either U or V, when g = £1.
The results obtained can be applied to (U,V) € {(F,L),(P,Q),(J,7)}
for (5,0) € {(3,-1),(3,1),(4,-1),(4,1),(5,1), (5,1)} listed in [16] as
(A006190, A006497), (A001906, AC05248), (4001076, A014448), (A001353,
A003500), (A052918, A087130), (A004254, A003501). We also give a uni-
fied improvement of recent papers of Cerin [2, 3, 5] and Cerin & Gianella
4, 6, 7] cited above. However, the formulae obtained in the case ¢ = 1 do
not allow to find the formulae obtained by Cerin [8}, and [9] (case ¢ = 2).
Indeed, it is only under the condition g = £1 that we can obtain the sim-
ple identities leading to our results. This is the main reason for which we
suppose ¢ = %1 in all what follows, except for Lemma 5.

To state our main result, consider the following sequences (a.), (bn)
and (c,,) defined, for n € Z, by

_Uan b = Vin+2 o = Usn+4

U2 ] n = ‘/2 ’ n - U4 .

Note, that these sequences are well defined when pg # 0 and g = 1.
However, Uy = p # 0, Vo = p? — 29 # 0, and U; = pV; # 0. They satisfy
the following recurrence relations

a_1=-1, a=0, {b—1=13 bo =1, {C_1=0, ¢ =1,

{ bn = Vybp-1 — bn-s, cn = Vicn_1 —cn—2.

an

an =Voan_1 —an-g,

The sequences of integers (a,), (bn) and (cp), wheng=~-landp=1
(resp. 2) are listed in Sloane [16] as A001906, A049685 and A004187 (respec-
tively AG01109, A077420 and A029547).
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The following Theorem is the main result of this paper. For an integer
n>0lete, =(1+(=1)")/2

Theorem 1 For all integers r, s, and for all positive integer n, we have

AS{He) (U)
S5 (V)
AS®) (U, V)
AST(V,U)

DAT (U)

AT (V)

AP (U, V)

AL (V,0)

P Usntrtss2 = Urpomz) = (0 + 1) ¢ Vier, (1)

an+1Vantr+s — (R +1) ¢V, (2)
P_l [U4n+r+s+2 - Ur+o—2] +{(n+1)q"V,r, (3)
an+1Vantrss + (n+1)¢" Voo (4)
P Vantrsstz = Vepoma] = (n+1) Aq" Vs, (5)
Cn1QUsntrps — (mn+1)Aq"U,_,. (6)
P_l [V4n+r+s+2 - V‘r+a—2] + ('"' + 1) Aqus_.,., (7)
an 180204145 + (n+ 1) Aq"Us . (8)
V2_l [Vigs—2+ (-l)n V4n+r+s+2] —&eng Vior, (9)
{ bmVamirss — @ Voor, n=2m; (10)
-pAcmUimirtss2, n=2m+1.

V2_1 [V1'+8—2 + (-l)n V:ln+r+s+2] +€nq Vor, (11)

me4m+r+s + q"Vs_r, n= 2m; (12)
_pAch4m+r+s+2, n=2m+1.

V2_1 [U1'+s—2 + (_l)n U4n+r+s+2] - 5nqus—n (13)

{ bmUsm+r+s — q"Us—y, n=2m; (14)

"pc1n"’4m+r+s+2, n=2m+1.

V2_1 [Ur+s—2 + (_1)11 U4n+,-+3+2] +e,q"Us_r, (15)

{ bnUsmarss +qUs—y, n= 2m,; (16)
"'pcmV41n+r+s+2) n=2m+1.

Corollary 2 For all integersr, s, t, and for all positive integer n, we have

2ASTH Y (U) = M Vinss + AUsnys — AaVs (17)

—AUs = 2(n + 1)pg"™ V2.

2pSTH " (V) = MVints 4 AoUsnts — A3V, (18)

=AUs +2(n + 1)pg™*V,_r_os.

RAATT I (U) = Xo(—1)"Vings + Ar(=1)"AUsnss (19)

+AqVs + A3AU, — 2énqr+tl/2V9—r—2t-

WAL (V) = Mg(=1)"Vings + Mi(=1)"AUsnss  (20)

+A41/s + A3A(js + 2€nqr+t‘/2‘/s—r—2t'

with Ay =Ury2, A2 =V, 3 =Urz, My =V, o
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Corollary 3 For all integersr, s, t, and for all positive integer n, we have

A (S'(ts,s+t) (U) = g7 8L+t (U))

= S (V) = g#=m ST (V)

= @nt1 AUs—rUangprtsst-

ASE#+D (U) 4 g*~7 ST+ (V)

= S7(1$,8+t) (V) + Aqs—rS'('r,r+t) (U) ,

= 0nt1VoorVontrestt.

S+ (U, V) = ¢*=T S+ (U, V)

= S+ (V,U) — > STH (V, U),
= Cn1Us—r Vonirsatt-

A ( Asls,s-i't) U)-gq*" Ag,ru) (U))

= AW (V) = g#=T ACTH (V)

_ { AbnUs— v Usmirtstts n =2m,;

—pAcnUs—r Vamsrss+t42, n=2m+ 1.

AAsxa's.H) (U) + qs—rASzr,r+t) (V)
— A'(:,s+t) (V) + Aqs—rAg‘r,r+t) (U) ,
- { b Vor Vamtr+s+t n =2m;

—pAcn Vo rUsmirssstsz, n=2m+1

Asts,s+t) (U, V) _ qs—rAS‘r,r+t) (U, V)
= A”(’f,s-i-t) (‘/, U) _ qs—rAs;r,r+t) (‘/, U) ,

(21)
(22)

()
(24)

(25)
(26)

(27)
(28)

(29)
(30)

(31)

(32)

- bnUs—rVamtras+t, n = 2m;
—pAcUs—rUsmirts+t+2, n=2m+ 1.
Corollary 4 For all integers r, s, t, j, positive integers n, m, and for
A=-1,0 or 1, we have
S,(."BH) (U) = ant1Us—r2raUsnsrtsrt—2a

+Ag" T UroptUrse-act + 47 S5 (U).

t
S'(‘s,s+)(v) = an+1Vs—-r+2AV2n+r+s+t—2>\

(33)

(34)

AT AU A1 Urgt—r-1 — qs—rAS,(f_'r,\“) ).

(s s+t) (U)

]

ASED ()

36

AbmUsmtstiUamts—j+t + @ bm Vo)
me2m+s+jV2m+s—j+t - qs+'7bmvt-2j -q'V;.

—pem(Uom+j+2Vamaastt-5 — € Uzspt-25-2)-

= q°V1,(35)

(36)
(37)



AL (v) AbmUsmsstiUsmis—jst + ¢ bmVieoj + ¢°V, (38)
= me2m+s+jV2m+s—j+t - q8+'1bmvt—2j +q°V;. (39)

éin"‘ff’ (V) = —pAcn(Uzmsjr2Vomtosst—j + ¢ Uzort—2j-2). (40)

Before proving our results, let us note that our formulae were tested
on a computer. However, we obtained them without the use of computers.
The proofs are direct and do not require mathematical induction.

2 Proof of the main result

We shall use the following Lemmas. Many of the identities of Lemmas
5 and 6 are known (see, for instance, [10]). Although the proof of these
results is simple, we have outlined it in each lemma for the convenience of
the reader.

Lemma 5 For all integers n, m,q and h, we have
Uon = —q7"Uy,,

Von = q‘"Vn,

. AU U n+m — qun-ma

ViV = n+m+q Va—m,

UnVin = Unym + @™ Un—m,

ViU = Unym — q"Un—m,

UnUnm+bh = UnihUpm = q"UUpn—m,

. Van+h - Vn+th = —qm AU, —my
. Vi Vm+h - Aljn.+h£’ =q "ViVoem,
10 U, Vm+h - Un+hV =-—q UhVn-ma
11. VoV + AU U, = Vi ym,

12. VoV = AURUm = 24"V,

13, UnVrn + VnUm = 2U‘n+1m

14. UnVip = VaUsm, = 24" U

© %NS, mA e~

Proof. We use Binet’s forms "‘"—'g: and o™ + 8" of U, and V,,, where o
and 8 are the roots of 22 — pz + g = 0. We notice that: a+ 8 =p, o8 =g,
(a - ﬁ) = A. Let us prove the relation 9: V,,V,,.p — AU,,.,.hU = (a™ +
ﬂﬂ)( m+h+ﬂm+h) (an+h ﬁn+h)( _ﬂrn) — (aﬂ)"‘(a +ﬁh)(an—m+
™) =q"ViVom. ®

Lemma 6 For all integer r, and for all positive integer n, we have
1. AU Y00 Urisi = Vangre2—Veca = AUznrUsniz = pPAans1Uzpgr,
2. U 2,,___0 Vr+4t =Uspntr42 = Urz2 = V2n+rU2n+2 = POn+1 V2n+r9
3. Va3 lio(-1)'Urssi = (-1)" Usngrsz + Ur_2
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- { U2n+rV2n+2 = V2me4m+r1 n=2m;
] —VontrUsni2 = —VopemVim4r+2, n=2m+1.
4 VaXino (1) Vigai = (-1)" Vingre2 + Vizz
V2n+rV2n+2 = Vobm Vamr, n = 2m;
—AUznt+Usnyo = —VopAemUsmary2, n=2m+ 1.

Proof. Let us prove the first relation. From the 3. of Lemma 5, we
have: AU, Yo Uriai = Toro(Vesaisz — Vigaica) = iy Vigaicz —
2,*:0 Vitai-2 = Vanyrp2 = Voo = AUzpyrUsnye = PAGr 1 Usnyr. B

Lemma 7 For all integers v, s, and for all positive integer n, we have
L S(r’a) (V) + AS(M) (U) 2p~ ! [U4n+r+s+2 = Uris- 2]

= 20n4+1Von4rts-
2. ST (V)-ASM WUy =2(n+ 1) qrv,_,
3. AT (V,U) + 859 (U,V)) = 2071 Vansrsorz — Vioa]
= 20n+1AU2n+r+s-
4. ATV, U) - S5 (U, V) =2(n+1) Ag U,
5. AT (V) + AAT?) (U) = 2V5 1 [(=1)" Vansrtora + Vitoa]
2me4m+r+s: n = 2m,
—20AcmUsmsrsss2, n=2m+1.
6. AT (V)= AAT) (U) = 26nq"Vers
7. AT (V,U) + ATV (U,V) = 2V [(=1)" Usnrssta + Ursoa]

2bmUsmtr+s) n = 2m;
=2pcmVamsr+s+2, n=2m+ 1.
8. AT Uy - AU U, V) = 26U, .

Proof. Let us prove the first and the fifth ones. Using relations of Lemma
5 and Lemma 6, we have
1. S5V (V) 4+ AT (U) = T o (VesaiVesai + AUrg2iUsi2:)
=2 E:;o Vr+s+4ia
= Zp_l [U4n+1:+s+2 - Ur+s—2] = 2an4+1Vongr4s-
5. AT (V) + AAT) (U) = Ty (<1)f (w+2.-1f.,+z.- + AUps2:Us42:)
=2 Z,_o (1) Vegorais
=2V, [( 1) Vinsrese2 + Vegs—2)
2bmVam+r+s, n =2m;
=2pAcnUsmtrssra, n=2m+1.
Proof of Theorem 1. From 1 and 2 of Lemma 7, we have
AST ) = (S5 (V) + AST) (U) — (80 (V) — AST? (U)))/2,
= P-l [U4n+r+s+2 - Ur+s—2] -(n+1)q"V,_r
= an+lV2n+r+s - (n + 1) qus—r-
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S5y = ((S“"’ (V) + A8 (U) + (55 (v) = AST U)))/2,
[U4n+r+s+2 - Ur+s—2] + (n + 1) q "Voer
= an+1V2n+r+s + (n + 1) q 1/s—r
Thus, we get (1), (2), (3) and (4). m
Proof of Corollary 2. From the 11. and the 13. of Lemma 5, we get
Usnsrtst+2 = (UsntsVera + VingsUrt2) /2,
Ur+s-2 = (UsVr-Z + VsUr—Z)/2a
1/4'n.+1‘+.*.7-~}-2 = (V:ln+s Vr+2 + AU4n+sUr+2)/2:
‘/1'+3--2 = (V;M‘—Q + AUsUr—2)/2'
It suffices to substitute these relations in (1), (3), (9) and (11) for
(r+t,s —t) instead of (r,s).m
Proof of Corallary 3. Relations (2) and (4) give respectively
A (U) = ans1Voniaeie = (n+ 1) Vs
and g*""ASY) (U) = ans10° " Vansare — (n+1) ¢V,
SE (V) = anp1Vansaste + (0 + 1) g°V,
and ¢*"ASY ™ (V) = 6n41¢° "Vanyarse + (n + 1) g°V;, then
ASE U) = ST U)) =80 (V) - oS,
= an+1 (Vant2s+t — ¢° " Vansorst)
= an41AUs+Uzngrasss.
Thus, we get (21) and (22). m
Proof of Corallary 4. Let us prove the first one. For A = ~1,0,1, we
easily check that SS9 (U) = SIH (U) + AUsons1-sUritsznsion.
From the 7. of Lemma 5, and not1cmg that U_gy, = —AU,, we have
Us—rU2n+r+s+t = UsFr+2XU2n+r+s+t—2/\ - /\qs_rU2U2n+2r+t—2)\: and thus,
from (22), we obtain
SE Y WU) = app U, —+Usntrisst +¢*" S (U)
= ant1Us—rs22Uantrsstt-2r + Ag@~"E + g*~ 7S T-H) v,
with £ = UNUM+H —Un+rHUpm, where N =r+t+2n+1-), M 2n+2
and H=r—-A-1.
Using relation 7 of Lemma 5, we get E = gMUpzUn_p = Up—a=1Urpt—n-1,
which completes the proof of (33). The proof of (34) is similar. Relations
(35) and (36) follows from (10), noticing that using the 3 and 4 of Lemma
5, we have Vim+2s4t = AU2m+a+JU‘2m+a—J+t +q +‘7Vt -2j and Vymi2eq¢ =
V2m+s+JV2m+s—;)+t s JVt -25- B

3 Applications: extensions of Cerin and Cerin
& Gianella results

In [4, 6, 7] Cerin and Gianella consider P, := 2U~Y and Qn = V2D,
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3.1 0Odd and even terms of Fibonacci sequence

In [2), Z. Cerin improved some results of Rajesh and Leversha [15] by
proving several sums of odd and even terms of the Fibonacci sequence.
Relation (22) when (p, q) = (1, —1) gives for

1. (r,s,t) = (—24,2k — 1,0) relation s§%=) (F) + S{Zk-1.2k-1) (F) =
F2([;ji-1)F‘z(k+j)—1F2(k+n-j)—l, then, for n € {2j + 1,25} we get E) and F)
in [2].

2. (r,s,t) = (=1, 2k,0) and n = j, relation K) in [2].

3. (r,s,t) = (=2,2k — 1,1) relation S$%=%+1) (F) 4 =128 (p) =
Fotn1) Fa(k+5)-1F2(k4n—j), by replacing n successively by 0 with j = -1,
2j with j > 0 and 2j + 1 with j > 1, we get R) in [2].

3.2 Alternating Sums of Fibonacci Products

In [3], Z. Cerin considers alternating sums of odd and even terms of the
Fibonacci sequence and alternating sums of their products. The following
two relations, deduced from (28) and (10) generalize Cerin's equalities

¢ A b Vamiarst + @AWV, + AT (U) = bnUs_rUtmeprastts

Pe* " emUsmizrresz + ASH) (U) = —pemUser Vimtrsotes2:

Indeed, for (p,q) = (1,—1), by replacing (r,s,t) successively by (—2m —
1,2k,0), (-2m — 2,2k — 1,0), (-2m — 3,2k — 1,1) in the first relation,
respectively by (—2m - 3, 2k,0), (-2m — 2,2k - 1,0), (-2m —-1,2k - 1,1)
in the second relation, we get E'), L) and Q) respectively relations D), K)
and P) in [3].

3.3 Sums of squares and products of Pell numbers

In [4], Z. Cerin and G. M. Gianella establish several formulae for sums of
squares of even Pell numbers, sums of squares of odd Pell numbers and
sums of products of even and odd Pell numbers.

Relation (33) gives the five theorems in [4]. Indeed, it suffices to take
(p,q) = (2,—1) with (r, s, ¢, \) € {(0,2k,0,0), (1,2k + 1,0,1), (0, 2k + 1,0,0),
(1,2k +1,1,1), (0, 2k, 1,0), (1, 2k, 1,0), (0, 2k, 1, —1), (1, 2k, 1, —1)}.

3.4 Some alternating sums of Lucas numbers

In [5], Z. Cerin considers alternating sums of squares of odd and even terms
of the Lucas sequence and alternating sums of their products. Taking
j=2k—-s—1in (38) and j = 2s — 2k —t+1 in (40), we get the following
generalization of Cerin’s equalities

AbmUsks2m—1Uzm—2k+2s+t+1 n = 2m;
Alsis+t) (1) = myY2k+2m m s+t+1 )
potin V) —pAcmUzm—2k4+2s—t+3Vok4+2me2t-1, n=2m+ 1.
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where pom = —q(bmVi—aks2s+2+ 0" V2), pom41 = pg*t  AcmUsk—2s43t—14-
Indeed, for (p,q) = (1,-1) and (s,t) = {(2k,0);(2k — 1,0); (2k — 1,1)},
and noticing that ¢, — cm—1 = by, and ¢y, + ¢~ = a2m41, ONe obtains
relations D), F), K), L), P) and Q) in [5].

3.5 On sums of squares of Pell-Lucas numbers

In [6], Z. Cerin and G. M. Gianella prove several formulae for sums of
squares of even Pell-Lucas numbers, sums of squares of odd Pell-Lucas
numbers, and sums of even and odd Pell-Lucas numbers.
For A =0in (34), j = s — 2k in (39) and j = 2k + ¢ in (40), we get the
following extensions of Theorems 1 to 7 of Cerin and Gianella:
SE (V) = —A@ST™ (U) + ant1Ve_ Vantratts
AS;S’O’H) (V)
b (Vom—2k+25Vaksom+t — Vak—2s4¢) + ¢°Vi, n = 2m;
—PAcm (Uzk+om+t+2Vam—2k+26 + ¢*Uzs—t—ar—2), n=2m+1.
Indeed, for (p,q) = (2,-1), the first relation, with (s,t) = (2k,0) and
r=0,2,1,-1 gives respectively Theorem 1 and relations (2.3), (2.4) and
(2.5), with (s,t) = (2k + 1,0) and r € {2, 3} gives Theorems 2 and 3, and
with (s,t) = (2k,1) and r = 0 gives Theorem 4. The second relation,
with (s,t) € {(2k,0),(2k + 1,0),(2k,1)} and observing that Vzb,, — 2g =
AUZ, ., (from 3 of Lemma 5), gives respectively Theorems 5, 6 and 7.

3.6 On sums of Pell numbers

In (7], Z. Cerin and G. M. Gianella improve their paper {4]. They prove
twenty four formulae for sums of a finite number of consecutive terms of
various integer sequences related to Pell numbers. Twelve of these formulae
can be deduced from relations (17) and (19). Indeed for (p,q) = (2,-1),
these two relations become

SiHte=t(P) = &PrioQunys+ 15Qr+2Pinss — P —2Qs
_I_IG-QT—2P~' - _12"-H (n + 1)Qs—-r—2t:
AS;H-t’a-t) (P) = %%;EQr+2Q4n+s + S..Tlgﬁpr+2p4n+s + %Qr—2Qr
+1_12'Pr—2P3 - g-_lgl.:ean—r—Zt-
By replacing (r, s, ) successively by (0, 4k, 2k), (2, 4k, 2k — 1), (1, 2k, k1),
(1,4k,2k~1), (3, 4k, 2k ~ 2), we obtain relations (2.8), (2.9), (2.14), (2.15),
(2.16), (2.11), (2.12), (2.20), (2.21), (2.22) in [7). Forp=6,g = 1,7 = k,

s =k +1, j = 2k, using Binet’s formulae and noticing that P, = 4U,(,6’1)
and Qa, = Vi in relations (17) and (19), we get (2.17) and (2.23).
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