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Let k be a positive integer. A group divisible design (k,\)-GDD is a triple
(X, G, B) where X is a finite set of points, G is a set of subsets of X called
groups which partition X, B is a collection of k-subsets of X called blocks
such that every pair of points from distinct groups occurs in exactly A
blocks, and no pair of points belonging to a group occurs in any block. We
use the usual exponential notation for the type of GDDs. Thus a GDD of
type 127 ... is one in which there are i groups of size 1, j groups of size
2, and so on. A (k,))-GDD of type 1Y is just a balanced incomplete block
design denoted by (v, k, A)-BIBD. A (k, A)-frame of type T is a (k, \)-GDD
(X,G,B) of type T in which the collection B of blocks can be partitioned
into holey resolution classes each of which partitions X \G; for some G; € G.
Let (X, G, B) be a (k, A)-GDD of type g*, and o be a permutation on X.
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For any subset T = {z1,...,zx} C X, define T? = {z{,...,z}. If
G°={G°:G€G}=Gand B = {B° : B € B} =B, then 0 is an
automorphism of the GDD (X, G,B). Any automorphism o partitions B
into equivalence classes called the block orbits of B under o. An arbitrary
set of representatives for these block orbits of B is the base blocks of the
GDD. If there is an automorphism consisting of a single cycle of length
|X| = gu, then the (k, A)-GDD is said to be cyclic and denoted by (k, A)-
CGDD. For a (k,A)-CGDD of type g*, the point set X can be identified
with Zg,. In this case, the design has an automorphism ¢ : i — i+1
(mod gu), and each group must be the subgroup uZ, of Zg, or its cosets. In
the remainder of this paper, when we say a (k, A)-CGDD, we always mean
a (k,A)-CGDD in which each of its block orbits under the automorphism
o contains exactly gu distinct blocks. In a (k, k — 1)-frame of type g%, it is
well known (see [6], for example) that there are g holey resolution classes
associated with each group, and there are altogether gu holey resolution
classes. If the underlying GDD of a (k,k — 1)-frame of type g* is cyclic
with respect to an automorphism ¢ : i — i+1 (mod gu) of order gu, such
that the blocks of the jth holey resolution class R; are the jth translates of

the blocks of the resolution class Ry, i.e., R; = RS =Ro + j (mod gu)
for all j € Zg,, then the frame is said to be cyclic with respect to o. The
class R is an initial holey resolution class of this cyclic frame. A cyclic
(k, k — 1)-frame of type 1" is just a near resolvable cyclic design .

A cyclic (gu, g, k, A)-relative difference family [or (gu, g, k, A)-CRDF in
short] is a collection B of k-subsets (called base blocks) of Zg, with the
property that each element of Zg, \ uZ, occurs exactly A times in AB,
i.e., the multiset of internal differences among the blocks of B. In the case
that g = 1, we simply call it a (u,k,A)-CRDF. A (gu,g,k,\)-CRDF is
said to be partially partition-type if B forms a partition of Z,, \ uZ,. The
number of base blocks in a (gu, g, k, A)-CRDF and a partially partition-type
(9v, g, k, A)-CRDF are A(gu — g)/(k(k — 1)) and (gu — g)/k, respectively,
and hence a necessary condition for the existence of a partially partition
type (gu,g,k,\)-CRDF is that A = 0 (mod k — 1) and (gu —g) = 0
(mod k). It is clear that a partially partition-type (gu, g, k, k—1)-CRDF B
forms an initial holey resolution class of a cyclic (k, k — 1)-frame of type g*.
Converse the initial holey resolution class R of a cyclic (k, k — 1)-frame of
type g* is just a partially partition-type (gu, g, k, k—1)-CRDF. Note that a
partially partition-type (gu, g,k, A)-CRDF are also called a partition-type
((gu — g)/g)-difference packing (gu, k, k — 1) with a u-regular hole uZ, in
[5]. For more details on frames, the reader is referred to [6].

In 1986, Stinson introduced firstly the concept of frame for constructing
Kirkman triple systems (see, [13, 14]). So far, the existence and applica-
tions of frames have been extensively investigated by many researchers (see,
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(6], and references therein). Cyclic frames or partially partition-type cyclic
relative difference families are used to produce series of optimal families
consisting of a single frequency hopping sequence [8, 9] and optimal dif-
ference systems of sets for constructing comma-free codes that allow for
synchronization in the presence of errors [4, 11, 12, 15).

In this paper, we describe two geometric constructions for cyclic frames
from projective space PG(2t + 1,¢)s and affine geometry AG(n,g)s. Two
new classes of cyclic frames are obtained.

For the ease of descriptions, we use some notations. For given subsets A,
B and a collection F of subsets in Z,, let AA and AF be multisets defined
by AA={z—y:z,y € A,z #yand AF =] . AA, respectively. The
notation AA = AB, where ) is a positive integer, means that each element
of B occurs exactly A times in AA.

2 Cyclic Frames from a Projective Space

In this section, we describe a geometric construction for cyclic frames from
some special t-flats in a projective space PG(2t + 1, q).

Let g be a prime power and n > 3 be an integer. An n-dimensional
projective space PG(n,q) has v = (¢"*! — 1)/(q — 1) points, which can
be represented by the elements of Z,, and (g"*+! —1)(g® —1)--- (g™~ *+1 —
1)/(¢**' —1)(¢* — 1) --- (¢ — 1) k-flats, i.e., k-dimensional subspaces, each
having (¢**! — 1)/(g — 1) points. An (n — 1)-flat of PG(n, q) is called
a hyperplane. Consider t-flats in PG(2t + 1,¢). In this case, there is a
t-flat H = {0,u,2u,...,(g — 1)u} = uZ,, where u = ¢**! + 1 and g =
(¢**' —1)/(g —1). It is clear that there are g (¢t + 1)-flats containing H in
PG(2t+1,q) ( also see, for example, (1,2, 3]). Let W = {F}, F3,...,Fy} be
the set of all the (¢ + 1)-flats. There is an automorphism o of PG(2t+1,q)
such that o : £ — z+u, which fixes the t-flat H. This implies that W can be
generated from Fy, ie., W = {F1,0F},...,09"1F }. Clearly, AF; = AF;
for any F;, F; € W. Let A; be the affine part of Fj,i.e.,4; = F; \ H for
t=1,2,...,9. The following result comes from [7, §].

Lemma 2.1 For any i = 1,2,...,9, AA; = (g — 1)(Z44 \ uZ,), where
g="*'-1)/(g-1),u=g¢"*+ +1.

Theorem 2.2 Let W = {F, F3, ..., F,} be the set of all the (t+1)-flats of
PG(2t +1,q) containing t-flat H = uZ,, where g = (¢**! —1)/(¢—1), and
set Ai = F;\Hu=q"*' + 1,k = ¢"*!. Then B = {A;,As,..., Ay} forms
a partially partition-type (gu, g,k,k — 1)-CRDF. And hence there ezists a
cyclic (k, k — 1)-frame of type g*.

Proof. Since H is the t-flat fixed by 0, and F}, F}, ..., F, are exactly the
(t + 1)-flats containing H, we have that {H, A;, ..., A,} form a partition
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of PG(n,q). Meanwhile it follows from Lemma 2.1 that

AB=|JAAi = g(qg—1)(Zgu \ H) = (k = 1)(Zgu \ uZy).

i=1
The assertion follows then. (]

Again carefully observing the affine part A; of Fj, we find that A, has
the following property by Theorem 2.2.

Lemma 2.3 Let the conditions be as in Theorem 2.2. Let e|gcd(g—1,t+1),
and A® = A; (mod Z£). Then A(® is a (£,£,k,e(q — 1))-CRDF and

e?e!?

A®  (mod u) forms a partition of Z, \ {0}.

Proof. Since e|ged(q — 1,t+1),we have g=1 (mode)andt+1=0
(mod €). Thusg=¢*+¢"1+---+¢q+1=t+1=0 (mod e). By lemma
2.1, we obtain

AA® = AA;, (mod 9?“) = e(q —1)(Zaz \ uZs).

This establishes the first assertion. Since A; = A1 + (1 —1)u,1 <i < g,
we have A; (mod u) = A® (mod u). From B = |J{_; A; = Z, \ uZ,
in Theorem 2.2, we obtain A® (mod u) = Z, \ {0}. This completes the
proof. o

Furthermore, by Lemma 2.3 we have

Theorem 2.4 Let the conditions be as in Lemma 2.3. Then B(®) = {A®)+
iu: 0 < i< £} is a partially partition-type (£*,4,k,k — 1)-CRDF. And

ele?

hence there exists a cyclic (k,k — 1)-frame of type (£)*.
Proof. By Lemma 2.3, we have

AB®) = %AA(") = (k—1)(Zax \ uZa)

Again by Lemma 2.3, A® (mod u) = Z, \ {0}, so

i
U 4= JA® +iv) = Zax \uZs.
AeB(e) =0
This completes the proof. o
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We illustrate Theorems 2.2 and 2.4 with the following example.

Example 2.5 Here we give an ezample in PG(3,3). We take a primitive
element x of GF(3%) with minimal polynomial z4 + 2z + 1 = 0, so that the
point set is represented by Z40, and H = {0,10,20,30}. The following A;’s
are the affine parts of 4 2-flats containing H.

A ={1, 2, 9,13,15,16,18,24,37}, Az = { 7,11,12,19, 23,25, 26,28, 34},

As ={ 4,17,21,22,29,33,35,36,38}, As={3, 5, 6, 8,14,27,31,32,39}.

By Theorem 2.2, {A,,..., A4} forms a partially partition-type (40,4,9,8)-
CRDF. And hence there exists a cyclic (9,8)-frame of type 41°. Further-
more, applying Lemma 2.3 with e = 2, we get A® from A, modulo 20 as

follows
AP = {1, 2, 9,13,15,16, 18, 4,7}.

Then BY = {AP 410i : 0 < i < 2} is a partially partition-type (20,2,9,8)-
CRDF. And hence there exists a cyclic (9, 8)-frame of type 21°.

3 Cyclic Frames from an Affine Geometry

In this section, we describe another geometric construction for cyclic frames
from an affine geometry AG(n,q).

Let g be a prime power, n a positive integer and let V(n,q) denote the
n-dimensional vector space over GF(g). A d-flat in V(n,q) is a subspace of
V(n, q) having dimension d or an additive coset of such a subspace. 0-Flats,
1-flats and (n—1)-flats are called points, lines and hyperplanes, respectively.
A system consisting of all the vectors (points), all the d-flats of V(n,q) and
their incidence relation is called an affine geometry, denoted by AG(n,q),
and it is well known (see, for example, [1, 2, 3]) that the set F; of all
d-flats in AG(n,q) forms the set of blocks of a balance incomplete block
design (BIBD). Here we are interested in all lines (1-flats) of AG(n,q).
Let a be a primitive element of GF(¢"), then the elements of GF(g")
can be represented by a®(= 0),a%(= 1),e,...,09" ~2. Therefore, there
exists a one-to-one correspondence between the point-set of AG(n,gq) and
Zgn_1 U {00}, and in this case, the mapping o : i = i+ 1 (mod ¢" — 1)
and 0o = 00 on Zgn_j U {00} is an automorphism of AG(n,q). So, in
what follows, we identify the point-set of AG(n, g) with Zgn_1 U{oc0}. It is
clear that GF(q) = {0,1,a*,...,a9=2*} where u = (g" — 1)/(g — 1), and
Lip = a’GF(q) = {0,0,a%*,...,al0=2%+} 0 <4 < u—1 are exactly all
1-dimensional subspace of V(n,q). Let L; ;,0 < j < ¢"~! — 1 be all cosets
of L; 0 in V(n,q), then all lines (1-flats) of AG(n, q) are exactly L; ;,0 <4 <
u—1,0 < j < ¢*~! - 1. Furthermore, let £; = {L;;: 0 < j < g*~! —1},
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then £;,0 < 4 < u — 1 are exactly u resolution classes of lines in AG(n, gq).
These resolution classes have the following property.

Lemma 3.1 IfL;; € L;, thena’“‘L.,-—{a""ﬂ ﬁeLh,,}eC When
j=00FL;; =L;o for0 < k < q—2; when j #0, ok L, i # aftL,
for0< ks #ko <g-2.

Proof. For j =0, it is obvious that a**L;; = L;o. Now let L;; € L;,
then there is a o' €GF(g") such that L;; = L;o + o!. Hence o“L;; =

"“L o +akutt = L; o 4+ o*¥+, this shows that P j is a coset of Ly,
ie,afL;; € L;. For j # 0, let Li; = {a%, adﬁ . ,a“v} then d, # d,
(mod u) for all 1 < 7 # s < g. If a®¥L;; = a**L; ;, then af1v+d =

aFavtdt for some 1 < I < ¢q. This 1mphes that kyu + dy = kou + d
(mod g™ — 1), hence d; =d; (mod u). This is a contradiction. 0

Now we view L; ; as a subset of Zgn_y U{oo}. Clearly, L; o = {o0,%,u+
%y...,(qg — 2)u + 1}, Define a mapping ¢ : i — u+¢ (mod ¢" — 1) and
00 — 00 on Zgn—j U{oo}, then ¢ = ¢*. By Lemma 3.1, The automorphism
o partitions £; into equivalence classes called the line orbits of £; under
. An arbitrary set of representatives for these line orbits of L; is the base
lines of the resolution £;. Without loss of generality, we denote the base
lines of the resolution £; by {Lig, Li,1,..., i}, where v = 9:;—1_1. Thus
we can rewrite £; as follows

Li={Lio,Liy.- -, Lijys Lijyr, - - -y Liygg—1)v}
where L; ky41 = WLy =ku+L;;,08k<g—-2,1<i< v

Lemma 3.2 Let B={Lo;:1<j<q"'-1},ie,B=Lo\{Loo} Then
B forms a partially partition-type (¢" —1,9—1,9,9— 1) CRDF. And hence
there ezists a cyclic (g,q — 1)-frame of type (q — 1)’7:'-'!'

Proof. Since £ = U;‘—_T()l L; forms a (¢",q,q — 1)-BIBD, and all lines in
AG(n,q) are generated from a set of base lines Lo = {Log; : 0 < j <
¢"~! — 1} by the automorphism ¢ :i—i+1 (mod ¢® —1) and oo — o0
on Zgn_3 U {oo}. So, we have

AB = ALy — ALyo

= (4= 1)(Zgn-1\ {0}) — (g — 1)(uZg—1 \ {0}) = (g = 1)(Zgn—1 \ uZg_1).

Observe that £ forms a partition of AG(n, q), thus B forms a partition of
Zgn_1 \ uZ4-1. The assertion follows then. a
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Lemma 3.3 Let A= {Lo; :1 < j <v}. Then A forms a (¢" —1,q—
1,q,1)-CRDF. Furthermore, A (modw) = {Lo; (modu):1 < j < v}
forms a partition of Z, \ {0}.

Proof. Recall that AB = (g — 1)(Zgn-1 \ uZ,;_1) in Lemma 3.2 and note
that ALokv4; = ALo,; for k =0,1,...,9 — 2, we have AB = (g — 1)AA.
So, AA = (Zgn_1 \uZ,_). This shows that A forms a (¢" - 1,9—1,¢,1)-
CRDF. The second assertion follows the fact that B forms a partition of
Zgn_1\uZq_y and B = Uy, UIZo(L + ku). o

Lemma 3.4 Let e be a positive integer and e|(g — 1), and let D§°) =
Lo; (mod %ty), D) = {D](-e) :1 < j < v}. Then D® forms a
(72,22, 4,¢)-CRDF and D, = {D{¥ (modw):1 < j < v}
forms a partition of Z, \ {0}.
Proof. Let A be defined as in Lemma 3.3. First observe that D(¢) =
A (mod 2z1y) 80d AA = Zgn_; \ uZ,-; from Lemma 3.3. Thus

ADE) = AA (mod 2ty) = e(Zg“"s—l \uZg=1).
This shows that D(®) isa (£=1, 21, g, ¢)-CRDF. Since D(°)(m°d W =A (modu)
the second assertion follows from Lemma 3.3. o

The following result is an improvement of the partially partition-type
CRDF in Lemma 3.2, meanwhile, it also improves the result of the relative
difference set in [10].

Theorem 3.5 Let g be a prime power, 1 <e<q—1 and e|(¢g — 1). Then
there exists a partially partition-type (92;1, 5-:—1, ¢,9—1)-CRDF. And hence

there exists a cyclic (g,q — 1)-frame of type (9:—1)3:——_%.
Proof. Let

B={D +ku: D € D9, 0< k< "—;1 ~1},
where D(€) defined as in Lemma, 3.4. Thus

_1_.1

aB= ) U ADY +ku)
D{Pep(e) k=0

_ qz LAD® = (g— 1)(Zams \ uZams).

The last equality is from Lemma 3.4. Again from Lemma 3.4, D(e)(mod W
is a partition of Z, \ {0}, so B forms a partition of Zgn_1 \ uZg-1. This
completes the proof. : m]
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Here giving an example to illustrate our construction.

Example 3.6 Here we give an example in AG(3,5). We take a primitive
element z of GF(5) with minimal polynomial 23 4 22 +2 = 0, so that the
point set is represented by Zi24 U {00}, and Lo = {0,0,31,62,93},H =
{0,31,62,93}. Take 6 representations from the resolution class Lo as fol-
lows

Loy = {1,29,80,84,99}, Lo 2 = {2,55,65,101,113}, Lo,3 = {4, 42,44, 76,81},

Los = {5,21,28,48,123}, Lo = {7,15,71,72,89}, Lo, = {12,23, 26,47, 56}.
Set A={Loj:1<j<6}andB={L+31k:Le€ A0<k<3} Then
B forms a partially partition-type (124, 4,5,4)-CRDF by Theorem 3.5 with
e = 1, and hence there ezists a cyclic (5,4)-frame of type 43*. Furthermore,
applying Lemma 3.4 with e = 2, we get DJ(-Z) from Lo ; modulo 62 as follows

D{? = {1,29,18,22,37}, D = (2,55,3,39,51}, DY = {4,42,44,14,19},

DY = {5,21,28,48,61}, D) = {7,15,9,10,27}, D{? = {12,23,26,47, 56}.

Set B® = {D® 1+ 31k : j = 1,2,...,6,k = 0,1}. Then B® forms a
partially partition-type (62,2,5,4)-CRDF by Theorem 3.5 with e = 2, and
hence there exists a cyclic (5,4)-frame of type 231.
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