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ABSTRACT. Murty characterized the connected binary matroids with
all circuits having the same size. Here we characterize the connected
bicircular matroids with all circuits having the same size.

1. INTRODUCTION

Young [10] reports that Murty [5] was the first to study matroids with
all hyperplanes having the same size. Murty called such a matroid an
“Equicardinal Matroid”. Young renamed such a matroid a “Matroid De-
sign”. Further work on determining properties of these matroids was done
by Edmonds, Murty, and Young [6, 11, 12]. These authors were able to
connect the problem of determining the matroid designs with specified pa-
rameters with results on balanced incomplete block designs. The dual of a
matroid design is one in which all circuits have the same size. Murty [6]
restricted his attention to binary matroids and was able to characterize all
connected binary matroids having circuits of a single size. Lemos, Reid,
and Wu (3] provided partial information on the class of connected binary
matroids having circuits of two different sizes. They solved this problem
when the largest of the two circuit sizes is odd and they also showed that
there are many such matroids when the largest of the two circuit sizes is
even. In general, there are not many results that specify the matroids
with circuits of just a few different sizes. Cordovil, Lemos, and Maia [1, 4]
provided such results on matroids with small circumference. Here we de-
termine the connected bicircular matroids with all circuits having the same
size. The bicircular matroids considered are in general non-binary. Hence
these results are a start on extending Murty’s characterization of binary
matroid designs to non-binary matroids.

Some terminology is given next before the statement of Murty’s sem-
inal result on matroid designs. The circuit-spectrum of a matroid M is
spec(M) = {|C| : C € C(M)}. A k-subdivision of a matroid is obtained by
replacing each element by a series class of size k. A connected matroid is
one in which each pair of distinct elements is contained in some circuit. We
use PG(r,2) and AG(r,2), respectively, to denote the binary projective and
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affine geometries of rank r + 1. This terminology used here mostly follows
(8].
Theorem 1.1. Let M be a connected binary matroid. Forn € Z*, spec(M) =
{n} if and only if M is isomorphic to one of the following matroids:
(i) an n-subdivision of Uy,

(i) @ k-subdivision of Uy ,, where n =2k and n > 3,

(iii) an l-subdivision of PG(r,2)*, where n =2"l and r > 2,

(iv) an l-subdivision of AG(r +1,2)*, where n=2"l and r > 2.

In Theorem 1.2 we provide a generalization of Theorem 1.1 to bicircular
matroids. This is a class of matroids which are in general non-binary. The
proof of this result is given in Section 3 of the paper.

Theorem 1.2. Let M be a connected bicircular matroid. For n > 2,
spec(M) = {n} if and only if M is isomorphic to one of the following
matroids:
(i) a k-subdivision of U, where n =2k andn > 2,
(ii) a k-subdivision of Ua,, where n =3k and n > 3,
(iii) a k-subdivision of Uss or Us g where n = 4k,
(iv) a k-subdivision of Uy ¢ where n = 5k.

A uniform matroid has circuits of at most one size. Hence we obtain the
following immediate corollary of the above result.

Corollary 1.3. Let M be a connected bicircular matroid with at least 2
elements. If M is uniform, then it is one of the five types listed in Theorem
1.2

2. BICIRCULAR MATROIDS

We review the definition and some properties of bicircular matroids in
this section of the paper. Let G be a graph on edge set E. The bicircular
matroid of G, denoted by B(G), has ground set F and circuits being the
edge sets of a subdivision of one of the following three graphs: (i) two loops
that share a vertex, (ii) two loops with distinct vertices that are joined by
an edge, (iii) three edges joining the same pair of vertices. The circuits of
B(G) are called the bicycles of G. A bicycle of type (i), (ii), and (iii) is
referred to as a bow-tie, a barbell, or a theta, respectively (see Figure 1
for some examples). Graphs whose bicircular matroids are isomorphic to
the matroids Uy, and Uy, for n > 2, are given in Figure 2. Note that
two non-isomorphic graphs in that figure have the same bicircular matroid
Usg. Coullard, del Greco, and Wagner [2] determined precisely when this
phenomenon can occur using certain graph operations (see also [7]). We
next describe two of these operations that will be of particular interest here
after first giving some graph terminology.
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FIGURE 2. Some Bicircular Matroids

Let G be a graph with F' a non-empty proper subset of the edge set E.
The vertez-boundary of F' consists of those vertices of G that are in both of
the subgraphs induced by F and by E— F. A block is a maximal connected
subgraph without a cutvertex. An end-block of G is a block whose vertex-
boundary contains exactly one vertex. A balloon of G is subgraph of G
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FicURE 3. Balloons

which is a subdivision one of the two graphs of Figure 3, whose vertex-
boundary contains exactly one vertex. The vertex boundary (the vertex v
pictured there) is called the ¢ip of the balloon.

A line of G is a set of edges that forms a path with the internal vertices
having degree two and two end-vertices having degree at least three. We
further require that the line is not contained in any balloon. Now let L be
a line of G with end vertices u and v and e be the edge of L that is incident
with v. Let H be a graph obtained from G by redefining the incidence
relation of e so that e is adjacent to a vertex w # v of L instead of v. Then
H is said to be obtained from G by rolling L away from v. Likewise, G
is said to be obtained from H by unrolling of L to v. Note that L is a
balloon of H (see, for example, the top right graph of Figure 4). Hence
the operation of unrolling reduces the number of balloons of a graph. The
following useful results can be found in [9] and [2] respectively.

Lemma 2.1. Suppose that G and H are graphs with B(H) connected and
H is obtained from G by rolling a line L away from a vertexz v. Then
B(G) = B(H) if and only v is the tip of an end-block of G that contains L
and every cycle of the end-block contains v.

Lemma 2.2. If H is a graph obtained from a graph G replacing a bal-
loon with another balloon on the same edge set and with the same vertez-
boundary, then B(G) = B(H).

3. THE ProOOF

We present the proof of Theorem 1.2 in this section of the paper after
first giving some graph terminology. Let G be a graph. When X and Y are
subgraphs of G, an X-Y path is a path which intersects each of X and Y in
exactly one vertex. A path is said to be internally disjoint from a subgraph
X if it intersects X only in its end vertices, if at all. Each block of G is
either a maximal 2-connected subgraph, a cut-edge (bridge) or cut-set of
parallel edges, a loop, or an isolated vertex (i.e. a vertex with no incident
edges). We will call a block a t-block if it is not a vertex, a single edge, or a
cycle. Note that in any t-block, there must be some pair of vertices {u, v}
for which the block contains at least three internally disjoint u-v paths. We
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call any such pair a branching pair of the block. A set of internally disjoint
u-v paths is called a set of arms of the block. When P is a path in a
graph G, and u,v € V(P), we let P[u,v] denote the subpath of P between
u and v, inclusive. Let P(u,v) := Plu,v] — {u,v}, P(y,v] := Plu,v] —u,
and Plu,v) := Plu,v] — v. We use similar notation to indicate subpaths
in cycles. We will use the convention that an uppercase letter refers to a
subgraph, while the corresponding lowercase letter refers to the number of
edges in that subgraph. So where P is a path, for example, p; is the number
of edges in that path. A graph is said to be a bundle of balloons if its edge
set can be partitioned into disjoint balloons whose vertex boundaries share
a single common vertex (see, for example, the first graph of Figure 2).

Proof of Theorem 1.2. First note that if M is isomorphic to one of the ma-
troids listed in the theorem statement, then spec(M) = {n}. Conversely, let
G be a graph without isolated vertices whose bicircular matroid represents
M and suppose that spec(M) = {n}. We begin by showing that we may
assume that G satisfies the following conditions.
(1) G isconnected, with minimum degree at least two, and each balloon
of G is a cycle.
(2) G includes at most one t-block.
(3) Any t-block of G is isomorphic to a p-subdivision of one of the five
loopless graphs in Figure 2.
(4) There is a block B of G whose vertex-boundary meets all blocks of
G.
(5) If G has no t-block, then it is a bundle of balloons.

Proof of (1). The matroid M is connected with at least two elements so
that each pair of edges of G is contained in a bicycle. Thus G is connected.
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Suppose that G has a vertex v of degree one. Then the unique edge of G
that meets v is in no bicycle; a contradiction. Hence the minimum degree
of G is at least two. It follows from Lemma 2.2 that each balloon G may
be replaced by a cycle with its tip being the unique vertex in its vertex-
boundary. a

Proof of (2). It follows from Lemma 2.1 that we may assume that G has
the fewest number of balloons among all representations for M that satisfy
condition (1) (no unrolling of a balloon is possible). Suppose G includes
two t-blocks B and B’. Let u,v be a branching pair of B with arms P;, P;,
and P; and let z,y be a branching pair of B’ with arms Q;, Q2, and Q3.
Since G is connected there is some B-B’ path R. Without loss of generality,
assume that R intersects paths P, and Q;. Consider the following bicycles
of G.

PUPUP;  PUP,URUQUQ:;  Q:UQ2UQs  PUPsURUQ,UQ3

From the first two bicycles we obtain p3 = » + ¢1 + g2, and from the
last two bicycles we obtain

n=p1+p3+r+q+q3
=p++a+a@)+r+qa-+g
=q+q@+ag+qa+p+2r
=n+q+p+2r

Thus ¢ + p1 + 2r = 0; a contradiction. Therefore G includes at most
one t-block. O

Proof of (3). Let B be a t-block of G with branch vertices {u,v} and arms
By,...Bq.

When n > 4, any three arms of B form a bicycle. By symmetry, each
arm is of the same length, 7/3. Suppose there is some path P from B; to
Bj; internally disjoint from the arms of B, where P is not itself an arm.
(We allow the possibility that ¢ = j). Assume without loss that there is a
vertex w € PN B with w ¢ {u,v}, and that j € {1,2}. Then BUB,UP
forms a bicycle, so p = /3. But B;[w,u] U PU By U Bj is contained in a
bicycle of size strictly larger than p + by + b3 = 7. Hence there can be no
such path P. So if B has at least 4 arms, then B is exactly the union of
those arms, and B represents a p-subdivision of Uy ,,.

We now assume n = 3. Suppose there is some path P from B; to By
internally disjoint from the arms of B. Assume without loss that PN B; =
w ¢ {u,v}, and let z = PN By. (Figure 5)

If z ¢ {u,v}, consider the 6 paths B;[u,w], Bi[w,v], Bs[u,z|, Bs[z,v],
Bs, and P. Any 5 of these together will form a bicycle. By symmetry, each
is of the the same size, p, and = 5p. Note that since this argument applies
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FIGURE 5

to any B; to B; paths, it precludes any such paths except those from w to
z. But if Q is a w, z path internally disjoint from the arms of B, and ¢ = p,
then B [u,w] U Ba[u,z] U PUQ is a bicycle of size 4p < 7. So we find that
no such @ exists. Hence B represents a p-subdivision of Uy 6.

Now suppose = = u. Consider the 5 paths B [u,w], B1[w,v], Bz, Bs, P.
Any 4 of these together form a bicycle, so each is of size p, and n = 4p. In
this case, B represents a p-subdivision of Us 5. Now consider whether there
may be another path Q from B; to B; internally disjoint from the arms of
B. If Q is another w, z path, then B;[u,w] U PUQ is a bicycle of size 3p,
a contradiction. If Q is a path from w to v, then by symmetry ¢ = p and
B represents a p-subdivision of Us g.

Finally, suppose there is a non-trivial path P from B; to B; internally
disjoint from the arms of B. Assume that P N By = {w,z} with {w,z} N
{u,v} = 0 and such that R = By[u,w], § = B[w,z], and T = B[z, ]
partition the edges of B;. By symmetry we see that b; = b3, that p = s,
and that r = t. Consider each of the following bicycles of G.

BiuB; U B3 BgUBsURUSUP B,uB,UP

The first gives n = by +ba + b3 =1+ 8+t + 2b2 = 2r + s + 2b2. The second
gives n = by +bz+7+s+p =r+2s+2by. The third givesn =b1+b2+p=
r+s+t+by+p=2r+2s+by. Hence r = s =by(=t = b, = b3 =p), and

7 = 5p. Here B represents a p-subdivision of Uyg.
O0

Proof of (4). If G contains a t-block, call it B and label some set of its
arms By,... B, for n > 3. Otherwise, let B be any cycle of G which is not
a balloon if such exists, or any balloon if it does not, and let B; and B be
any two paths forming a partition of the edges of B. We now proceed to
show that every balloon of G must have it's tip in B. This will show that
every end-block, and hence every block, must meet the vertex boundary of
B.

Suppose there is some balloon C of G whose tip v is not in B. Then
there is some cycle D with the vertex-boundary of C and D meeting in v.
There is a path P from D to B that is internally disjoint from C and D.
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FIGURE 6

Let u = PN D, w = PN B, and assume without loss of generality that
w € B;. Note that C U D is a bicycle,son=c+d

When u = v (Figure 6 (A)), we must have p > 0. By symmetry ¢ = d,
and hence n = 2¢. Since B;UB;UPUC is a bicycle, we have b; +bs+p = c.
Alternatively, when u # v (Figure 6 (B)), fix an orientation of the cycle D
and let Dy = D[u,v], D = D[v,u]. Then each of the following is a bicycle.

BiuB;UPUD BiUBsUPUDyUC BiuB;UPUDyUC

So we have d; = ds and d; + ¢ = d. Hence dy = dy = ¢, and n = 3¢. Again
we find bl +b2 +p=c.

Consider the case that B is a t-block. Then B; U By U B3 is a bicycle,
so by + ba + b3 = n = ¢+ d. By symmetry, we have by = bs. From the
arguments above we know b; + by +p=-c. So

2c=(by+ba+p)+(by+bs+p) = (b1 +ba+b3)+ b1 +2p=c+d+b +2p

which gives ¢ = d + b; + 2p. But from above we have either d = ¢ (when
u=1v) or d = 2¢ (when u # v), and hence this is impossible.

Now consider the case that B is a cycle. Suppose B intersects exactly
one other block. Then B is a balloon. By our choice of B, every cycle must
be a balloon, and G is a bundle of two balloons (i.e. a bowtie). We are left
with the case that the cycle B intersects at least two other blocks. We may
choose some subgraph A which contains exactly one cycle, is disjoint from
CUDUP, and intersects B at exactly one vertex. (See Figure 7.) Then
B, U By U A is a bicycle, so by + by +a = 7. Since by + by +p = ¢, we have
a + ¢ =1+ p. But there is some bicycle which strictly contains AU C, so
a + ¢ < 7; a contradiction. O

Proof of (5). Here B is a cycle. We wish to show that G is a bundle of
balloons. From property (3), G must consist of B and balloons with tips in
B. We proceed to show that the vertex boundaries of those balloons share
a single common vertex.

Suppose B is a cycle and A4; and A; are balloons with distinct tips u
and v. Fix an orientation of B and let B; = B[u,v] and B = B[v,u]. Note
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FIGURE 7

that A; U A2 U B; is a bicycle for i € {1,2}, so b; = bs. Since this argument
applies to any two balloons, we can see that there is no balloon A3 attached
at w ¢ {u,v}. Note also that B U A; is a bicycle for each i € {1,2}, so
a1 = az. We now have n = 2a; +b; = a1 +2b;, and hence a; = b1, n = 3a;.
If there is a third balloon A3 attached at u, then by the argument above
a3 = a;. The bicycle A; U A3 has length 2a; but = 3a,; a contradiction.
Thus there is at most one balloon attached at u, and similarly at v. Now
Az can be unrolled to u, leaving a graph G’ representing M which has
fewer balloons than G. This contradicts our choice of G. Hence there is
no balloon A, attached at v. This shows that all balloons share a single
common tip, and hence G is a bundle of balloons. a

In the case that G has no t-block, we have shown that it is a bundle
of balloons. To complete the proof of Theorem 1.2, we now deal with the
case that G does have a t-block B with branch vertices {u,v} and arms
B,,...B,,. We will show that G consists of only the block B. Hence G is
a subdivision of one of the graphs shown in Figure 2, and M is one of the
matroids specified in the theorem.

Applying the arguments from the proof of (4) above to any cycle B; U B;
in B, we find that the vertex boundary of B can meet balloons in at most
two vertices, which must be equidistant along the cycle. Suppose there are
balloons A; and A; with tips z; and z, respectively, and assume without
loss that z; € V(B;). Note that each of the following is a bicycle.

B;UB;UB; A,UB,UB,> A ;UB1UB; A;UBUB; AsUByUB3

So we have a; = a; = by = ba = b3 and n = 3a;. Now the subgraph
A1 U Az U B; is contained in some bicycle. Since this subgraph includes 7
edges, it must be a bicycle. So each of A; and Ay must meet B3, and we
find {z;,z2} = {u,v}. Suppose without loss that z, = u. There must at
least one other balloon A3 with tip u. Otherwise A; can be unrolled to v
to obtain a representation with fewer balloons. From symmetry a; = ags,
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and since A; U A3 is a bicycle we have 7 = 2a;; a contradiction. So G does
not have balloons with two distinct tips.
Now consider the case that exactly one vertex in the boundary of B is
a balloon tip. If this vertex is u, then each balloon can be unrolled to v,
leaving a graph G’ representing M with fewer balloons than G. Similarly
if the tip is v they may be unrolled to u. If exactly one balloon has tip
z ¢ {u,v}, it can be unrolled to v. So we are left with the case that there
are at least two balloons, A; and Az, with shared tip z ¢ {u,v}. Assume
z € B;. By symmetry a; = a2, and since A; U A; is a bicycle we have
7 = 2a;. Also by symmetry by = bs. Since B; U B2 U Bj is a bicycle we
have b; + 2b; = 17 = 2a;. The bicycles B; UB; U A; and B, U B3 U B;
show b3 = a,, so we're left with 2a; = b; + 2by = by + 2b3 = b; 4+ 2a,; a
contradiction. Hence there are no balloons attached to B.
0
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