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Abstract

A digraph with maximum out-degree d and radius k has at most
1+d+-- -+ d* vertices, as the Moore bound states. Regular digraphs
attaining such a bound and whose diameter is at most k + 1 are
called radially Moore digraphs. Knor (4] proved that these extremal
digraphs do exist for any value of d > 1 and & > 1. In this paper, we
introduce a digraph operator, based on the line digraph, which allow
us to construct new radially Moore digraphs and recover the known
ones. Besides, we show that for k = 2 a radially Moore digraph with
as many central vertices as the degree do exist.

Keywords: Center, eccentricity, radius, diameter, line digraph, Moore di-
graph, radially Moore digraph.

1 Introduction

The modelization of interconnection networks by graphs motivated the
study of the optimization problem known as the degree/diameter problem
(see [5) for a survey of it). In the directed case, given the values of the
maximum out-degree d and the diameter k, there is a natural upper bound
na,i for the largest order of a digraph with these two parameters,

nag=1+d+- +d,

referred to as the Moore bound. Digraphs attaining such a bound are
called Moore digraphs. In particular, all vertices of a Moore digraph have
the same degree (d) and the same eccentricity (k). It is well known that
Moore digraphs do only exist in the trivial cases, d = 1 or k = 1, which
correspond to the directed cycle of order k+1 and the complete digraph of
order d + 1, respectively (see [6, 2]). This has lead to the study of digraphs
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‘close’ to the Moore ones. One way to do it is by allowing the existence of
vertices with eccentricity just one more than the value they should have.
In this context, regular digraphs of degree d, radius k, diameter at most
k + 1 and order equal to ng x are known as radially Moore digraphs. Knor
[4] proved that these extremal digraphs do exist for any value of d > 1
and k > 1. His construction, defined as a digraph on an alphabet, has
just one central vertex, if d > 1 and k > 1. In this paper, we introduce a
digraph operator, based on the line digraph, which allow us to obtain new
radially Moore digraphs and recover the known ones (see Sections 2 and 3).
Besides, we show that for k¥ = 2 a radially Moore digraph with d central
vertices do exist (see Section 4).

Terminology and notation

A digraph G = (V, E) consists of a finite nonempty set V' of objects called
vertices and a (multi)set E of ordered pairs of vertices called arcs (loops
and multiple arcs are allowed). The order of G is the cardinality of its set
of vertices V, denoted by |V|. If (u, v) is an arc, it is said that u is adjacent
to v and also that v is adjacent from u. We also represent an arc (u,v) as
uv. The (multi)set of vertices that are adjacent from [to] a given vertex
v is denoted by N*(v) [resp. N~(v)] and its cardinality is the out-degree
of v, d*(v) [resp. in-degree of v, d=(v)]. If d*(v) = d~(v) = d, for all
v € V, then G is said to be regular of degree d. A path of length h from a
vertex u to a vertex v (u — v path) is a sequence of h + 1 distinct vertices,
u = up,Y¥1,...,Un-1,%s = U, such that each pair u;_ju; is an arc of G.
The length of a shortest © — v path is the distance from u to v, denoted
by dist(u,v). The out-eccentricity of a vertex v, e*(v), is the maximum
distance from v to any vertex in G. Analogously, the in-eccentricity of v,
e~ (v), is the maximum distance from any vertex in G to v. A vertex u is
said to be an out-eccentric [resp. in-eccentric] vertex of v if d(v,u) = e*(v)
[resp. d(u,v) = e~ (v)]. The eccentricity of a vertex v, e(v), is the maximum
between its out-eccentricity and in-eccentricity. The radius of G, rad(G),
is the minimum value of all its vertex eccentricities. The center of G,
C(G), is the set of vertices of G with minimum eccentricity. The out-
center and in-center of G, C*(G) and C~(G), are defined in a similar
way. The diameter of G, diam(G), is the maximum value of all its vertex
(out-)eccentricities. Reader is referred to Chartrand and Lesniak (3] for
additional graph concepts.
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2 Central line digraph operator

We recall that in the line digraph L(G) of a digraph G, each vertex repre-
sents an arc of G and a vertex uv is adjacent to a vertex wz if and only
if v = w. Thus, when G is a regular digraph of degree d, so it is L(G),
and the order of L(G) is d times the order of G. Next lemma shows the
relationship between vertex eccentricities in G and L(G). It can be proved
using the arguments given by Aigner in {1, Theorem 5.

Lemma 1. Let G = (V, E) be a digraph and let L(G) be its line digraph.
Let uwv be an arc of G. Then,

et(v) <et(uw) <1l+et(v) and e (u)<e (ww) <1+e (u).
Moreover,

et (uwv) = et(v) if and only if u is the unique out-eccentric vertex of
v and d*(u) =1,

e~ (uv) = e~ (u) if and only if v is the unique in-eccentric vertez of u
and d=(v) =1.

Although the line digraph of a radially Moore digraph G of degree d and
radius k& have ‘good’ eccentricity properties, for becoming a radially Moore
digraph, the order of L(G) is n4x+1 — 1. So, we need to add conveniently
an extra vertex to L(G) in order to get a radially Moore digraph.

Let G be a regular digraph of degree d > 1, radius ¥ > 1 and or-
der ngi. Let A be a central vertex of G and let N*()\) = {vy,...,va}.
Then, dist(v;,A) = k, i = 1,...,k. As a consequence, for each vertex
v; € N*()) there is a unique and distinct vertex w; € N~()\) such that
dist(v;, w;) = k —1 (see Figure 1).

We define the A-central line digraph of G, denoted by L (G), as the line
digraph of G with an extra vertex A’ and where we replace each arc of the
form (w; A, Av;) by the arcs (w; A, A') and (N, v:A), 1 < i < d (Figure 2 shows
the differences between the line digraph and the A-central line digraph). In
particular, we can apply this new operator to a radially Moore digraph.
Next proposition gives some properties of Ly (G).

Proposition 1. Let G be a regular digraph of degree d > 2, radius k and
order ng . Let X be a central vertex of G. Then, Ly(G) is a regular digraph
of degree d, order ng 1 and radius k+ 1. Moreover, X is a central verter
of Lx(G).
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distance from A

Figure 1: Structure of a regular digraph of degree d, radius k and order
n4x pendant from a central vertex A.

Proof. From its own definition, L)(G) is a regular digraph of degree d
and order ngr4+1. As a consequence, the radius of Lx(G) is > k + 1.
Since N*(\) = L(G)(w,/\) for all w; € N—(A) (see Figure 2), and using
Lemma 1,

et(X) = max {eL(G) (wid)} =1+e*() =1+k.

(We remark that in the first equality we use that dist(\,w;A) = k+1).
Analogously, since N~ ()\') = NZ(G)(z\v,-) for all v; € N*()\),

e~ (N)= Joax {eL(G)(XU,)} =1l+e"(A\)=1+k.
Hence, rad(L,\(G)) = k + 1 and N is a central vertex of Ly(G). O

We cannot guarantee that the diameter of L)(G) is just one more
than the diameter of G, since some arcs of L(G) have been removed.
This happens, for instance, with the digraph G shown in Figure 3, where
rad(L»(G)) = 3 and diam(Lx(G)) = 5. So, the A-central line digraph of
a radially Moore digraph is not, in general, another radially Moore digraph.

Given a regular digraph G of degree d > 2, radius k and order ngx,
and given a central vertex A of G, Proposition 1 allow us recursively define
the n-iterated A-central line digraph of G, denoted by L%}(G), as follows
L}G) = Lywn-n(L}~Y(G)), n > 2, where Li(G) = LA(G) and A(n-1)
denotes the extra vertex added to L(L"'I(G)) Notice that L}(G) is a
regular digraph of degree d, radius k + n and order ngx4n, for n > 1.
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L(G) L.(G)

Figure 2: The line digraph L(G) and the A-central line digraph L,(G).
Dashed lines indicate removed arcs from L(G).

L)
wlk Wz}s

Figure 3: A radially Moore digraph G of degree 2 and radius 2, with
A € C(G), and its A-central line digraph L(G). Let us observe that
dist(vlwl, :B) = 5.

Under certain conditions on G, {L}(G)}n>1 become a family of radially
Moore digraphs, as the following theorem states.

Theorem 1. Let G be a radially Moore digraph with degree d > 2 and
radius k > 1. Let us assume that A is a central vertex of G for which all
the following conditions hold:

(a) For any vertez x in G, there exists at least one vertez v € Nt())
such that dist(v,z) = k.

(b) For any vertez z in G, there ezists at least one vertex w € N~(A)
such that dist(z,w) = k.

(c) diam(G ~ A) < k + 1, where G — A denotes the deletion of vertex A
of G
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Then, L}(G) is a radially Moore digraph of degree d and radius k + n, for
everyn > 1.

Proof. First, we prove that Ly (G) inherits property (a) from G. Let us con-
sider a vertex £ = x5 € Lx(G). By assumption (a), there exists at least a
vertex v € N*+(A) such that dist(v, z;) = k. Then, dist(M\v,z122) = k+1
and Av € N*()\). We can use the same argument to prove that Ly(G)
inherits property (b) from G. Next, we show that L(G) inherits property
(c). Let z1z2, y1y2 be two vertices of L(G) — X'. Notice that these two
vertices can also be considered in Ly(G). We distinguish three cases:

(1) z2 # A and y; # A. Since diam(G — M) < k + 1, there is a path from
vertex 2 to vertex y; in G of length at most k + 1. Since it does
not contain the vertex A, there exists a path from z;z; to yy2 in
L)(G) — X of length at most k + 2.

(2) z2 = A. Then, z; = w for a vertex w € N~ ()). Since e*(N) =k +1,
there exists a unique vertex v € N*(A) such that dist(\v,y1y2) < &
in Ly(G). This distance bound also holds in Ly(G) — ). So, if
wA is adjacent to Av in Lx(G) then dist(z1z2,71y2) < k+ 1 in
Lx(G) — N. Otherwise, wA is adjacent to Av' in Ly(G), for all
v' € N*(A),v' # v, by definition. Besides, at least one of these
vertices v' € N¥(A),v' # v, satisfies that dist(M', y192) = k+ 1 in
Lx(G) — XN, since Lx(G) inherits property (a) from G,
dist(A\v,y1y2) < k and dist(A',\) = k+ 1. As a consequence,
dist(z122,11y2) =k + 2 in Ly(G) — N.

(3) y1 = A. This case can be proved analogously to (2).

Hence, diam(L(G)—A’) < k+2 and, since e(\') = k+1, then the diameter
of Ly(G) is < k + 2. Therefore, Ly(G) becomes a radially Moore digraph
of degree d and radius k + 1. Moreover, since Ly(G) inherits properties
(a), (b) and (c) from G, then L}(G) is a radially Moore digraph of degree
d and radius k + n, for every n > 1. O

Corollary 1. Let A be a central verter of a regular digraph G of radius
k=1, degree d > 2 and order 1 +d. Let us assume that diam(G — \) < 2.
Then, L}(G) is a radially Moore digraph of degree d and radius k + n, for
everyn > 1.

Proof. Since e(A) = 1, any other vertex = of G is adjacent from and to
A. Hence, diam(G) < 2 and G is a radially Moore digraph. Moreover,
condition (a) [resp. (b)], given in Theorem 1, means that every vertex
z of G should be adjacent from [resp. to] a vertex v € N*()). Thus, if
diam(G-\) < 2 then (a) and (b) are satisfied. Hence, G fulfills assumptions
of Theorem 1 and result holds. ]



Clearly, Corollary 1 can be applied to the complete digraph Kg4,; of
order d + 1, which is in fact the unique digraph without loops nor multiple
arcs satisfying the assumptions of such corollary.

Example 1. Let A be any vertex of the complete digraph Kg41. Then,
L} (Kay1) is a radially Moore digraph of degree d and radius n + 1, for
everyn>1andd > 2.

Next example also satisfies conditions of Corollary 1 and, consequently,
it can be used to construct another family of radially Moore digraphs, which
contain loops.

Example 2. Let G be the digraph with vertex set V = {},0,1,---,d - 1}
end arc set

E = {(0,)]0<i<d-1}U{()|0<i<d—1}
U{(},4+j modd)|0<i<d-1and0<j<d-2}

Then, L}(G) is a radially Moore digraph of degree d and radius n + 1, for
everyn>1 andd > 3.

® >

Figure 4: The digraph given in Example 2 for the case of d = 3.

Next corollary gives a simpler but stronger sufficient condition, which
only involves the centrality of the neighborhood of the chosen central vertex
of the digraph.

Corollary 2. Let G be a radially Moore digraph with degree d > 2 and
radius k > 1. Let us assume that A is a central vertex of G for which all
the following conditions hold:

(a)’ N*(X) € C*(G),
()’ N~(3) € C~(G),
(¢) diam(G — A) < k+1.
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Then, L}(G) is a radially Moore digraph of degree d and radius k + n,
for everyn > 1.

Proof. First, we prove that if N*(A) C C*(G) then condition (a) of The-
orem 1 holds. Let z be a vertex of G. By assumption dist(v, z) < k for all
v € N*()). Moreover, since e*(\) = k then, there exists a unique vertex
v’ € N*(A) such that dist(v’',z) < k — 1. Hence, dist(v,z) = k for all
v € N*(A),v # v'. Analogously, it can be proved that N~ (\) C C—(G)
implies condition (b) of Theorem 1. Hence, G satisfies all conditions of
Theorem 1 and the result follows. o

Let us consider a vertex Av, where \v € N*+(X'). If condition (a)’ in
Corollary 2 holds, then e*(\) = 1+ et(v) = 1 + k. Hence,
N*(X) € C*(LA(G)) and, consequently, L)(G) inherits condition (a)’
(analogously, Ly (G) inherits condition (b)’). Furthermore, in the case of
degree d = 2 condition (a) [resp. (b)] is equivalent to condition (a)’ [resp.
(b)’]. So, taking as a basis a radially Moore digraphs G satisfying all
assumptions of Corollary 2, we get a family of radially Moore digraphs
{L}(G)}n>1 with at least d + 1 vertices in the out-center of L}(G) and
d+ 1 vertices in the in-center of L}(G). The complete digraph Ky, fulfill
these properties. The following digraph is another example for the case of
radius k = 2 and degree d = 3.

Example 3. Let G be the digraph shown in the picture

.4——.?’

o4

/l\

.
9

with the extra arcs: (8,5),(8,4),(8,6),(9,7),(9,11),(10,13),(10,2),
(10,12), (11,5), (11,6), (11,10), (12,2), (12,7), (12,9), (13,3), (13,8). It can
be checked that G is a radially Moore digraph such that C+(G) = {), 2, 3,4},
C=(G) = {)\,5,9,13} and diam(G — A) = 3. As a consequence, L}(G) is
radially Moore digraph of degree 3 and radius 2 4+ n, for everyn > 1.

It remains, as an open problem, to find general constructions of radially
Moore digraphs under assumptions of Corollary 2.

Question 1. Find new families of radially Moore digraphs with degree
d > 3 and radius k > 2 satisfying conditions given in Corollary 2.
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3 The family of radially Moore digraphs
{L3(Kg+1) }nx1

At present, the unique known family of radially Moore digraphs was given
by Knor in [4]. We denote these digraphs as knor(d, k]. They are defined
as follows: the set V of vertices consists of all strings of length at most % .
over an alphabet of d symbols, {1,2,...,d}; that is,

V={/\}U{e1e2...ek:|15k’5kand1_<_e,-$d, i=1,...,k'},

where the empty word is denoted by A.

For each string a = eje;...eiez...exr,e2 # €3, Knor defined
@ = ep...ep. Notice that @ = X if and only if a = e;...e;. If I(a)
denotes de length of a string a € V, the set E of arcs is defined by,

E = {(a,ae) |l(a) <k—1and1<e<d}
U{(a,e) | l{a) =k, a£Mrand 1 <e < d}
U{(a,e) |l(a) =k, a= ), ie.a=¢€;...e;, and 1 <e<d,e#e}
U{(a,A) | l(a) = k and @ = A}.

It is known that knor(d, k] is regular of degree d, radius k, diameter
k+1 and order ng i (see [4]). Next proposition states the relation between
Knor digraphs and the A-central line digraph operator.

Proposition 2. The digraph knor|d, k] is isomorphic to Ly (knor[d, k—1]),
for everyd > 2 and k > 2.

Proof. Let us denote by V' the set of vertices of knor[d, k] and by VL the
set of vertices of Ly (knor[d, k — 1]). Then,

U{(a,ae) |1 <l(a) <k—-2and 1<e<d}
#dand 1<e<d}

A le.a=e;...e;, and 1 < e <d,es#e;}
a=\}.

{/\'}U{(/\e)|1< <d}
U{(a,ae) | l(a) -1, @
U{(a,e) | l(a) = 1 a=
U{(a,A) | /(a) = k—1 and

Notice that each word a’ € V, with l(a’) > 2, can be written as a’ = ae,
where l(a) = l(a’) — 1 and 1 < e < d. We prove that the bijection
¥:. V — V., defined as follows,
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T(A) =N,
U(e) =(Ae), wherel <e<d,

(a,ae), where 1 <l(a) <k—2and 1<e<d,

(a,@e), where l(a) = k-1,8# A and 1 <e < d,

(a,e), wherel(a)=k-l,a=¢€;...;and1<e<d,e#e,
(a,)), wherel(a)=k—1l,a=e...eand1<e<d,

U(ae) =

is an isomorphism between knor|{d, k] and Ly (knor[d, k — 1]).

Let a’ € V. Clearly, the application ¥ preserve the adjacency relation-
ship if {(a’) £ 1. Let us suppose that 2 < l(a¢’) < k—1. Thena’ =qe is
adjacent to aee’, 1 < e’ < d. Besides, ¥(ae) = (a,ae) and ¥Y(aee’) may
take several values, depending on the length of ae:

If l(ae) < k — 2 then ¥(aee') = (ae, aee’).
Otherwise {(ae) =k — 1 and
(ae,@ee’), if ae# A,
U(aee’) =

(ae, €’), if a=e...eande#¢,
(ae, A), if a=e...ecande=¢'.

Thus, in any case, ¥(aee’) is adjacent from ¥(ae) by definition of
Ly (knor[d, k — 1]).

Let us suppose that I(a’) = k. Then,

gee’, if @ae#landl<e <d,
a' = ae is adjacent to ¢ ¢/, if a=e...eand e #e,
A if a=e...eande’ =e,

If @ # A then ¥(ae) = (a,@e) and, since @€ # A, ae is adjacent to
a@ee’. Besides,

[ @@, i 1<i@e)<k-2,
‘I’(“ee)‘{(aeﬁe'), i 1@e) =k 1.

Let us observe that @e = @g, if @ # A. Hence, ¥(ae) is adjacent to
U (aee’).

Ifae =e;...e1e,e1 # e, then ae is adjacent to Gée’ = ee’,1 < e’ < d.
On the other hand, ¥(ae) = (a,e), which is adjacent to the vertex
U(ee') = (e, ee’).



If ae = e...e then ae is adjacent to A and e',e’ # e. Besides,
U(ae) = (a,N), ¥(A) = X and ¥(e’) = (), ¢/). Hence, T(ae) is
adjacent to ¥()) and ¥(e’) by definition of Ly (knor[d, k — 1]).

O

For the case k = 1, knor[d, 1] is the complete digraph K4+1. Applying
Proposition 2, we get the following result:

Corollary 3. The digraph knor[d, k| is isomorphic to LY~ (Ka41), for
everyd>2 and k > 2.

The previous characterization, together with Corollary 1, provide us an
alternative proof that Knor digraphs, knor(d, k], are a family of radially
Moore digraphs of degree d and radius k.

4 Central vertices in radially Moore digraphs

Since Moore digraphs do not exist for degree d > 2 and radius k& > 2,
one can ask how ‘close’ are radially Moore digraphs from a theoretical
Moore digraph, where each vertex would have eccentricity k. An attempt
to answer this question is to look at the center of a radially Moore digraph:
when the more central vertices it has, the more similar it would be to a
theoretical Moore digraph. Knor [4] proved that, for the case of degree 2,
the number of central vertices is bounded from above by one half of the
order of the digraph.

The family of radially Moore digraphs {L}(K4+1)}n>1 have just one
central vertex (see [4]). Besides, it is not complicated to find radially Moore
digraphs of degree 2 and radius 2 containing two central vertices, as Knor
. pointed out in [4]. In fact, an exhaustive search made by computer, shows
that there are exactly 18 radially Moore digraphs of degree 2 and radius 2.
Three of them with two central vertices and the rest with a single central
vertex.

Next result shows that a radially Moore digraph of radius 2 with as
many central vertices as the degree can be constructed.

Proposition 3. For any positive integer d > 2, there exists a radially
Moore digraph G of degree d and radius k = 2 containing d central vertices.

Proof. We construct such a digraph G = (V, E) and show that G is a radi-
ally Moore digraph of radius 2 and degree d, containing exactly d central
vertices (see Fig. 5 for a representation of G for the case of degree 2).
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Let V={0}U{i|1<i<d}U{ij|1<i<d, 1<j<d}and

E = {(0,7)|1<i<d}u{(i,ij)|1<i<d, 1<j<d}
U{(#,0)|1<¢<d}U{(i4,55) | 1<i<d, 1 <5 <d, i#j}
U{(i5,4) | 1 <i<d, 1 <j <d, i #j}
U{(é5,5k) | 1€i<d, 1<j<d, 1<k <d, i#j, j#k}

Clearly the order of G is ng2 = 1 + d + d? and from its own definition
G is regular of degree d. The set of out-neighbors of a vertex i € V is
N*(i) = {i1,42,...,id}, 1 < i < d. Since any vertex v € N*t(i), v # i,
is adjacent from a vertex ij € N*(i) for suitable j, we have et (i) = 2.
Moreover, since N=(1) = {0} U {ji | 1 < j £ d, j # i} and any vertex
v € N=(i), v # 1, is adjacent to a vertex ji € N~(i), we have e~ (i) = 2.
Thus, e(i) = 2. As every vertex v of G, v # 0, is adjacent to a vertex with
eccentricity 2 and from (possibly another) vertex with eccentricity 2, we
have e(v) < 3. As a consequence, e(0) < 3 as well. So, diam(G) < 3. In
fact e*(ij) = e~ (i) = e~ (0) = 3 and e*(0) = 2. Hence, G is a radially
Moore digraph of radius 2 with C(G) = {1,...,d}. O

/\
\5(/

Figure 5: A radially Moore digraph G of degree 2 and radius 2. Notice
that C(G) = {1,2}.

It seems difficult to obtain families of radially Moore digraphs with
radius k£ > 2 and with more than one central vertex.

Question 2. Is it possible to construct a radially Moore digraph G with
degree d > 2, radius k > 2 and with |C(G)| > 27
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