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Abstract. Consider the game of locating a marked vertex on a
connected graph, where the player repeatedly chooses a vertex
of the graph as a probe, and is given the distance from the probe
to the marked vertex, until she can uniquely locate the hidden
vertex. The goal is to minimize the number of probes. The
static version of this game is the well-known problem of finding
the metric dimension (or location number) of the graph. We
study the sequential version of this game, and the corresponding
sequential location number.

1 Introduction

"Where is Minou Hiding” [9] is an Internet game intended for
young children learning to count. Minou the cat is randomly
hidden on one cell of a 9 x 5 grid. The child clicks on any cell to
see if Minou is hiding there. If so, she wins the game. If not, that
cell is labelled with its distance to Minou (moving horizontally
and/or vertically from cell to cell). The game continues until the
child finds Minou. For a child player guessing semi-randomly, it
could take many guesses to locate Minou; however the mathe-
matician player will quickly discover that after two well-chosen
guesses the location of Minou is uniquely determined.

In this paper, we generalize this game from the 9 x 5 grid to
any connected graph, and search for strategies requiring the min-
imum number of guesses in the worst case. Céceres et al. [1] note
that this problem is related to two well-known sequential games:
coin weighing (described by S6derberg and Shapiro[8]) and Mas-
termind (first analyzed by Knuth [5]), corresponding to hyper-
cubes and Hamming graphs respectively. However, Céceres et
al. focus primarily on the static version of these games, in which
the player is required to make all but the last guess at the start.
The static version of the Minou game dates from 1975: Slater
[7] introduced it as the problem of locating an intruder on a
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graph by placing distance-detecting devices on a minimum size
set of vertices, while Harary and Melter [3] introduced the same
concept in the context of finding a metric basis for a graph by
analogy with metric spaces. We review some of the results for
the static Minou game in the next section, then return to the
sequential game for the rest of the paper.

2 The Static Game

Assume throughout that G = (V, E) is a simple connected graph
with n > 2 vertices. A resolving setis a set S = {v;,va,...,Um} C
V such that for all u,v € V, if d(v;,u) = d(v;,v) for i =
1,2,..,m, then u = v. The metric dimension dim(G) (also
known as the location number) is the minimum number of ver-
tices in a resolving set. A resolving set with dim(G) elements is
a metric basis. Many people have investigated these concepts;
a good bibliography is given in [1]. We summarize here results
for some well-known classes of graphs.

Theorem 1 (3,7] Let G be a graph with n > 2 vertices.

(a) dim(G) = 1 if and only if G = P, is a path.

(b) For cycles, dim(C,) = 2.

(c) For complete graphs, dim(K,) =n — 1.

(d) For complete bipartite graphs,
dim(K,s)=r+s—2forn=r+s2>3.

(e) For grids, dim(P, x P,) =2 forr,s > 2.

Theorem 2 [6] Let W,, be a wheel with n = m + 1 vertices,
m > 3. Then dim(Wy,) = |23+

Let T be a tree which is not itself a path. A leg at a vertex v
is a component of T — v which is a path, and £, is the number
of legs at v. An ezxterior major vertex is a vertex v such that
deg(v) > 3 and £, > 0. For example, in Figure 1, T} has exterior
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Figure 1: Trees with 4, 3, and 3 exterior major vertices.

major vertices a,b, c and d, while T, and T3 have exterior major
vertices a, b and c.

Theorem 3 [2,3,4,7] Let T be a tree which is not a path and
let 1,9, ..., Tm be its exterior major vertices. Then dim(T) =
Y(¢; — 1), and any set consisting of the leaves ot the end of all
but one of the legs of each exterior major vertez of T is a metric
basis for T

Thus in Figure 1, dim(T1) = (1-1)+(3-1)+(1-1)+(3-1) =
4, and similarly dim(T3) = 3, and dim(T3) = 4. A corresponding
metric basis for each graph is indicated by the open circles.

3 The Sequential Game

Consider the game where Player B chooses a vertex M € V (the
vertex where Minou is hidden). Player A then has to locate
M by choosing a probe v; from V. Player B responds with
the distance d(v;, M). Player A then chooses a second probe
from V, and this process continues until Player A can uniquely
determine the location of M. Player A’s objective is to locate
M with a minimum number of probes.
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A strategy tree for G is a rooted tree T', with the vertices la-
belled with Player A’s choices and the edges labelled with Player
B’s responses. Thus the root is labelled v;, and from the root
there is an edge labelled with each possible distance d(v,,v) for
v € V. For each vertex z at a lower level of T, if the sequence of
probe and response labels on the path from the root to z in T
uniquely determines a vertex w € V, then z is labelled w and is
aleaf in T. Otherwise, z is labelled with the next probe Player A
chooses in this sequence, and the edges from z are labelled with
each possible response from Player B. Thus, a strategy tree cor-
responds to a strategy for Player A and vice versa. So the depth
of a strategy tree (i.e. the maximum distance from the root to
a leaf) is the maximum number of probes it would take Player
A in the worst case to locate M by following the corresponding

strategy.

For example, let P, x P; be the 2 by 3 grid with vertices
a,b,c,d,e, f as in Figure 2. The first strategy tree in Figure 2
represents the following strategy for Player A: choose e as the
first probe, to get d(e,M). If d(e, M) = 0, then M =e. If
d(e, M) = 1 or 2, choose c as the second probe to get d(c, M);
if this is 3, 0, or 2 then M = d,c,a respectively. Otherwise
d(e, M) = 1, so choose f as the third probe to get d(f, M). If
d(f, M) = 0, then M = f; otherwise d(f,M) =2 and M = b.
So in the worst case for this strategy, three probes are required
to locate M.

The sequential location number of G, SL(G), is the mini-
mum depth of a strategy tree for G. An optimal strategy tree
is a minimum depth strategy tree, and an optimal strategy is a
strategy corresponding to an optimal strategy tree. Thus SL(G)
represents number of probes required in the worst case by an
optimal strategy for Player A. For example, the second strat-
egy tree in Figure 2 is optimal, requiring at worst 2 probes, so
SL(P2 X P3) = 2.



Figure 2: P, x P3 with two possible strategy trees.
4 The Sequential Location Number

We consider the relationship between the sequential location
number and the metric dimension, beginning with an analog to
Theorem 1(a).

Theorem 4 SL(G) =1 if and only if G is a path.

This follows since paths are the only graphs for which there
exists a vertex such that all other vertices are a distinct distance

from it.

Theorem 5 For all connected graphs G, SL(G) < dim(G).
Further, if dim(G) < 2, then SL(G) = dim(G).

Proof. Let S = {v,vs,...,Vsim(c)} be a metric basis for G.
One strategy for Player A is to choose vy, v5, v3, ... as consecutive
probes until the location of M is uniquely determined. By the
definition of a metric basis, M must be located within dim(G)
probes, and so SL(G) < dim(G). By Theorem 1 and Theorem
4, L(G) = 1 if and only if SL(G) = 1; thus if dim(G) < 2 then
SL(G) = dim(G). O

Corollary 6 SL(C,) = dim(C,) = 2 for all n, and SL(P, x
P,) =dim(P, x P,) =2 for allr,s > 2.
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Theorem 7 SL(K,) = dim(K,)=n—1 for alln > 2.

Proof. Since all vertices are at the same distance from each
other, it follows that in the worst case Player A must choose
n — 1 probes to guarantee locating M. O

For the remaining classes of graphs considered in Section 2,
the sequential location number and the metric dimension need
not be equal.

Theorem 8 Let 1 < r < s, with s > 1. Then SL(K,,) =
maz{r,s — 1}.

Proof. Let U = {uy,us,...,u,} and W = {wy, wy, ...ws} be the
bipartition of K,s. Since d(w;,v) = d(w;,v) for 1 < 4,5 < s
and for all v € V — {w;, w;}, it follows that if M € W, then in
the worst case s — 1 probes from W will be required. Similarly,
if M € U, then in the worst case 7 — 1 probes from U will be
required. So if the first probe is chosen from U, then either
M € W and at worst 1+ (s — 1) = s probes will be required, or
M € U and at worst 7—1 probes will be required. And if the first
probe is chosen from W, then either M € W and at worst s — 1
probes will be required, or M € U and at worst 1 + (r—1) =7
probes will be required. Thus SL(K, ) > maz{r,s — 1}.

We now construct a strategy with maz{r, s—1} probes in the
worst case. Choose w; as the first probe. If d(w;, M) = 0, then
M = w;. If d(wy, M) = 1, then choose probes uy, ug, ... until M
is located, requiring at worst 1+ (r — 1) = r probes. If d(w;, M)
= 2 then choose probes ws, ws, ... until M is located, requiring
at worst s — 1 probes. Thus SL(K;,) = maz{r,s — 1}.0

Corollary 9 SL(K;,) = dim(Kys) = s — 1 for s > 1, and
SL(K;s) < dim(K,s) =r+s—2forr=2,s >rand2<r <s.

Theorem 10 For a wheel W,, withn = m + 1, SL(W3) = 3,
SL(W,) = 2, and SL(W,,) = | &) form > 5.
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Proof. This is true for m = 3 by Theorem 7, and for m = 4
by Theorem 5 and Theorem 2, so assume m > 5. Let wp be
the centre vertex, with vertices w;, ws, ..., w,, on the rim of W,,.
From wy all other vertices are at distance 1. From any rim
vertex, one vertex is at distance 0, three vertices (including wy)
are at distance 1, and m — 3 rim vertices are at distance 2. By
induction, after any choice of i probes where 1 < i < [22], at
least m — 37 > 2 rim vertices are at distance 2 from all 7 probes.
Thus SL(Wy) > |252] +1 = |=8].

We now construct a strategy requiring [ﬂgij probes in the
worst case. Let the first probe be wy. If d(wy, M) = 0, then
M = w; has been located in one probe. If d(wy, M) = 1, let the
second probe be w,, locating M as either w;, wg or ws in two
probes. So assume d(wsz, M) = 2 and let the second probe be
ws. Continue with the sequence of probes wsy, ws, ws, ..., Wak—1
until either d(war—1, M) = 0 (so M is located in k probes), or
d(wsk—1, M) = 1 (so M can be located in k+1 probes by choosing
wak—2 as the last probe), or m —5 < 3k —1 < m — 3. The worst
case occurs when m—5 < 3k—1 < m—3;ie., m = 3k+2,3k+3,
or 3k + 4. This can occur either with d(wsk_;, M) = 1 (which
we have seen requires k + 1 probes), or with d(wsk-;, M) = 2.
In the latter case, d(wsi—1, M) = 2 fori = 1,2,....k — 1, so
M € {wsk+1, Wak+2, .-, Wm}, @ set with only 2, 3, or 4 elements.
This means M can be located in k+ 1 probes by choosing way.2
as the last probe. Thus m +1 = 3(k+1),3(k + 1) + 1, or
3(k+1) + 2, and the number k + 1 of probes is [ ]. D

Corollary 11 SL(W,,) = dim(W,,) form = 3,4,5,7,8,10,11, 15
and 16; otherwise SL(W,,) < dim(W,,).

5 The Sequential Location Number for Trees

Finally we consider trees. Here, however, we have only been
able to find an explicit formula for one class of trees.
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Theorem 12 For any tree T withn > 2, SL(T) > A(T) — 1.

Proof. Let w be a vertex of maximum degree A, and let
wy, Wy, ..., Wa be the neighbours of w. Let T; be the subtree
of T — w containing w;, for i = 1,2,...,A. Then for any se-
quence of at most A — 2 probes for T, there exist at least two
subtrees T; and T; which do not contain any of these probes.
This means all paths from the A — 2 probes to w; and w; go
through w, and thus w; and w; are the same distance from each
probe. Thus at least one more probe is required in the worst
case, so SL(T) > A-1. 0

Theorem 13 For any tree T which is not a path, if there exists
a path P in T such that all vertices of degree at least 3 lie on P,
then SL(T) = A — 1, and there is an optimal strategy in which
all probes are leaves.

Proof. As a result of Theorem 12, it suffices to give a strategy
which locates any vertex of T' within A —1 probes, and for which
all probes are leaves. Let x,, s, ..., Zr, be the vertices of degree
at least 3, in the order they occur along P. Since T — z; must
have at least one component with no vertices of degree more
than 2, each z; must have at least one leg. Let s; = d(z;, z;) for
i=1,2,...,m

Choose the first probe v; to be a leaf at the end of a leg at
71, and the second probe vy to be a leaf at the end of a leg
at T,,. Let t; = d(v1,21), ta = d(ve, znm), di = d(v;, M) and
dy = d(vg, M). If d; < t; for i =1 or i = 2, then M is on one of
the two legs, so is located in at most two probes. Thus we may
assume d; > t; for i =1, 2.

Suppose first that d; + do = d(vi,v2). Then M must be a
vertex on the path from z; to x4, for some j with 1 < 7 <m.
So t1 + 8; < d(v1, M) < t1 + 41, which uniquely determines j
and thus M. Thus M can be located in two probes.

So we may assume dj +dy > d(vy,v2). Then M must be on a
leg at z; for some j,1 < j < m. So dy =t + s; +d(z;, M) and
dm = tm + (8m — 8;) + d(zj, M). Solving these two equations
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for s; and d(z;, M) gives s; = 3(dy — d2 — 8, — t1 + t3), Which
uniquely determines 7, and d(z;, M) = (dy +da + m — t1 — t2).
So choosing the remaining probes from the leaves at the ends of
the legs at z; until M is located will require at worst a total of
deg(z;) — 1 < A —1 probes. D

For example, consider the trees in Figure 1. 7T; meets the
requirements of Theorem 13, so SL(T}) = A(T1) - 1=3. T,
and T3 do not meet the requirements, and we have SL(T;) =
A(T3) = 3 (T3 is the smallest tree with SL(T) > A(T)), but
SL(T3) = A(T3) — 1 = 3. Note that T is formed from K; 3 by
adding two leaves to each leaf of K3 3. The tree T(s) formed
by adding s — 1 leaves to each leaf of K ; satisfies A(T(s)) =
§ < SL(T(s)) =2(s — 1) < dim(T(s)) = s(s — 1) for all s > 3.
Thus the sequential location number of a tree can be arbitrarily
greater than the maximum degree, and arbitrarily less than the
metric dimension.
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