ON A MULTIVARIABLE EXTENSION OF THE HERMITE
AND RELATED POLYNOMIALS

ABDULLAH ALTIN, RABIA AKTAS* AND BAYRAM CEKIM

ABSTRACT. In this paper, some limit relations between multivariable
Hermite polynomials (MHP) and some other multivariable polyno-
mials are given, a class of multivariable polynomials is defined via
generating function, which include (MHP) and multivariable Gegen-
bauer polynomials (MGP) and with the help of this generating func-
tion various recurrence relations are obtained to this class. Integral
representations of MHP and MGP are also given. Furthermore, gene-
ral families of multilinear and multilateral generating functions are
obtained and their applications are presented.

1. INTRODUCTION

The classical Hermite polynomials Hy, (z) of degree n are defined by the
Rodrigues formula

H,(z) = (-1)" &= DI (e-=’) , (D,_. = Ed;) (1.1)

or, equivalently, by
H, (z) = (22)" 2Fo (-3, -3+ 3:—5—77) (1.2)

where 2Fg denotes the familiar hypergeometric function which corresponds
to the special case r —2 = s = 0 of the generalized hypergeometric function
+Fs with 7 numerator and s denominator parameters.

It is well-known that these polynomials are orthogonal over the interval
(—00, 00) with respect to the weight function w (z) = e~*". In fact, we have
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the following relation

[ ]

f %" H, (2) Hpm (z) dz = 2°nIy/76m

(m,n € Ng:=Nu{0})

where d,, » denotes the Kronecker delta.
The Hermite polynomials are limiting cases of the Jacobi polynomials,
and we have the relationship [9)

Hy(z) =n! uli’nolo{"-q 20)a p(=4w—4) (x/\/;)} . (1.3)

u+i" n

As a result of this, the following relation between Gegenbauer polynomials
and Hermite polynomials holds:

Hp (z) =l lim {u-"/2c;; (z/m}. (1.4)

A systematic investigation of a multivariable extension of the Hermite
polynomials H, (z) is defined by

Hy (x) = Hp,,.. n, (21, ..., %) = Hy, (1) ...Hp, (z,) (1.5)

where x = (z1,...,%,) and |[n| = n; + ... + n,; ny,...,n, € Ny (see [5]).
The multivariable Hermite polynomials Hy (x) (MHP) are orthogonal with
respect to the weight function

wW(Z1, .y Zr) = w1 (21) ..wr (2r) = e—(sl+. +2?)
over the domain
Q={(z1,....,8r): —0<Z;<00;i=12,..,7}.
In fact, we have

/ W (@15 ey @) Ha (%) Hen () dx (1.6)
Q

o oo
/Hn] (xl) me (zl)e—x§dx1 X oo X /Hn, (zr) Hm,- (zr) e—z?.dxr
—00 e

T
= 72 []2%nim;n,
i=1

(mi,ni € Ng:=NU{0} ; i=1,2,..,7)

where dx = dz;...dz,.
We organize the paper as follows:
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In section 2, some limit relations between MHP and other special func-
tions such as multivariable extended Jacobi polynomials (MEJP) and multi-
variable Lagrange polynomials (MLP) are given. In section 3, some genera-
ting functions are obtained for MHP and multivariable Gegenbauer poly-
nomials (MGP). Furthermore, general class of polynomials is defined via
generating function and with the help of this generating function several
recurrence formulas for MHP and MGP are given. In section 4, some in-
tegral representations are obtained for MHP and MGP and in section 5,
multilinear and multilateral generating functions are derived for MHP and
MGP. In section 6, some applications of the results obtained in section 5
are presented.

2. SOME LIMIT RELATIONS FOR MULTIVARIABLE HERMITE
POLYNOMIALS

We first deal with the classical Hermite polynomials in order to get
various limit relations involving other well-known polynomials. Fujiwara [6)
studied the polynomial F{~A) (z; @, b, ¢) called extended Jacobi polynomial
(EJP) and defined by the Rodrigues formula

F{*P) (z:0,b,c) = (—n_c')" (z—a)™*(b- :z:)_'3 (2.1)

x DI {(:z: —a)™* (b x)"‘fﬂ} , (c>0).
The following relation between the polynomials EJPs and Jacobi polyno-
mials holds [11]:
F{P) (z;a,b,¢) = {c(a— b)}"* PP (-2-%)- + 1) . (2.2)

It is well-known that the following equality between Jacobi and classical
Lagrange polynomials g™ (z,y) (see [4]):

comngem [T+ _
Pimermmh) ('x—-—:) =@-2)""g (z,y) (2.3)

holds. We now recall the Chan-Chyan-Srivastava (CCS) polynomials
gi,a"""a") (z1,...,2r) (see [4]), which is a multivariable extension of the
classical Lagrange polynomials, generated by

[{0-27) =2 e @), (24
Jj=1

n=0

where |t| < min { AR |x,r‘}. In [1], Altin et.al show that the fol-
lowing relation between Jacobi polynomials and CCS polynomials
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holds:

g'(‘m,...,ar) (zl, veey .’Er)
r—2

- X O e ey @e-em

n+..+neo1=n i=1

(—ar—Npet,—Cpmg~=nroy) [ TT + Tr-1
XPp % (—zr ey (2.5)

As a result of these properties, we can give the next results.

Theorem 2.1. For the classical Hermite polynomials H,, (z), we have
(i) Ho(z) = nl{c(a = b)}"

i { A D) (o sigB e g},

(ii) Hn(z) = n! (~22)™" lim { i ;vn g(-v-n+%,—v—n+§) (m zx;a:;uﬁu)}’

(iii) uli{xc}o {gn (xla 5y Tp—2, _;.Wl‘,'_s Ty

x V_ﬁ‘{_’ (2”)11,-_1
v+i
Rr=1

r—2
= Z {H(_a’)( 1)"*:v“‘}( -2z, )=t —H';;:ET').

m+..+n._1=n \ i=1

Proof. (i) From (1.3) and (2.2), we have

Hi(e) = ol in {20 Rl D) o)
. v @) p(v=3v-3 a(z— —vyv).
= Jim { 2GRl (o s deogBian )|

xn!{c(a-b)} "

(ii) It is enough to use (1.3) and (2.3).
(iii) It follows from (1.3) and (2.5) immediately. a

Now, we recall the multivariable extended Jacobi polynomials defined
by (1]
Fé&],-..,&r?ﬁln.nﬂr) (x) — Frg?hﬁl) (ml; al) bl’ cl) "_F'ggrrﬁp) (xr; ar’ b"’ cr)
where x = (z1, ..., %) and |n| =ny + ... + 1y N, ..., € Np.

Therefore, using the polynomials F{***r#1r) (x) and H, (x), we
get the next theorem. :
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Theorem 2.2. The multivariable Hermite polynomials Hy (X) satisfy the
following relation:

A ) = ([Tt (s =00y

» lim {F'Em—%,...,u,.—s};vl—*....,u,.—%) (a+a(,;_ucu2_bg,;_:yﬂ)

(V1yerey¥p)—00

’ (211. Y
1.-—'1 tv.+-}j }
where

X— b(x—
a+= 227% —_'2"7¥u "
- - r{Tr— v br(zr—
- (01 + al(-;l l}éun) _ bx(ﬂ;x ulm serey Oy 222 ”rv _ (=; v%_'_:)).
Proof. By (1.5) and Theorem 2.1 (i), we can write that

Ha (X) = Hy, (z1) ...Hn, (2r)
= I {esles - b)) ™

 lim_ {Frsfe—i,us—i) (a‘. 4 By _ "_"%‘_/@;ai,bhq)
u._%i(ZV;)...
X i"”‘%;n;
= (Hl ni! {ei(a; - bi)}_m)
ez

X lim)_’oo {Fél'l""&,...,up—%;vt—f,...,u,.—%) (a+ a[:;— VD" _b[’;—vE )

(V1yeesty

x l-rI U—:‘!‘ (2!15),,.
i=1 [V‘-*-%j ng '

3. GENERATING FUNCTIONS AND RECURRENCE RELATIONS

The multivariable Gegenbauer polynomials C{!"*") (x) of degree |n|
are defined as follows (see [5])

O (x) = O (o1, 27) = O (@) Gl (). (31)

nlv iy
In this section, we obtain some generating functions and recurrence re-

lations for MHP H,, (x) and MGP i) (x) . Firstly, recall that the
classical Hermite polynomials are generated by (see [9])
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Z Hy, (z) = = exp (2at — t?) (3.2)

n=0
and
Z Hogn (a:) — =exp (2zt —t %) Hp (z — t) (3.3)
n=0

for m € Np.
Furthermore, for the classical Gegenbauer polynomials, we have (see

[20])
S Ci(a)tt = (1- 2zt +¢%)7" (3.4)

n=0

and

>

n=0

E:;:C,‘: (x)t"=F [/\,V, Vi u; (:z:+ z2 — 1) t, (:1: -Vaz? - 1) t]
(3.5)

where A,u € R and Fj is the first kind of Appell's double hypergeometric
functions

F1 [a,ﬁ, ﬁ';'y; z,y] — i (a)r+z’:i):s(ﬂ )s %%’,

r,8==0

max {|z|, |[y|} < 1.

Using the above expressions we can give the following results.

Theorem 3.1. For the polynomials MHP H (zy,...,,), we have

tnl tn
(i) Z Hy (21,00 2,) 2=
Ny,..,np=0 ™ n ‘
= Hexp (2zit; — £2), (3.6)

i=1

[~ ]
(’il) Z Y'n+m1 +...4+my (xly eery xr) "

n=0

= {ﬁexp (Za:;t - tz)} Hy, (x-1) (8.7

i=1
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where

Hp (x_t)

and also

En (nl, aeny n,._l) =

Yn+ml+...+mr (171, ey xr)
A neny N—N—..—Nn_p

= Z Z e Z En (nla'--,nr—l)

n1=0 nz=0 Nepo1=0

XHn+m1—(n;+...+nr_l),m+m2,...,n,._1+m.. (121, v Tr),
= Hpm,m, (T1 -4,z — 1)

1
(n—(m1+ ..+ n0-1))nln !

Theorem 3.2. The polynomials MGP Clyremve) (x) hold as follows:
o
(Z) z Cx(lm,-..,ur)(xl,”.'xr) t?l...t:"

Ny ip=0

(i) 3wl

n=0
r
= H 2
i=1

where

,
=J](1-2zt: +¢2)7, (3.8)

i=1

M) (L4, oy Tp) £

[/\i, Vi, Vi; b5 (m,- + \/:z—:,";——l) t, (m,- - \/g—_l) t] (3.9)

n n—-n; nN—Nn]—...=Np_2

wreve) () zp) = Z Z Z On (N1 ey Trm1)

and also

On (nla ] nr—l) =

ny =0 ny=0 Ne_1=0

(Vl,...,ll,-)
XCR-(“I“"""*'“r-)),nx,...,n,._l (21, veey z,.)

(Al)n—(n1+...+n,._l) (Az)nl e (Ar)n,-_l
(/’Ll)n—(n1+...+n,._1) (”2)111 (/“r)n,._;

In order to obtain some recurrence relations we need the following lemma.

Lemma 3.3. Let a generating function for fo, . o (z1,...,2.) be

o0
U(2z1ty — 83,0, 2Tt —12) = D foyine (B2 T80T (3.10)

ny ,...,n,.=0
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where fn,, .. n.(21,..., ;) 15 @ polynomial of degree n; with respect to z;( of
total degree n = n; + ... + n,), provided that

Y(ug,ontr) = U(u1)We(uy) 5 w =2z —t2 ; i=1,2,..,r
=]
\Ili(u,-) = nyniu?‘ ) ‘)’071-'0
Tl;=0

Then we have

7]
m.-a—xifn.,...,n,.(zl, oy Tr)
7]
= %fm w-,ni-l,m—l,ne+1.-...n.-(xl» ooy xr) + nifn,,...,n, (xl, seny 1:,-), n; > 1.
£
(3.11)
Proof. Differentiating (3.10) with respect to z; and ¢; and making necessary
arrangements, we obtain the desired relation. O

As a result of Lemma 3.3, considering (3.6), we can write that

Hn (:El e $r)
Foseome (B1seen@p) = RS
1
Tni = "I? yi=12,.,r

With the help of the Lemma 3.3 and also considering (3.11), one can easily
obtain the next result.
Theorem 3.4. For the polynomials Hy (21, ..., %), we have
ad a
xi—a?ith"”nr (xla eeey xr) - ni%Hnl,...,ng_l,n;—l,nql R (:L'l, seey zr)
= niHp,.a. (2150 %) , 721

As a consequence of Lemma 3.3, considering (3.8), we have

fn;,...,n.. (xlw--a 1‘,-) = Cx(guhm,ur)(xlv--awr))
Vi
n = % ,1=1,2,..., 7

i!
With the help of the Lemma 3.3 and also considering (3.11), we can easily
find the next result.

Theorem 3.5. The polynomials ,(,""“""") (z1,.--, zr) satisfy the following
recurrence relation:

0 (v 7}
1ya¥r) (V1 y00¥r)
Ti Oz, Cnl,:--,ﬂr (xli S "BT) - Oz Cm--’...;u-l,m—l,ni“ eenflr (xl’ e x")
i i

= n,—C,(,‘::j_'."';,’:')(xl, ...,x,) , 2> L.
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As a result of Theorem 3.5, for v; = 1/2 , (i = 1,2,...,7), the multivari-
able Legendre polynomials Py, .. n,.(2Z1,...,Z,) defined by

Pn(zla seey 2:,-) = Pm,...,n,-(xla ooy :L‘,-) = Pnl (xl) ---Pn,- (zr)
hold:

Corollary 3.6. For the multivariable Legendre polynomials Py (xy, ..., zr),
we have

0 0

xig;Pm,...,nr (31, ooy zr) - 'a_:E.'Pn|,...,n;_1,ng—l,n;.*.l,...,nr (mla eey IC,-)
4 i
= niPn‘,...,n,-(xly'", mr) , ng > 1.

where
Po(x) = Pp,,...n.(T1, .00y Zr) = Py, (z1) ... Pn,. (z) .
Similar to Lemma 3.3, we also get the following result.

Lemma 3.7. Let a generating function for f,,, . o (z1,...,z.) be

00
2. 32 .
e fimt <I>(a:1t1, veay zrtr) = E fnl,...,nr(xla ey 5"'r')t;7'l "'t:, (312)

nl,...,n,=0

where fn, .. a.(Z1,...,Z.) is @ polynomial of degree n; with respect to z;( of
total degree n =n, + ... + n, ), provided that

‘I>1(u1)...<1>,.(u,) s =ity 1=1,2,..,7

<I>(u1, ...,'u.,.)

o0
q’i(ui) = Z‘pniu?‘ ’ (p()?éo'

n;=0

Then we have

nifn;,...,n,.(xl 3 ooy xr) + 2fm,...,n.~..1,m—2,n.~+1,...,n, (xly wery 331-)

o
= xi'a';fnl....,n,.(zl:"-axr) , Ny 2 2. (3.13)

As a result of Lemma 3.7, if we choice

f ( ) — Hnl,...,n,(ml,...,xr)
Ty iy L1y .00y Ty = nl!".nr!
AT
Yns = T i=1,2,..,7

and also consider (3.13), one can easily obtain the next result.

Theorem 3.8. For the polynomials MHP H,,,  » (z1,...,%;), we have the
following recurrence relation:

0

xi_Hnl,...,n,- (xla ey 5171') - niHm,...,n,. (wla ey xr)
8:::,-

= 2ni(ni - l)Hnl,...,n.-_l,n;—Z,n;.,,l,...,n,(xl,---yzr) , i 2 1.
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By Theorem 3.4 and Theorem 3.8, we can give as follows.
Corollary 3.9. The polynomials MHP Hp, . n.(21,...,Z,) hold:

0

a_zi'Hnl,...,n.- (xl) seey xr) = 2niHu1,...,n;..;,m—l,m.,.;,...,n.. (3:1, seey x?‘)

and
2xiHn1....,n.~_1,n.~—1,n.~+1,...,n, (x].’ veey m‘r)

d

= Hnly-‘-snr (xl’ ,xr) + Hn’l: ,n._l,n,—l LT FYRERY (25 (x]’ ,IE-,-).

4. INTEGRAL REPRESENTATIONS

In this section, we give various integral representations for families of
polynomials generated by (3.6) and (3.8). It is well-known that the classical
Hermite polynomials have the following integral representation [9) :

Ha (z) = 2" exp (27) / oxp (—2) t"H1P, (o/t)dt (41)

where P, (z) is Legendre polynomials of degree n.
Now, we get the following result.

Theorem 4.1. For the polynomials Hy(z1, ..., Z,), we have

Ha(z1,.02,) = / / / exp (13 — ... — 2) g1 g7+ R, (x/t) d

z) 2 Tr
x2mt- et exp (23 + ... + 22)

where

Pa(x/t) = Py, .0 (Z1/t1,. 20 [tr) = Po, (21/t1) ... Pn, (2 /L),
dt = dt;...dt,.

Proof. 1t is straightforward from (1.5) and (4.1). (]

Theorem 4.2. The polynomials MGP C,‘:’“"""')(ml, ey Zy) have the fol-
lowing integral representation:

(V1y00050s) — vy — 1 v,.—l —(g+ A+£,)
G Em ) = ey r(vr)/ / / ‘i ‘
xS(nl,...,nr)dé
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where

[_fl] n;—2m;(__1\™m; 3 nj—2m; ) m;
Stray ) = [ 3 D™ (ast) ~ 7 (Ey)
Jj=1m;=0

and d§ =d§,...d§, and Re(v;) >0 (i=1,..,7).
Proof. If we use the identity for Re(v) > 0

(nj bl 2mJ)!mJ!

- _ 1 T —atyv—1
a~V = F(V)o/e =14t (4.2)

in the right hand side of the generating function (3.8), we have

[« -]
Z C'(lul""'”")(xl,"‘?xr) t?l."t:}r

714000 =0
r

= I -2zt +e2)™
i=1

1 r 2
- (El t.. +$ ) vi— 1 Vv'—l thz,-ij -t.ej
- o f € é e e 7 d
T(v1)..I'(vr) 0/0/ H £

0 j=1
o0

/ { _(€1+.-.+£,.)€llq—l".£:,.—1
0

r oo ] 2ms=2ms (~1)™s (z;€;)" "™ (€)™ t77 > de
(n; — 2m,)im;! !

j=1n;=0m;=0

where d¢ =d§,...d¢,.. By identification of ti'...t}, we obtain the desired.
0O

As a result of Theorem 4.2, if we get v; =1/2 , (i =1,2,...,7), we give
the next integral representation for the multivariable Legendre polynomials
Py (T1y ey Tr)

Corollary 4.3. For the multivariable Legendre polynomials, we get

Pm,...,nr(xh'-'vxr = 1r7‘/2// /5—1/2 5:1/26—(€|+---+€r)

xS(n;, vy n,)d{l...dﬁf
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where

r (] n=2m; (_1ym;(g.£.)" 2" ()™
S(nl,...,n,,)=H22 M3 (—1)™5 (x,€;) (&;) .

j=1m;=0

(n_,- - 2777,_,)'171.]'

5. MULTILINEAR AND MULTILATERAL GENERATING FUNCTIONS

In recent years by making use of the familiar group-theoretic (Lie al-
gebraic) method a certain mixed trilateral finite-series relationships have
been proved for orthogonal polynomials (see, for instance, [10]). In this sec-
tion, we derive several families of multilinear and multilateral generating
functions for the MHP and MGP without using Lie algebraic techniques
but, with the help of the similar method as considered in [3},[7),(8].

We begin by stating the following theorem.

Theorem 5.1. Corresponding to an identically non-vanishing function
Qu(y1,..,ys ) of 8 complez variables y1,...,ys (8 € N) and of complex order
u, let

oo
Al‘u‘(b(yla ey Ys3 z) = Z aka+1/Jk(y1, ey Ys )zk (51)
k=0
(a'k #0, uy eC)
and
(n/p]
en,p,p,w (181, T YLy e Y T) 1 = Z ag Yn—pk+m1+...+mr (Z1y ey Tr)
k=0
Xk (Y1, oo Ys)TF (5.2)

where n,p € N. Then we have

oo
z 9“4’.#.1/3 (551, s Try Y1y o0y YUsy g_,) "

n=0
= {Hexp (2zit - tz)} Hp (x=t) Apw(y1, .0y Yss M) (5.3)
i=1

provided that each member of (5.3) exists.

Proof. For convenience, let S denote the first member of the assertion (5.3).
Then, upon substituting for the polynomials

en,p.p,¢ (mlv cey Try Y1y 0 Yss ‘tip)
from the definition (5.2) into the left-hand side of (5.3), we obtain

oo [n/p]

S= Z Z @k Ynopktmi+..tm,. (T15 000 Tr) Lugpr(y1, -y Ys )t PR,
n=0 k=0
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Replacing n by n + pk and then using (3.6), we may write

oo o0
S = Z Zak Yotmitotme (1100 Tr) Qg (Y15 ooy Yo )"
n=0 k=0
[= <] o0
= Z Yotmi+...4m. (1?1, ---,xr) " Z aka-w:k(yl, ---,ya)nk
n=0 k=0
r
= {H exp (2$,t - tz) } Hm (x_t) Aﬂy'h"(yla ooy Yss 7’)
i=1
which completes the proof. a

In a similar manner, by appealing to the formulas (3.5) and (3.7), we
are led fairly easily to the following theorems, respectively.

Theorem 5.2. Corresponding to an identically non-vanishing function
Qu(y1,...,¥s) of complez variables y1,...,ys (s € N) and of complez order
u, let

(=<}
Apo(¥1, e Y85 2) 1= Y 0k Qupuk (Y1, oy Us )2
k=0

where a, #0, p,v € C. Then, we have

oo (n1/p)

Z Z E aka—;I’::)';:;z!f;z(’;)t IO s

n1=0nz,...,nr=0 k=0

XQp.+vk (yls o Ys )nktnl—pk
= Ap,u(yly wey Ysy 71) ]:[exP (2miti - t?) (5'4)
i=1

provided that each member of (5.4) exists.
Theorem 5.3. Corresponding to an identically non-vanishing function

Q.(v1,...,ys) of complex variables yi,...,ys (8 € N) and of compler order
u, let .

A#.v(yl’ o Ys3 2) 1= Zak9#+uk(yls e Ys )zk
k=0
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where ax # 0, u,v € C. Then, we have

oo [n1/p)

20X aCi o

n]1,n2,...,n,.=0 k=0

xnp-}-vk(yl, ey Ys )77

= Apo, i) [ (1 - 20t +£8) 7 (5.5)

i=1

~pk
kt';l P

provided that each member (5.5) of exists.

6. FURTHER CONSEQUENCES

We can give many applications of our theorems obtained in the previous
sections with help of appropriate choices of the multivariable functions

Qu-l-tbk(yl, o3y Ys ) (k € NO » 8€ N)

in terms of simpler function of one and more variables. For example, if we
set
s=r and Q,‘.,..;,k(y;, ...,y,.) = hfz;;pkn') (yl, ...,y,)
in Theorem 5.1, where the multivariable Lagrange-Hermite polynomials
(see [2])
B (g, . )

are generated by

ﬁ {(1 —z;t?)” } z h{gremer) (x) ¢n (6.1)

J=1 n=0

where [¢| < min {}z;|7}, |:z:2|-1/2 -z |'1/'} Then, we obtain the fol-

lowing result which provides a class of bilateral generating functions for
the multivariable Lagrange-Hermite polynomials and multivariable Her-
mite polynomials(MHP).

o0
Corollary 6.1. If A, (41, Ur; 2) 1= kzo akh,(f_';;bk"")(yl,...,y,)z" (ar #
0, ¥,u€C) and

(n/p]

Gn,p,p,w (zl, ey Ty Y1y o Y T) L= Z Q. Yn—pk+m1+...+m, (xlv seey x‘f‘)
k=0

x hf“!;&;;'v')(yl ) ees y,)‘rk
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where n,p € N, then we have

[= <]
Z e"yl’,#ﬂﬁ (xl’ c*ey xr; yl’ ceey y?‘; g) tn (6'2)

n=0
= {H exp (2z:t — t%) } Hun (x—2) A,y (y1y s Uri M)
i=1

provided that each member of (6.2) exists.

Remark 6.1. Using the generating function (6.1) for the multivariable
Lagrange- Hermite polynomials and taeking a =1, u =0, ¥ = 1, we have

oo [n/p] (
Z z Yo—pktmi+..4m, (=1, -y 1) h;:‘"""y’)(yn, --'ayr)nktn_pk
n=0 k=0

= {ljexp (2zit — t?) {(1 —win') " } } Hp (x—¢)

where
(inl < min {lgal ™ loal ™, bl 7}

A.lSO, ChOOSing s=r and Q#-Hllk(yla "')yr) = Y#+wk(ylt -")yr) ) #,10 €
Np, in Theorem 5.1 we obtain the following class of bilinear generating
functions for MHP.

oo

Corollary 6.2. If Ay y(y1y..yr; 2) = kZ arYyrpk (Y1, - Yr)2*  where
=0

ar#0,4,9€C;and

[n/2]

en,p,p,w (xls e TrsY1s e Yrs T) = Z ag Yn—pk+m1+...+mr (xls reny 2:‘l')
k=0

XYy (Y1, oer Yr) T
where n,p € N, then we have

[= <]
Z en,p,p,v: (zls e Trs Y1y ey Yrs tEP) "

n=0
.
= {H exp (2$it - tz)} Hm (X—t) Al-‘y¢ (yl» ey Yry 7’) (6‘3)
i=1
provided that each member of (6.3) exists.

In particular, if we set

s=rand Quyuk(y1,.,yr) = Uf:,f{j};'v') (¥15 - 9r)
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in Theorem 5.2, where the polynomials ulprvr) (z1, ..., ) are generated

by (3.9), then we obtain the following result which provides a class of
bilateral generating functions for the multivariable Gegenbauer polynomials
(MGP) and MHP.

o0
Corollary 6.3. If Ay, (Y1, .y Yrj 2) 1= kzo aku;("f;t’,‘,‘c""') W1y o0 ¥r) 25,
(ax # 0,1, v € Ng) . Then we have

z i lmzlpl aka-Pk N2, (x) tn2 tn,.
(n1 = pk)nal..n,!

n1=0n2,..,n,=0 k=0

xut e ™ @1, e yr) e TP
r
= Auo@1, . ¥ri) [ exp (22t — £7) (6.4)

i=1
provided that each member of (6.4) exists.
Remark 6.2. Using (3.9) and ar, =1, p =0, v =1, we have

) {n1/p]
£ 8 ot 0 iy,

— 1ne! |
e ona 0 =5 (n1 — pk)Ing!..n,!

xﬂkt;‘l —pk

.
HF1 [)\i,lli,l/i;ﬂi; (yi +4/y? - 1) 7, (yi -\y2 - 1) ’7]
i=1

X exp (2:cit,~ — t?)

where
u}:’],...,l/,-) (yl’ vy yr)
k k—k k—ky—...—kpr.2 ( )
Vioylr
Z Z Z Ck 1(k1+ N P W YO (1,2 9r)
k1=0 k=0 kr-1=0
x Ok (k1,..ey kr-1)
and also

Ok (k1 ke—y) = (/\l)k—(k1+...+kr-1) (’\2)*1 (A")kr—l
e (#1)k-(k,+...+k,_,) (#2)::, (l‘r)kr-x

Furthermore, for every suitable choice of the coefficients a; (k € Ng),
if the multivariable function Q,44x(y1,...,¥s) (s € N) is expressed as an
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appropriate product of several simpler functions, the assertions of Theo-
rems 5.1, 5.2 and 5.3 can be applied in order to derive various families of
multilinear and multilateral generating functions for MHP and MGP.
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